JPS5931978B2 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPS5931978B2 JPS5931978B2 JP9664177A JP9664177A JPS5931978B2 JP S5931978 B2 JPS5931978 B2 JP S5931978B2 JP 9664177 A JP9664177 A JP 9664177A JP 9664177 A JP9664177 A JP 9664177A JP S5931978 B2 JPS5931978 B2 JP S5931978B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- substrate
- metal layer
- window
- germanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Local Oxidation Of Silicon (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】
本発明は、半導体装置の製造方法とくに半導体基板表面
に形成する絶縁膜の形成方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an insulating film on a surface of a semiconductor substrate.
半導体基板に集積回路を形成する際、素子間分離や配線
等の基板との容量を小さくするために部分的に酸化膜を
厚くしたい場合がある。シリコンを基板として用いる場
合には、シリコン半導体基板の被酸化部分を窒化膜(S
i3N4)で覆つた後、酸素雰囲気中で加熱すればシリ
コン半導体基派の所望の位置に厚い酸化膜を形成するこ
とができる。When forming an integrated circuit on a semiconductor substrate, there are cases where it is desired to partially thicken the oxide film in order to reduce the capacitance between elements and the substrate such as wiring and the like. When silicon is used as a substrate, the oxidized portion of the silicon semiconductor substrate is covered with a nitride film (S
After covering with i3N4), a thick oxide film can be formed at a desired position on the silicon semiconductor substrate by heating in an oxygen atmosphere.
しかしながら、ゲルマニウム(Ge)やガリウム砒素(
GaAs)などの基板はこのような方法で酸化膜を形成
することは結晶保護の点から簡単にはできない。このよ
うな基板の表面を酸化させる方法として、ゲルマニウム
(Ge)などの半導体基板の表面に、V族の金属(タン
タル(Ta)、ニオブ(Nb)、バナジウム(V))を
薄く(約4.00〔λ〕)被着した後、プラズマ酸化さ
ゼる方法がある。However, germanium (Ge) and gallium arsenide (
For substrates such as GaAs, it is not easy to form an oxide film using this method from the viewpoint of crystal protection. As a method of oxidizing the surface of such a substrate, a thin layer (approximately 4.5 mm) of group V metal (tantalum (Ta), niobium (Nb), vanadium (V)) is applied to the surface of a semiconductor substrate such as germanium (Ge). 00 [λ]) After deposition, there is a method of plasma oxidation.
この方法によれば、まず被着金属が酸化して金属酸化物
に変化し、これが触媒となつてゲルマニウム(Ge)な
ど酸化されにくい半導体基板の表面に酸化膜を形成する
ことができる。しかしながら、この方法によると、厚い
酸化膜を短時間に形成することができず、実用的である
とはいえない。本発明は上述の如き従来の欠点を改善す
る新しい発明であり、その目的は酸化されにくい半導体
の表面に厚い酸化膜を短時間に形成できるような製造方
法を提供することにある。According to this method, the deposited metal is first oxidized and changed into a metal oxide, which acts as a catalyst to form an oxide film on the surface of a semiconductor substrate, such as germanium (Ge), which is difficult to oxidize. However, according to this method, a thick oxide film cannot be formed in a short time, and it cannot be said to be practical. The present invention is a new invention that improves the above-mentioned conventional drawbacks, and its purpose is to provide a manufacturing method that can form a thick oxide film in a short time on the surface of a semiconductor that is difficult to oxidize.
その目的を達成せしめるため、本発明の半導体装置の製
造方法は、半導体基板上に被着したマスク材に窓をあけ
た後、少なくとも窓部分にV族の金属からなる金属層を
被着する工程と、該窓にプロトンを照射して半導体基板
の一部を多結晶する工程、とプラズマ酸化により該金属
層を酸化せしめるとともに該金属層が酸化した酸化物を
触媒として前記多結晶化された領域を酸化せしめる工程
を有することを特徴とするもので、以下実施例について
さらに詳細に説明する。In order to achieve the object, the method for manufacturing a semiconductor device of the present invention includes a step of forming a window in a mask material deposited on a semiconductor substrate, and then depositing a metal layer made of a Group V metal at least in the window portion. irradiating the window with protons to polycrystallize a part of the semiconductor substrate; and oxidizing the metal layer by plasma oxidation and using the oxidized oxide of the metal layer as a catalyst to polycrystallize the polycrystalline region. The method is characterized in that it includes a step of oxidizing .Examples will be described in more detail below.
(1)第1図に示す如く、ゲルマニウム基板1の上にC
VD法を用いて二酸化シリコン(SiO2)あるいは窒
化シリコン(Si3N4)の薄膜2を被着した後、たと
えば素子間分離領域のように厚い酸化物層を形成したい
部分上の薄膜2に窓3をあける。(1) As shown in FIG.
After depositing a thin film 2 of silicon dioxide (SiO2) or silicon nitride (Si3N4) using the VD method, a window 3 is opened in the thin film 2 over a portion where a thick oxide layer is to be formed, such as an isolation region. .
(2)第2図に示すように、ゲルマニウム基板1の全面
にタンタル(Ta)を200〔λ〕の厚ざで被着して金
属層4を形成する。(2) As shown in FIG. 2, a metal layer 4 is formed by depositing tantalum (Ta) on the entire surface of the germanium substrate 1 in a thickness of 200 [λ].
(3)次いでゲルマニウム半導体基板表面からプロトン
を、60〔KeV〕乃至150〔KeV〕のエネルギー
で注入すると、第3図に示すように、窓3直下のゲルマ
ニウム基板がダメツジを受け、多結晶化領域5が形成さ
れる。(3) Next, when protons are injected from the surface of the germanium semiconductor substrate at an energy of 60 [KeV] to 150 [KeV], the germanium substrate directly under the window 3 is damaged and the polycrystalline region 5 is formed.
(4)次いで、ゲルマニウム基板1をプラズマ酸化装置
にかけると、まず、タンタル(Ta)の金属層4が酸化
されて第4図に示す如く酸化タンタル(Ta2O5)の
酸化物層4′に変る。(4) Next, when the germanium substrate 1 is subjected to a plasma oxidation apparatus, the tantalum (Ta) metal layer 4 is oxidized and turns into a tantalum oxide (Ta2O5) oxide layer 4' as shown in FIG.
なお、酸化を行なうと、この酸化物層が触媒となつて、
ゲルマニウム基板の多結晶化領域5が酸化され始める。
この部分の酸化レートは、晶質のゲルマニウムの酸化レ
ートに比べて十数倍大きい。Note that when oxidation is performed, this oxide layer acts as a catalyst,
The polycrystalline region 5 of the germanium substrate begins to be oxidized.
The oxidation rate of this portion is ten times higher than that of crystalline germanium.
このため、多結晶化領域のみがたちまち酸化され、第4
図に示す如く、ゲルマニウム基板1の表面から深く喰い
込んだ酸化物領域6が形成される。なお、基板はゲルマ
ニウム(Ge)に限らず、ガリウム・砒素(GaAs)
、インジウム・燐(InP)あるいはガリウム・アルミ
ニウム・砒素(GaAlAs)のような酸化されにくい
半導体であつても上記と同様に厚い酸化膜を形成するこ
とができる。Therefore, only the polycrystalline region is immediately oxidized, and the fourth
As shown in the figure, an oxide region 6 is formed which is deeply dug into the surface of the germanium substrate 1. Note that the substrate is not limited to germanium (Ge), but also gallium arsenide (GaAs).
A thick oxide film can be formed in the same manner as described above even with semiconductors that are difficult to oxidize, such as indium-phosphorous (InP) or gallium-aluminum-arsenic (GaAlAs).
また金属層を形成する金属も他のV属の金属を用いるこ
ともできる。さらにプロトンのほかに、アルゴンイオン
など他物質のイオンを半導体に打ち込んで半導体基板を
多結晶化してもよい。Furthermore, other V group metals can also be used as the metal forming the metal layer. Furthermore, in addition to protons, ions of other substances such as argon ions may be implanted into the semiconductor to polycrystallize the semiconductor substrate.
以上詳細に説明したように、本発明によれば、酸化され
にくい半導体基板であつても短時間に厚い酸化物層を形
成することができるので、該基板上への半導体素子の形
成が容易になつた。As described in detail above, according to the present invention, a thick oxide layer can be formed in a short time even on a semiconductor substrate that is difficult to oxidize, so that semiconductor elements can be easily formed on the substrate. Summer.
第1図乃至第4図は、本発明の一実施例を示す工程断面
図である。
図中、1はゲルマニウム基板、2は薄膜、3は窓、4は
金属層、5は多結晶化領域、6は酸化物領域である。1 to 4 are process sectional views showing one embodiment of the present invention. In the figure, 1 is a germanium substrate, 2 is a thin film, 3 is a window, 4 is a metal layer, 5 is a polycrystalline region, and 6 is an oxide region.
Claims (1)
少なくとも窓部分にV族の金属からなる金属層を被着す
る工程と、該窓にプロトンを照射して半導体基板の一部
を多結晶化する工程と、プラズマ酸化により該金属層を
酸化せしめるとともに該金属層が酸化した酸化物を触媒
として前記多結晶化された領域を酸化せしめる工程を有
することを特徴とする半導体装置の製造方法。1 After opening a window in the mask material deposited on the semiconductor substrate,
A step of depositing a metal layer made of a group V metal on at least a window portion, a step of irradiating the window with protons to polycrystallize a part of the semiconductor substrate, and oxidizing the metal layer by plasma oxidation. A method for manufacturing a semiconductor device, comprising the step of oxidizing the polycrystalline region using an oxide obtained by oxidizing the metal layer as a catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9664177A JPS5931978B2 (en) | 1977-08-12 | 1977-08-12 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9664177A JPS5931978B2 (en) | 1977-08-12 | 1977-08-12 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5430780A JPS5430780A (en) | 1979-03-07 |
JPS5931978B2 true JPS5931978B2 (en) | 1984-08-06 |
Family
ID=14170442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9664177A Expired JPS5931978B2 (en) | 1977-08-12 | 1977-08-12 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5931978B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6812992B2 (en) * | 2018-01-24 | 2021-01-13 | 信越半導体株式会社 | Manufacturing method of SOI wafer |
-
1977
- 1977-08-12 JP JP9664177A patent/JPS5931978B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5430780A (en) | 1979-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5661072A (en) | Method for reducing oxide thinning during the formation of a semiconductor device | |
US5512509A (en) | Method for forming an isolation layer in a semiconductor device | |
JPS6228578B2 (en) | ||
US5397733A (en) | Method for the construction of field oxide film in semiconductor device | |
JPS5931978B2 (en) | Manufacturing method of semiconductor device | |
US4030952A (en) | Method of MOS circuit fabrication | |
EP0327210A1 (en) | Method of preventing silicide peel-off | |
US4679301A (en) | Process for producing silicide or silicon gates for an integrated circuit having elements of the gate-insulator-semiconductor type | |
JP2906489B2 (en) | Method for manufacturing semiconductor device | |
US5726091A (en) | Method of reducing bird's beak of field oxide using reoxidized nitrided pad oxide layer | |
JPS6039848A (en) | Manufacture of semiconductor device | |
JPS63122156A (en) | Manufacture of semiconductor integrated circuit | |
JP3032244B2 (en) | Method for manufacturing semiconductor device | |
US5908659A (en) | Method for reducing the reflectivity of a silicide layer | |
JP2906491B2 (en) | Method for manufacturing semiconductor device | |
JPH02106971A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JP2945023B2 (en) | Method for manufacturing thin film transistor | |
KR940016498A (en) | Method for manufacturing metal wiring of semiconductor device | |
JPH04155967A (en) | Manufacture of semiconductor device | |
JPH05308057A (en) | Manufacture of semiconductor device | |
JPH0682641B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPS5994437A (en) | Semiconductor device | |
JPS641065B2 (en) | ||
JPH027528A (en) | Semiconductor device |