JPS593195A - Vane type compressor pump - Google Patents

Vane type compressor pump

Info

Publication number
JPS593195A
JPS593195A JP11417882A JP11417882A JPS593195A JP S593195 A JPS593195 A JP S593195A JP 11417882 A JP11417882 A JP 11417882A JP 11417882 A JP11417882 A JP 11417882A JP S593195 A JPS593195 A JP S593195A
Authority
JP
Japan
Prior art keywords
rotor
housing
vane
layer
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11417882A
Other languages
Japanese (ja)
Other versions
JPH0140236B2 (en
Inventor
Yuji Takamori
高森 勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP11417882A priority Critical patent/JPS593195A/en
Publication of JPS593195A publication Critical patent/JPS593195A/en
Publication of JPH0140236B2 publication Critical patent/JPH0140236B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/348Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings

Abstract

PURPOSE:To reduce friction between rotor and sleeve by providing a thermally sprayed layer of synthetic resin of moderate porosity and containing soft metal on the inner side of the sleeve engaged to the rotor face or the inner side of the housing. CONSTITUTION:A thermally sprayed layer 10 made of synthetic resin containing soft metal and having moderate porosity is built-up on rotor 4 surface. There is no actual clearance between the said thermally sprayed layer 10 and the inner surface of housing 3 when rotor 4 is rotating. If there is unevenness on the surface of thermally sprayed layer 10 or inner surface 2 of housing 3 and the clearance between rotor 4 and inner surface 2 of housing 3 is smaller than the thickness of said layer 10, the layer 10 is crushed in response to such clearance preventing slip between the rotor and the sleeve and eliminating friction.

Description

【発明の詳細な説明】 本発明は、ベーン型8:縮ポンプの改良に関する。[Detailed description of the invention] The present invention relates to an improvement of a vane type 8 compression pump.

従来、円筒状の内面を有するハウジングの中心に対して
偏心して位置するロータを有し、該ローータから放射状
に外方にのびるベーン溝にベーンが半径方向に摺動自在
に嵌装さ扛て、ロータの回転によって流体を圧送するベ
ーン型圧縮ポンプは幾種か実用化されている(特公昭5
1−48883、特公昭52−253等参照)。
Conventionally, a housing has a rotor located eccentrically with respect to the center of a housing having a cylindrical inner surface, and a vane is fitted into a vane groove extending radially outward from the rotor so as to be slidable in the radial direction. Several types of vane-type compression pumps, which pump fluid by the rotation of a rotor, have been put into practical use.
1-48883, Special Publication No. 52-253, etc.).

ところで、ハウシング口面とロータ表面との間の間隙は
、吸入口と吐出口とを仕切るべき位置で、理論的には無
間隙となるべきであるが、焼付防止の/こめに0.15
Rn(150μ)程度の小間隙を有しているのが普通で
ある。
By the way, the gap between the housing mouth surface and the rotor surface is the position where the suction port and the discharge port should be separated, and theoretically there should be no gap.
It is normal to have a small gap of about Rn (150μ).

このため、ポンプを作動きせる際に、この小間隙部での
エアが吹き抜けるため、そのエア量たけ吸入空気量とし
て寄与せず、体積効率が低下して流量が減少するという
間覇があつ/ζ。
Therefore, when the pump is operated, the air in this small gap blows through, so the amount of air does not contribute to the amount of intake air, resulting in a decrease in volumetric efficiency and flow rate. ζ.

本発明は、上記従来の問題点に鑑みてなされたもので、
不出願人が特願昭56−177357で提案した特定の
材料とm射技術ケ利用して、軟質金属を含有する合成樹
脂よシ成υ適度の空孔を有する溶射唐音、ロータ表面も
しくはハウジング内に嵌装さ扛たスリーブ円面に形成し
て、該ロータの回転中、該溶剤ノ曽がハウジングもしく
はスリーブと実質無間隙で接するようにして、エアの吹
き抜けを防止し体積効率の向上を図るようにし7C%の
である。
The present invention has been made in view of the above-mentioned conventional problems.
A synthetic resin containing soft metal is made of a synthetic resin containing a soft metal by thermal spraying, a rotor surface or a housing having a moderate amount of pores, using a specific material and m-spraying technique proposed by the applicant in Japanese Patent Application No. 56-177357. The sleeve is fitted inside the sleeve and is formed on a circular surface so that the solvent outlet contacts the housing or the sleeve with virtually no gap during rotation of the rotor, thereby preventing air from blowing through and improving volumetric efficiency. It is 7C% as expected.

以下、本発明の実施例を添付図面について詳細に説明す
る。
Embodiments of the invention will now be described in detail with reference to the accompanying drawings.

第1図に示すように、ベーン型圧縮ポンプ1は、はぼ円
筒状の内面2を有するハウジング3と、ハウジング中心
に対して偏心して位置するロータ4と、該ロータ4から
放射状に外方にのびるベーン溝5.・・・、5にベーン
6、・・・、6が半径方向に摺動自在に嵌装さ九て、ロ
ータ4の回転によって吸入ロアから吸入した流体を吐出
口8から圧送する公知構造のものである。
As shown in FIG. 1, a vane-type compression pump 1 includes a housing 3 having a substantially cylindrical inner surface 2, a rotor 4 located eccentrically with respect to the center of the housing, and a rotor 4 extending radially outward from the rotor 4. Extending vane groove 5. . . , 5 are fitted with vanes 6, . It is.

上記ロータ4の表面には、軟質金@を含有する合成樹脂
よシ成り適度の全孔を有する溶射層10を形成して、ロ
ータ4の回転中、溶射層10がハウジング3の円面2と
実質無間隙で接するようにしている。
On the surface of the rotor 4, a thermally sprayed layer 10 made of synthetic resin containing soft gold and having a suitable number of holes is formed, and during the rotation of the rotor 4, the thermally sprayed layer 10 touches the circular surface 2 of the housing 3. They are made to contact each other with virtually no gaps.

第2図は、ロータ4の表面にル成した溶射層10の断面
を示して2す、この溶射層10は、苛酷な熱条件および
圧力条件に対して十分な耐熱性?有することはもちろん
、ロータ4の表面に苅し十分な耐剥離性を有し、更にロ
ータ4の表面とハウジング3の内面2との間で接触時に
罰撃を生ずることl〈変形吸収能を有するものでなけれ
はならない。
FIG. 2 shows a cross section of the thermal sprayed layer 10 formed on the surface of the rotor 4. Does the thermal sprayed layer 10 have sufficient heat resistance against severe thermal and pressure conditions? Of course, the surface of the rotor 4 is coated with sufficient peeling resistance, and furthermore, the surface of the rotor 4 and the inner surface 2 of the housing 3 do not cause a blow when they come into contact. It has to be something.

η・かる溶射層10としては、軟質金属11と耐熱合成
樹脂13とより成り、適度の全孔12を内部に有する溶
射層10が選択さnる。
As the thermal sprayed layer 10, a thermal sprayed layer 10 made of a soft metal 11 and a heat-resistant synthetic resin 13 and having a suitable number of holes 12 inside is selected.

上記軟質金@11としては、アルミニウム(僅かにシリ
コンを含む)が最適で、銅、その他アルミニウムや銅に
近い物性の金属を用いることができる。
As the soft gold@11, aluminum (containing a slight amount of silicon) is most suitable, and copper and other metals having physical properties close to those of aluminum and copper can be used.

アルミニウムが最適なのは、融点や比熱が適切で、製造
コストが安価であり、LZI”%ll先光は粗自体の価
格も安価だからである。
Aluminum is optimal because it has an appropriate melting point and specific heat, is inexpensive to manufacture, and the raw material itself is inexpensive.

耐熱合成樹脂13としては、環状ポリエステル樹脂が最
適で、その能のこれに類似する物性を有する耐熱性合成
樹脂でも用いることができる。
As the heat-resistant synthetic resin 13, a cyclic polyester resin is most suitable, but any heat-resistant synthetic resin having physical properties similar to this resin may also be used.

環状ポリエステル樹脂が最適なのは、この樹脂が高い耐
熱性(220°Cで軟化、513°Cで分解)を有する
という卵白の池に、良好な歯撃吸収能を有し、さらに潤
滑油等に対して化学的に安定だ〃)らである。
The reason why cyclic polyester resin is most suitable is that this resin has high heat resistance (softens at 220°C and decomposes at 513°C), has good tooth impact absorption ability, and is also resistant to lubricating oil, etc. It is chemically stable.

耐熱合成゛樹脂13と軟質金属11との混合割合は、各
々50μ程度の粒径の粉末であると、耐熱合成樹脂13
が10〜90MM%が可能範囲であるが、特に40〜6
0M量%が良好な物性を示す。
The mixing ratio of the heat-resistant synthetic resin 13 and the soft metal 11 is such that each powder has a particle size of about 50μ.
The possible range is 10 to 90 MM%, especially 40 to 6 MM%.
0M amount% shows good physical properties.

即ち、アルミニウムの割合が少ないと密着力が弱く、逆
に多すぎると衝突時の衝撃吸収力がなくななる。
That is, if the proportion of aluminum is too small, the adhesion will be weak, and if the proportion of aluminum is too large, the shock absorbing force in the event of a collision will be lost.

溶剤は、概略を第3図に示すように、軟質金属11と耐
熱合成樹脂13の粉末を混合した状態で、ノヌ゛ル14
刀Sらアルコ゛ンガヌ16とともにプラス゛マ領域17
からロータ4の表面に吹付けて行なう。
As shown in FIG. 3, the solvent is a mixture of powders of soft metal 11 and heat-resistant synthetic resin 13, and then mixed with non-null 14.
Plasma area 17 along with Sword S and Alkonganu 16
This is done by spraying it onto the surface of the rotor 4.

全孔7は、溶射の際にその層内に生成さ扛るものであり
、後工程(ロータ4の回転時)に2いてM耐層10の父
形ケ容易にしてハウシング3等との衝撃を緩和、吸収す
る。この場合の突孔率は層厚にも関係するが、衝撃吸収
能面から40〜60%。
All holes 7 are generated in the layer during thermal spraying, and are formed in the post-process (when the rotor 4 rotates) to facilitate the formation of the M-resistant layer 10 and prevent impact with the housing 3, etc. Relax and absorb. The pore ratio in this case is related to the layer thickness, but is 40 to 60% in terms of shock absorption capacity.

が適当で、40%以下では衝撃吸収能がし下し、60%
以上では溶射層10の密着力や強度か低下して好1しく
ない。この突孔率は、軟質金属11の含有量に合わせて
浴射距路jや1M1没等の俗射条件ケ適当に設定するこ
とによシ谷易に得られる。
is appropriate; if it is less than 40%, the shock absorption ability will decrease, and if it is less than 60%
Above this, the adhesion and strength of the thermal sprayed layer 10 decrease, which is not desirable. This perforation rate can be easily obtained by appropriately setting the firing conditions such as the bath firing path j and 1M1 sinking according to the content of the soft metal 11.

全体の層厚は、衝撃吸収能並びにロータ4の表面とハウ
ジング3の内面2との間際の而から150ノ1程度が適
当である。
The total layer thickness is suitably about 150 in. from the viewpoint of shock absorption ability and the distance between the surface of the rotor 4 and the inner surface 2 of the housing 3.

溶剤の111」には、ロータ4の表面をプラ7l−処耶
して、清浄とと%に溶射層10の田肴姓を向上きせるだ
めの凹凸ケつけるのが好lしい。
It is preferable that the surface of the rotor 4 is treated with a plastic layer 111 of the solvent to form an uneven surface to improve the cleanliness and quality of the sprayed layer 10.

上記のように溝数したベーン型圧縮ポンプ1においてロ
ータ4が回転すると、吸入ロアと吐出[コ8とを仕切る
べき位置Pにおいて溶射層10かハウジング3の円面2
に実質無間隙で接する。
When the rotor 4 rotates in the vane type compression pump 1 having the number of grooves as described above, the thermal spray layer 10 or the circular surface 2 of the housing 3
It is in contact with virtually no gap.

溶射層10やハウジング30円面2に凹凸があってロー
タ4とハウジング3の円面2との間隙よシも溶射層10
の厚与が1享い場合には、溶射層10は間隙に応じて潰
さnる。
The thermal sprayed layer 10 and the circular surface 2 of the housing 3 are uneven, and the gap between the rotor 4 and the circular surface 2 of the housing 3 is also uneven.
When the thickness is 1, the sprayed layer 10 is collapsed according to the gap.

本実施例に使用される溶剤層10の耐熱合成樹脂13の
混脅割合が60M蛍%、空孔率が約50%のものを、圧
縮させた場合の荷重、と変形の関係を第4図に示す。
Figure 4 shows the relationship between the load and deformation when the heat-resistant synthetic resin 13 of the solvent layer 10 used in this example has a mixed ratio of 60M fluorite% and a porosity of about 50% and is compressed. Shown below.

a点までは、わずかな弾性を示すが、その後、はソ一定
荷N(約400KP/cΔ〕で塑性変形(つぶf’L)
が進行し、6点に至る。たわみ率30〜40%の6点で
空孔がほとんど無くなるので塑性髪形は極限に達し、荷
重は大きくなる。
It exhibits slight elasticity up to point a, but after that it undergoes plastic deformation (f'L) under a constant load N (approximately 400 KP/cΔ).
progresses and reaches 6 points. At six points with a deflection rate of 30 to 40%, there are almost no pores, so the plastic hairstyle reaches its limit and the load increases.

塑祥父形の途中す点で荷M’x除けは、同図破線の経路
となる。
At the point in the middle of the plastic mold, the load M'x takes the path indicated by the broken line in the figure.

今、例えば、ベーン6が150μの最小間隙部を通過し
、前のベーン6が吐出口8を閑じる角度を50度、圧縮
エア圧力w 4 gy/cri absと丁扛ば、4 
Q Q cc/ volのポンプでは吹き抜はエア量■
low÷4 Q ccとなる。
Now, for example, if the vane 6 passes through the minimum gap of 150μ, the angle at which the previous vane 6 opens the discharge port 8 is 50 degrees, and the compressed air pressure w 4 gy/cri abs, then 4
Q Q For cc/vol pumps, the amount of air in the atrium is ■
Low ÷ 4 Q cc.

従来のポンプの体積効率は約85%であるから、1回転
当シのエア吸入量は、V=400X0.85= 340
 CCとなる。
Since the volumetric efficiency of conventional pumps is approximately 85%, the amount of air intake per revolution is V = 400 x 0.85 = 340
Becomes CC.

そこで、第5図に示すように本願の如く、溶剤層10の
j享み(150μ)により実質無間隙とすると、体積効
率は340−)40/400=0.95となるので、従
来の有間隙の場合に比して体積効率が10%向上するこ
ととなる。
Therefore, as shown in FIG. 5, if the solvent layer 10 is made substantially void-free with a thickness of 150μ as in the present application, the volumetric efficiency becomes 340-40/400=0.95. The volumetric efficiency is improved by 10% compared to the case of gaps.

上記実施例のように、ロータ4に溶剤層10を形成する
と、溶射層10には断熱作用があるので、ロータ4に断
熱圧縮の無がこもるのが減少し、軸受部の温度上昇が抑
止さn、潤滑油を個らすことがなくなる。
When the solvent layer 10 is formed on the rotor 4 as in the above embodiment, since the sprayed layer 10 has a heat insulating effect, the accumulation of adiabatic compression in the rotor 4 is reduced, and the temperature rise in the bearing portion is suppressed. n. No more lubricating oil.

されるスリーブ9の円面に形成する構成としてもよい。It is also possible to form the sleeve 9 on a circular surface.

さらに、上記溶射層10に含油させておくと、潤滑作用
によりロータ4の回転が常に7ムースである。
Furthermore, when the thermal spray layer 10 is impregnated with oil, the rotor 4 always rotates at 7 mousses due to the lubrication effect.

以上の説明力\らも明らカニなように、不発明は、ロー
タの表面等に特定の材料の溶剤層を形成して、ロータの
回転中に溶射層がハウジング等と実質無間隙で接するよ
うにしたものであるから、エアの吹き抜けが防止されて
体積効率が向上し、流量の増7JOを図れるようになる
As the above description clearly shows, the uninvention is to form a solvent layer of a specific material on the surface of the rotor, so that the sprayed layer comes into contact with the housing etc. with virtually no gaps during rotation of the rotor. This prevents air from blowing through, improving volumetric efficiency and increasing the flow rate.

また、基本的にロータ等の表面に溶射層を形成するだけ
でよいから、既存のロータ等にも容易に適応することが
できる。
Furthermore, since it is basically only necessary to form a sprayed layer on the surface of the rotor, etc., it can be easily applied to existing rotors, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベーン型圧縮ポンプの断面図、第2肉は溶剤層
の拡大断面図、第3図は溶射層の溶射方法を示す断面図
、第4図は荷重とたわみ率との関係を示すグラフ、第5
図は厚み9間隙と体積効率との関係を示すグラフ、第6
図はハウジングの内面にスリーブを嵌装したベーン型圧
縮ポンプの断面図である。 1・・・ベーン型圧縮ポンプ、  2・・・内面、  
3・・・ハウジング、 4・・・ロータ、  5・・・
ベーン溝、6・・・ベーン、  7・・・吸入口°、 
8・・・吐出口、  9・・・スリーブ、  10・・
・溶射層、 11・・・軟質金属、12・・・空孔、 
 13・・・耐熱合成樹脂。
Figure 1 is a cross-sectional view of a vane-type compression pump, the second figure is an enlarged cross-sectional view of the solvent layer, Figure 3 is a cross-sectional view showing the thermal spraying method of the sprayed layer, and Figure 4 is the relationship between load and deflection rate. Graph, 5th
The figure is a graph showing the relationship between thickness 9 gap and volumetric efficiency.
The figure is a sectional view of a vane-type compression pump in which a sleeve is fitted on the inner surface of the housing. 1... Vane type compression pump, 2... Inner surface,
3...Housing, 4...Rotor, 5...
Vane groove, 6... Vane, 7... Suction port °,
8...Discharge port, 9...Sleeve, 10...
・Thermal spray layer, 11... Soft metal, 12... Holes,
13...Heat-resistant synthetic resin.

Claims (1)

【特許請求の範囲】[Claims] (1)はぼ円筒状の円面を有するハウジングと、ハウジ
ング中Huに対して偏心して位置するロータと、ロータ
から放射状に外方にのびるベーン溝にベーンが半径方向
に摺動自在に嵌装されて、ロータの1伝によって流体を
圧送するベーン型圧送ポンプにおいて、 軟質金Rヶ含有する合成、陶脂よシ成り適度の空孔を有
する溶剤層が、ロータ表面1bL<はハウジング内に嵌
装されたスリーブ内面に形成式れ、該ロータの回転中、
該溶射層がハウジング%L<’はスリーブと芙質無間隙
で接することを特徴とするベーン型圧縮ポンプ。
(1) A housing having a substantially cylindrical circular surface, a rotor located eccentrically with respect to Hu in the housing, and a vane fitted into a vane groove extending radially outward from the rotor so as to be slidable in the radial direction. In a vane-type pressure pump that pumps fluid through one pass of the rotor, a solvent layer made of synthetic or porcelain resin containing soft gold and having appropriate pores is fitted into the housing on the rotor surface 1bL. is formed on the inner surface of the equipped sleeve, and during rotation of the rotor,
A vane type compression pump characterized in that the sprayed layer contacts the housing and the sleeve with no gaps.
JP11417882A 1982-06-30 1982-06-30 Vane type compressor pump Granted JPS593195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11417882A JPS593195A (en) 1982-06-30 1982-06-30 Vane type compressor pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11417882A JPS593195A (en) 1982-06-30 1982-06-30 Vane type compressor pump

Publications (2)

Publication Number Publication Date
JPS593195A true JPS593195A (en) 1984-01-09
JPH0140236B2 JPH0140236B2 (en) 1989-08-25

Family

ID=14631130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11417882A Granted JPS593195A (en) 1982-06-30 1982-06-30 Vane type compressor pump

Country Status (1)

Country Link
JP (1) JPS593195A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107990U (en) * 1984-12-20 1986-07-09
JPS61234771A (en) * 1985-04-11 1986-10-20 日本たばこ産業株式会社 Apparatus for producing tobacco filter
CN104863854A (en) * 2015-06-08 2015-08-26 江苏梅花机械有限公司 Improved vacuum pump for automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107990U (en) * 1984-12-20 1986-07-09
JPS61234771A (en) * 1985-04-11 1986-10-20 日本たばこ産業株式会社 Apparatus for producing tobacco filter
JPH0242468B2 (en) * 1985-04-11 1990-09-21
CN104863854A (en) * 2015-06-08 2015-08-26 江苏梅花机械有限公司 Improved vacuum pump for automobile
CN104863854B (en) * 2015-06-08 2017-06-09 江苏梅花机械有限公司 A kind of improved vehicle-mounted vacuum pump

Also Published As

Publication number Publication date
JPH0140236B2 (en) 1989-08-25

Similar Documents

Publication Publication Date Title
US2905376A (en) Light metal vane for rotary compressor
JPS593195A (en) Vane type compressor pump
EP0556746B1 (en) Vane type gas compressor
JP6607580B2 (en) Supercharger manufacturing method
JPH0444116B2 (en)
JPS59153995A (en) Pump
US4174931A (en) Vane for rotary compressor
JPS61197794A (en) Volumetric type oil-free gas force feed pump
TWI379947B (en) Scroll compressor
JP4784408B2 (en) Compressor and manufacturing method thereof
JPH05172066A (en) Scroll fluid compressor
JPH0245683A (en) Rotary compressor
JPS6056191A (en) Roots blower
JPH09280183A (en) Vane pump
JPH06137287A (en) Scroll fluid compressor
JPS59215996A (en) Rotary compressor
JP3738149B2 (en) Gas compressor
JPS63314392A (en) Fuel pump device with built-in fuel tank
WO1988004732A1 (en) Apparatus for supporting rotational sleeve of rotary compressor by fluid
JP2006291885A (en) Sliding member for compressor and its manufacturing method
JPS6238897A (en) Spiral groove type vacuum pump
JPH0444117B2 (en)
JP4645525B2 (en) Compressor and manufacturing method thereof
JP2006046101A (en) Compressor
JP2600487Y2 (en) Rotary compressor