JPS5931878B2 - magnetic center device - Google Patents

magnetic center device

Info

Publication number
JPS5931878B2
JPS5931878B2 JP51013414A JP1341476A JPS5931878B2 JP S5931878 B2 JPS5931878 B2 JP S5931878B2 JP 51013414 A JP51013414 A JP 51013414A JP 1341476 A JP1341476 A JP 1341476A JP S5931878 B2 JPS5931878 B2 JP S5931878B2
Authority
JP
Japan
Prior art keywords
magnetic
housing
hole
magnetic sensor
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51013414A
Other languages
Japanese (ja)
Other versions
JPS5296877A (en
Inventor
昇 増田
悠 西野
博昭 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Onkyo Co Ltd
Original Assignee
Denki Onkyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Onkyo Co Ltd filed Critical Denki Onkyo Co Ltd
Priority to JP51013414A priority Critical patent/JPS5931878B2/en
Priority to DE19772705439 priority patent/DE2705439A1/en
Priority to US05/767,311 priority patent/US4117523A/en
Publication of JPS5296877A publication Critical patent/JPS5296877A/en
Publication of JPS5931878B2 publication Critical patent/JPS5931878B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体磁電変換素子を用いた磁気センサー装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic sensor device using a semiconductor magnetoelectric conversion element.

磁気インキで印刷された印刷物や磁性体成分を含有した
物で記載され或は印刷された印刷物の磁性パターンを読
取るセンサーとしては、電磁コイル型と磁電変換型があ
る。
Sensors for reading magnetic patterns of printed matter printed with magnetic ink or printed matter written or printed with magnetic components include an electromagnetic coil type and a magnetoelectric conversion type.

前者のセンサーは、印刷面とセンサー表面間のギャップ
が変動したとき、或は搬送速度が変つたとき出力特性が
大きく変化するので、印刷物の精密な搬送機構を必要と
する欠点があり、また印刷物の印刷面を常にセンサー表
面に向けて搬送しなければならず、更に表と裏の判別或
は搬送方向の指定を行わなければならない繁雑さがあつ
た。一方、後者のセンサーは、印刷面とセンサー表面間
のギャップが変つても出力変動が小さく搬送機構が簡素
で良く、また印刷物の裏表の判別および送り方向の指定
等が必要でないばかりか印刷物の搬送速度も考慮しなく
てよい利点がある。
The former sensor has the disadvantage that it requires a precise conveyance mechanism for the printed matter, as the output characteristics change greatly when the gap between the printing surface and the sensor surface changes or when the conveyance speed changes. The printed surface of the paper must always be conveyed toward the sensor surface, and it is also complicated to distinguish between the front and back sides or to specify the conveyance direction. On the other hand, the latter sensor has a small output fluctuation even when the gap between the printing surface and the sensor surface changes, and the conveyance mechanism is simple, and it is not necessary to distinguish between the front and back of the printed matter or to specify the feeding direction. There is an advantage that speed does not need to be considered.

しかし半導体材料から作られた磁電変換素子は、。モー
タ等の高い周波数の漏洩磁束に感応して出力にノイズを
混入したり、素子の温度が急激に変ると低周波のドリフ
トが生じた出力特性を示し良好なSNの出力が得られな
いばかりか、素子に外部から圧力や打撃力が加わるとピ
エゾ効果によつて出力パルスノイズが重畳しセンサー回
路を誤動作させる欠点があつた。本発明は磁電変換素子
の利点を十分に生し、かつ上述のような欠点を著しく改
善した磁気センサー装置を提供するものである。
However, magnetoelectric transducers made from semiconductor materials. If noise is mixed into the output due to high frequency leakage flux from a motor, etc., or if the temperature of the element changes rapidly, the output characteristics will exhibit low frequency drift, and it will not only be impossible to obtain a good SN output. However, when pressure or striking force is applied to the element from the outside, output pulse noise is superimposed due to the piezo effect, causing the sensor circuit to malfunction. The present invention provides a magnetic sensor device that fully takes advantage of the advantages of magnetoelectric conversion elements and significantly improves the above-mentioned drawbacks.

本発明装置は電磁石や永久磁石等の発磁手段の表面にホ
ール素子や磁気抵抗素子等の磁界に感応して出力を発生
する磁電変換素子を貼着固定し、また磁電変換素子の周
囲には、磁性フイルムや磁気カード、或は磁性体成分を
含んだインキや塗料等で記載され或は印刷された印刷物
、更には一定の情報の伝達を意味する磁性片等の所謂磁
気的情報を持つた被検出体の温度を絶縁するためガイド
堤やシールド板等の熱的絶縁手段を設けて、磁電変換素
子が被検出体の温度の影響を大きく受けたり、或は外圧
を受けたり、磁性塵や湿気の影響を受けることがないよ
うにして、低レベルの磁気信号パターンを高分解能で識
別するように構成したことを特徴とするものである。
In the device of the present invention, a magnetoelectric transducer such as a Hall element or a magnetoresistive element that generates an output in response to a magnetic field is attached and fixed on the surface of a magnetizing means such as an electromagnet or a permanent magnet, and , magnetic films, magnetic cards, printed matter written or printed with ink or paint containing magnetic components, and magnetic pieces that convey certain information, etc., which have so-called magnetic information. In order to insulate the temperature of the object to be detected, a thermal insulation means such as a guide bank or a shield plate is provided to prevent the magnetoelectric transducer from being greatly affected by the temperature of the object to be detected, or being exposed to external pressure, magnetic dust, etc. The device is characterized in that it is configured to identify low-level magnetic signal patterns with high resolution without being affected by moisture.

以下本発明装置の実施例を添付図面を用いて詳細に説明
する。
Embodiments of the apparatus of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明磁気センサー装置の断面図で、箱状のハ
ウジング10の中には、円筒伏のコイルボビン11とプ
リント基板12が支持されている。ハウジング10のセ
ンサー面13にはボビン11に設けたガイド堤14が密
嵌合する透孔15が穿たれ、またハウジング10の中に
はボビン11の鍔部16aを嵌合してボビン11の位置
を規制する支持部17が設けられると共に、ボビン11
と直角をなすようにプリント基板12が固定されている
。コイルボビン11には円柱状の磁性体柱18が鍔部1
6bから幾分かその端部を突出してガイド堤14に係止
されるように収納され、基板12に係合しかつ電気的お
よび熱的に接地した坏ジ19によつて透孔15の方向へ
押すように支持されている。またボビン11には磁性体
柱18を磁化する電磁コイル20が巻回されている。ガ
イド堤14の部分には磁性体柱18の端面に貼着した磁
電変換素子21(以下磁気抵抗素子の例について説明す
る)が配置され、これらは透孔15を覆うシールド帽2
2によつて保護されている。シールド帽22は、非磁性
材から作られ被検出体の温度、外部からの衝撃、磁性塵
、湿気や水、塩害から磁気抵抗素子21を保護する。
FIG. 1 is a sectional view of the magnetic sensor device of the present invention, in which a cylindrical coil bobbin 11 and a printed circuit board 12 are supported in a box-shaped housing 10. The sensor surface 13 of the housing 10 is provided with a through hole 15 into which the guide bank 14 provided on the bobbin 11 is tightly fitted, and the flange 16a of the bobbin 11 is fitted into the housing 10 to determine the position of the bobbin 11. A support portion 17 is provided for regulating the bobbin 11.
A printed circuit board 12 is fixed so as to form a right angle to the . A cylindrical magnetic material column 18 is attached to the collar portion 1 of the coil bobbin 11.
The direction of the through hole 15 is fixed by a fitting 19 which is housed in such a way that its end protrudes somewhat from the guide bank 14 and is engaged with the substrate 12 and is electrically and thermally grounded. It is supported in such a way that it is pushed towards. Further, an electromagnetic coil 20 that magnetizes the magnetic column 18 is wound around the bobbin 11 . A magnetoelectric transducer 21 (an example of a magnetoresistive element will be described below) attached to the end face of the magnetic column 18 is arranged in the guide embankment 14, and these are connected to the shield cap 2 that covers the through hole 15.
Protected by 2. The shield cap 22 is made of a non-magnetic material and protects the magnetoresistive element 21 from the temperature of the object to be detected, external shocks, magnetic dust, moisture, water, and salt damage.

また、シールド帽をセラミツク等の熱伝導率の高い材料
を用いて作り、かつ熱の逃げ道を作れば熱遮蔽の効果が
大きくなる。更に、シールド帽を非磁性導電体、例えば
燐青銅、ベリリユーム銅、黄銅、洋白、タングステン、
モリブデン等で作りこれをリード線で接地すると静電遮
蔽も同時に行うことが出来る。シールド帽22は、第2
図に示すように鍔22bを有する灰皿状、即ち鍔付の断
面凹型形状に作りハウジング10を成型するとき同時に
埋設するか、或はハウジング成型後透孔15に嵌合して
透孔15の部分を塞いでおり、磁気抵抗素子21に磁性
材が付着したり、湿気に触れるのを防ぎまたセンサー面
13を摺動するか或は接近して通過する被検出体の表面
温度が局部的に温度差があつても、また素子との温度差
が大きくても、シールド帽22の熱容量が大きく、或は
熱の逃げが早いから、温度変化が素子に影響しないよう
になつている。
Furthermore, if the shield cap is made of a material with high thermal conductivity, such as ceramic, and a heat escape route is created, the heat shielding effect will be increased. Furthermore, the shield cap can be made of non-magnetic conductive materials such as phosphor bronze, beryllium copper, brass, nickel silver, tungsten,
If it is made of molybdenum or the like and grounded with a lead wire, electrostatic shielding can be performed at the same time. The shield cap 22 is the second
As shown in the figure, it is made into an ashtray-like shape with a flange 22b, that is, a concave cross-sectional shape with a flange, and is buried at the same time as the housing 10 is molded, or after the housing is molded, it is fitted into the through hole 15 and the part of the through hole 15 is formed. This prevents magnetic material from adhering to the magnetoresistive element 21 and from coming into contact with moisture, and also prevents the surface temperature of an object to be detected that slides or approaches the sensor surface 13 from becoming locally heated. Even if there is a difference in temperature, or even if there is a large temperature difference with the element, the shield cap 22 has a large heat capacity or heat escapes quickly, so the temperature change will not affect the element.

上述の構成に於て、シールド帽22は磁気抵抗素子21
に対する外部からの種々の影響を遮蔽し、ガイド堤14
およびコイルボビン11の鍔部16bは、素子21のシ
ールド帽22からの一定距離を確保すると共に、シール
ド帽22からの熱を遮断する。また、シールド帽22は
鍔22bの大きさを選択することによつて熱容量を所望
に定めることが出来るから、被検出体からの急激な温度
変化は磁気抵抗素子21に伝達されない。第3図はコイ
ルボビンの部分の組体の拡大断面図を、また第4図は組
体の平面図で、第1図と同じ部分には同じ符号を付して
いる。円柱状の磁性体柱18は、2つの相対する半円形
状ガイド堤14a,14bにより係止されると共に、ガ
イド堤14aと14bの間から端面の一部を露出してい
る。そして、ガイド堤14aと14bの間の露出した磁
性体端面には、ガイド堤14a,14bと平行に2つの
磁気抵抗素子21a,21bを貼着している。ガイド堤
14a,14bおよびコイルボビン11は樹脂等の熱伝
導率の小さな材料で成型され、ガイド堤14a,14b
の高さは磁気抵抗素子21a,21bの厚さより僅かに
高く、シールド帽22に対し換言すればシールド帽22
に対接して搬送される被検出体23に対し素子21a,
21bが直接接触することなく常に一定の間隔を持つよ
うになつている。また、磁性体柱18としては異方性の
磁性材料すなわち硬質或は半硬質磁性材料を使用する。
In the above configuration, the shield cap 22 is connected to the magnetoresistive element 21
The guide bank 14
The flange portion 16b of the coil bobbin 11 secures a certain distance from the shield cap 22 of the element 21 and blocks heat from the shield cap 22. Further, since the heat capacity of the shield cap 22 can be determined as desired by selecting the size of the brim 22b, sudden temperature changes from the object to be detected are not transmitted to the magnetoresistive element 21. FIG. 3 is an enlarged sectional view of the assembly of the coil bobbin portion, and FIG. 4 is a plan view of the assembly, in which the same parts as in FIG. 1 are given the same reference numerals. The cylindrical magnetic column 18 is locked by two opposing semicircular guide banks 14a and 14b, and a part of its end surface is exposed between the guide banks 14a and 14b. Two magnetoresistive elements 21a and 21b are attached to the exposed end face of the magnetic material between the guide banks 14a and 14b in parallel with the guide banks 14a and 14b. The guide banks 14a, 14b and the coil bobbin 11 are molded from a material with low thermal conductivity such as resin.
is slightly higher than the thickness of the magnetoresistive elements 21a and 21b.
The element 21a,
21b are always kept at a constant distance without being in direct contact. Further, as the magnetic material column 18, an anisotropic magnetic material, that is, a hard or semi-hard magnetic material is used.

硬質磁性材料としては、着磁のとき保磁力の約5倍のア
ンペア・ターンを要するので、磁電コイルの発熱を出来
るだけ小さく維持するため、保持力が300〜800エ
ルステツド程度のものを用いる。また半硬質磁性材料は
衝撃によつて減磁するので、着磁されたときは衝撃が加
わらない状態で使用するか、或は衝撃があつた後着磁す
るようにすればよい。上述の構成において、被検出体2
3が磁気抵抗素子21a,21bの上を通るとき電磁コ
イル20にパルス電流を流し磁性体柱18を着磁する。
As the hard magnetic material, a material with a coercive force of about 300 to 800 oersted is used in order to keep the heat generation of the magneto-electric coil as small as possible, since an ampere turn of about 5 times the coercive force is required when magnetizing. Further, since semi-hard magnetic materials are demagnetized by impact, they can be used without being subjected to impact when they are magnetized, or they may be magnetized after impact is applied. In the above configuration, the detected object 2
3 passes over the magnetoresistive elements 21a and 21b, a pulse current is applied to the electromagnetic coil 20 to magnetize the magnetic column 18.

斯くして、この後は電磁コイル20を消勢しても磁気抵
抗素子21a,21bには磁界が作用し続ける。被検出
体23が通過したならば電磁コイル20に交流電流を流
して消磁する。従つて、コイル20に常時電流を流して
いる場合に比較して温度は上昇せず、消磁電流によつて
被検出体が存在しない間は消磁するから磁性体塵は付着
しない。平行に配置された一対の磁気抵抗素子21a,
21bは、発生するノイズを打消すように接続されてい
る。例えば、第5図は本発明装置に使用される一対の磁
気抵抗素子21a,21bの一実施例を示し、電極24
,25,26,27および導電部分28,29が斜線で
示され、磁気感応部分30,31が梨子地模様で示され
ているが、これら素子21aと21bは対称に作られ、
かつ面積も同じ構成で−つのチツプから作られている。
また電極24に接続されるリード線32と電極25およ
び26間を接続するリード線33はほぼ対称形に配置さ
ラ1,、リード線32と電極27間に電源が接続される
。リード線は蒸着されたものでも良い。従つて、外部か
らの磁界に感応して発生した電圧は、磁気抵抗素子21
a,21bの内部でこれらの抵抗値の分割比に従つて打
消され、出力端子34に現われるノイズは極めて低レベ
ルのものとなる。
Thus, after this point, even if the electromagnetic coil 20 is deenergized, the magnetic field continues to act on the magnetoresistive elements 21a and 21b. When the detected object 23 passes, an alternating current is applied to the electromagnetic coil 20 to demagnetize it. Therefore, the temperature does not rise as compared to when a current is constantly flowing through the coil 20, and magnetic dust does not adhere because the demagnetizing current demagnetizes the body while the object to be detected is not present. A pair of magnetoresistive elements 21a arranged in parallel,
21b is connected to cancel the generated noise. For example, FIG. 5 shows an embodiment of a pair of magnetoresistive elements 21a and 21b used in the device of the present invention, and the electrode 24
, 25, 26, 27 and the conductive parts 28, 29 are shown with diagonal lines, and the magnetically sensitive parts 30, 31 are shown with a pear pattern, but these elements 21a and 21b are made symmetrically,
They also have the same surface area and are made from two chips.
Further, a lead wire 32 connected to the electrode 24 and a lead wire 33 connecting between the electrodes 25 and 26 are arranged almost symmetrically, and a power source is connected between the lead wire 32 and the electrode 27. The lead wire may be a vapor-deposited wire. Therefore, the voltage generated in response to the external magnetic field is applied to the magnetoresistive element 21.
The noise is canceled inside the resistors 21b and 21b according to the division ratio of these resistance values, and the noise appearing at the output terminal 34 becomes extremely low level.

また、被検出体23は、平行に配列された磁気抵抗素子
21a,21bに対し直角の方向へ移動するが、被検出
体23の磁性体パターン、例えば第6図のような直線的
なパターン35が磁気抵抗素子21a,21bの磁気感
応部分30,31に対し交互に作用するように、磁気感
応部分30と31の間隔および磁気感応部分30,31
の幅が定められる。
The detected object 23 moves in a direction perpendicular to the magnetoresistive elements 21a and 21b arranged in parallel, but the magnetic material pattern of the detected object 23, for example, a linear pattern 35 as shown in FIG. The spacing between the magnetically sensitive parts 30 and 31 and the magnetically sensitive parts 30, 31 are such that
The width is determined.

この構成により出力端子34から高いピーク値の出力が
得られる。上述の磁気センサー装置を使用するときは、
第7図に示すように、電磁コイル20をパルス電源36
に接続し、また一対の直列接続された磁気抵抗素子21
a,21bの電極24,27は直流電源37に接続され
ている。
With this configuration, an output with a high peak value can be obtained from the output terminal 34. When using the magnetic sensor device described above,
As shown in FIG. 7, the electromagnetic coil 20 is connected to a pulse power source 36
and a pair of serially connected magnetoresistive elements 21
The electrodes 24 and 27 of a and 21b are connected to a DC power source 37.

そして電源37は素子21a,21bに被検出体23が
差掛かつたとき電流が流れ、通過後は電流が遮断される
ようになつている。従つて、被検出体23が搬送されて
くると、磁気抵抗素子21a,21bに電流が流れ、ま
た磁界が印加される。
A current flows through the power source 37 when the object 23 to be detected approaches the elements 21a and 21b, and the current is cut off after the object 23 has passed. Therefore, when the object to be detected 23 is transported, current flows through the magnetoresistive elements 21a and 21b, and a magnetic field is applied.

そして、磁性体パターン35の通過と共に素子21a,
21bに作用する磁界を変化させ、この変化分を出力電
圧として端子34から取出している。なお、磁性体粉の
塵の除去が容易なときには、磁性体柱18の代りに永久
磁石を使用しても良くこの場合は電磁コイル20が不用
である。
Then, as the magnetic material pattern 35 passes, the elements 21a,
The magnetic field acting on the magnetic field 21b is changed, and the amount of this change is taken out from the terminal 34 as an output voltage. Incidentally, when it is easy to remove the dust of the magnetic powder, a permanent magnet may be used instead of the magnetic column 18, and in this case, the electromagnetic coil 20 is unnecessary.

また、上述の・・ウジングに代えて非磁性の導体、例え
ば黄銅や洋白等から作られた筒状のものを使用できる。
Further, instead of the above-mentioned housing, a cylindrical body made of a non-magnetic conductor such as brass or nickel silver can be used.

更に、磁電変換素子としてホール素子を使用するときに
は、磁気抵抗素子の位置に2個のホール素子を配置する
Furthermore, when using a Hall element as a magnetoelectric conversion element, two Hall elements are arranged at the position of the magnetoresistive element.

ホール素子は直線性の良い出力特性を持つているから、
加える磁束密度は磁気抵抗素子の場合より小さくて良い
。2個のホール素子38,39は、第8図に示すように
定電圧直流電源40に並列に接続され、出力電圧は演算
増幅器41,42,43によつて処理される。
Hall elements have good linear output characteristics, so
The applied magnetic flux density may be smaller than that of a magnetoresistive element. The two Hall elements 38, 39 are connected in parallel to a constant voltage DC power supply 40, as shown in FIG. 8, and the output voltages are processed by operational amplifiers 41, 42, 43.

本発明は上述のような構成であるから次のような利点を
持つている。
Since the present invention has the above-described configuration, it has the following advantages.

(1)磁気検出部分に磁電変換素子を用いたから、被検
出体までの距離に対してコイル式センサーのように出力
が指数函数的に減衰しなく、また被検出信号の周波数に
も影響を受けないため、被検出体の搬送速度はランダム
で良く、また被検出体の裏表を識別したり送り方向を指
定することも必要ないから、利用者の繁雑さや負担が軽
減される。
(1) Since a magneto-electric transducer is used in the magnetic detection part, the output does not decay exponentially with the distance to the detected object unlike a coil type sensor, and is not affected by the frequency of the detected signal. Therefore, the conveyance speed of the object to be detected may be random, and there is no need to identify the front or back of the object to be detected or to specify the feeding direction, which reduces complexity and burden on the user.

(2)磁電変換素子をシールド帽で保護したため、被検
出体に凹凸があつたり皺があつても磁電変換素子に直接
接触することがなく、また被検出体を送るローラーがバ
ウンドしてシールド帽を叩いてもその衝撃は直接素子に
伝達されないから、パルス状のノズルは発生しない。
(2) Since the magnetoelectric transducer is protected by a shield cap, even if the object to be detected is uneven or wrinkled, it will not come into direct contact with the magnetoelectric transducer, and the roller that sends the object to be detected will bounce and the shield cap will protect the sensor. Even if you hit the device, the impact is not directly transmitted to the element, so no pulse-like nozzle is generated.

(3)ガイド堤を熱伝導率の低い材料で作ると共に、磁
電変換素子を磁性体柱或は磁石に直接貼着しているから
、被検出体の温度が局部的に相違していてその温度差が
素子に与えられるようになつても、素子の温度は熱容量
の大きい磁性体柱或は磁石の温度の影響を受けるので、
温度の急激な変化は生じない。
(3) Since the guide bank is made of a material with low thermal conductivity and the magnetoelectric transducer is attached directly to the magnetic column or magnet, the temperature of the detected object differs locally. Even if a difference is applied to the element, the temperature of the element is affected by the temperature of the magnetic column or magnet, which has a large heat capacity.
No sudden changes in temperature occur.

このため、出力に低周波のドリフトは生ぜず、またパル
ス状のノイズも発生しない。従つて、安定した出力特性
となり、ノイズの除去も容易になる。(4)2つの磁電
変換素子を同じ磁性体材料に貼着しているから、2つの
素子間の温度差は生じなく出力レベルが片寄ることもな
い。
Therefore, no low-frequency drift occurs in the output, and no pulse-like noise occurs. Therefore, stable output characteristics can be achieved, and noise can be easily removed. (4) Since the two magnetoelectric conversion elements are attached to the same magnetic material, there is no temperature difference between the two elements, and the output level is not biased.

(5)低レベルの磁気信号パターンを高分解能で識別す
ることが出来る。
(5) Low-level magnetic signal patterns can be identified with high resolution.

(6) ・゛ウジングの透孔をシールド帽で密封するか
ら、外部からの磁性塵や湿気等の侵入を完全に遮断する
ことが出来る。
(6) - Since the through hole of the housing is sealed with a shield cap, it is possible to completely block out the intrusion of magnetic dust, moisture, etc. from the outside.

従つて、磁電変換素子の性能低下が阻止されるから磁気
センサー装置を長期間使用出来る。
Therefore, the performance of the magnetoelectric conversion element is prevented from deteriorating, so that the magnetic sensor device can be used for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の断面図、第2図は第1図に於ける
シールド帽部分の拡大断面図、第3図は本発明装置のコ
イルボビン部分の断面図、第4図は第3図のボビンのセ
ンサー面の平面図、第5図は本発明装置に使用される磁
気抵抗素子の実施例図、第6図は磁性体パターンの一例
を示す平面図、第7図は本発明装置の使用態様を示す構
成図、第8図は本発明装置にホール素子を使用したとき
の結線図である。 10:ハウジング、11:コイルボピン、14,14a
,14b:ガイド堤、18:磁性体柱、20:電磁コイ
ル、21,21a,21b:磁気抵抗素子、22:シー
ルド帽。
1 is a sectional view of the device of the present invention, FIG. 2 is an enlarged sectional view of the shield cap portion in FIG. 1, FIG. 3 is a sectional view of the coil bobbin portion of the device of the present invention, and FIG. FIG. 5 is a plan view of the sensor surface of the bobbin of the present invention, FIG. 5 is an example of a magnetoresistive element used in the device of the present invention, FIG. 6 is a plan view showing an example of a magnetic pattern, and FIG. 7 is a diagram of the sensor surface of the device of the present invention FIG. 8 is a configuration diagram showing a usage mode, and is a wiring diagram when a Hall element is used in the device of the present invention. 10: Housing, 11: Coil boppin, 14, 14a
, 14b: Guide bank, 18: Magnetic column, 20: Electromagnetic coil, 21, 21a, 21b: Magnetoresistive element, 22: Shield cap.

Claims (1)

【特許請求の範囲】 1 ハウジングと、該ハウジングに設けた透孔と、該透
孔を密封する非磁性材から成る凹形状をした熱的絶縁手
段と、前記ハウジングの中に収納されて磁界を発生する
発磁手段と、該発磁手段の磁極面に前記絶縁手段から一
定の空隙を介して取付けられる磁電変換素子とを備え、
前記絶縁手段は、前記磁電変換素子を被検出体の温度か
ら遮断すると共に、前記磁電変換素子に対する前記ハウ
ジング外からの衝撃を排除することを特徴とする磁気セ
ンサー装置。 2 熱的絶縁手段は、非磁性の導電体により且つ透孔の
形状に適合した断面凹型形状に形成されてなることを特
徴とする特許請求の範囲第1項記載の磁気センサー装置
。 3 熱的絶縁手段は、透孔より広い鍔部を備え、該鍔部
をハウジングに埋設することにより透孔を密封する構成
としたことを特徴とする特許請求の範囲第2項記載の磁
気センサー装置。 4 熱的絶縁手段は、ハウジングの透孔に嵌合すること
により前記透孔を密封する構成としたことを特徴とする
特許請求の範囲第2項記載の磁気センサー装置。 5 発磁手段の磁電変換素子を取付けた磁極面を熱的絶
縁手段が形成する空間内に位置せしめる構成としたこと
を特徴とする特許請求の範囲第2項又は第3項又は第4
項記載の磁気センサー装置。 6 発磁手段は、磁性体部分と該磁性体部分をハウジン
グ内に支持する部分とから構成したことを特徴とする特
許請求の範囲第1項又は第2項又は第3項又は第4項又
は第5項記載の磁気センサー装置。
[Scope of Claims] 1. A housing, a through hole provided in the housing, a concave thermal insulating means made of a non-magnetic material that seals the through hole, and a thermal insulating means housed in the housing to prevent a magnetic field. comprising a magnetizing means for generating magnetism, and a magnetoelectric conversion element attached to the magnetic pole surface of the magnetizing means with a certain gap from the insulating means,
The magnetic sensor device is characterized in that the insulating means insulates the magnetoelectric transducer from the temperature of the object to be detected, and also eliminates impact to the magnetoelectric transducer from outside the housing. 2. The magnetic sensor device according to claim 1, wherein the thermal insulation means is formed of a non-magnetic conductor and has a concave cross-section that matches the shape of the through hole. 3. The magnetic sensor according to claim 2, wherein the thermal insulation means includes a flange wider than the through hole, and the flange is embedded in the housing to seal the through hole. Device. 4. The magnetic sensor device according to claim 2, wherein the thermal insulation means is configured to seal the through hole by fitting into the through hole of the housing. 5. Claims 2, 3, or 4 characterized in that the magnetic pole surface to which the magnetoelectric conversion element of the magnetizing means is attached is positioned within the space formed by the thermal insulation means.
The magnetic sensor device described in Section 1. 6. Claims 1 or 2 or 3 or 4 or 6. The magnetic sensor device according to item 5.
JP51013414A 1976-02-10 1976-02-10 magnetic center device Expired JPS5931878B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP51013414A JPS5931878B2 (en) 1976-02-10 1976-02-10 magnetic center device
DE19772705439 DE2705439A1 (en) 1976-02-10 1977-02-09 MAGNETIC SENSOR
US05/767,311 US4117523A (en) 1976-02-10 1977-02-10 Magnetic sensor having a hollow housing sealed with a shield cap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51013414A JPS5931878B2 (en) 1976-02-10 1976-02-10 magnetic center device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58020414A Division JPS58217082A (en) 1983-02-09 1983-02-09 Magnetic sensor device

Publications (2)

Publication Number Publication Date
JPS5296877A JPS5296877A (en) 1977-08-15
JPS5931878B2 true JPS5931878B2 (en) 1984-08-04

Family

ID=11832466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51013414A Expired JPS5931878B2 (en) 1976-02-10 1976-02-10 magnetic center device

Country Status (1)

Country Link
JP (1) JPS5931878B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57437Y2 (en) * 1976-02-24 1982-01-06
JPS57438Y2 (en) * 1976-04-12 1982-01-06
JPS57439Y2 (en) * 1976-09-08 1982-01-06
JPS5944672A (en) * 1982-09-07 1984-03-13 Sanyo Electric Co Ltd Magnetism detector
JPS5944673A (en) * 1982-09-07 1984-03-13 Sanyo Electric Co Ltd Magnetism detector
JPS5945576U (en) * 1982-09-20 1984-03-26 三洋電機株式会社 magnetic detector
JPS5953287U (en) * 1982-09-30 1984-04-07 三洋電機株式会社 magnetic detector
JPS5960576U (en) * 1982-10-13 1984-04-20 三洋電機株式会社 magnetic detector
JPS5969978A (en) * 1982-10-15 1984-04-20 Sanyo Electric Co Ltd Manufacture of magnetic detector
JPS59159578A (en) * 1983-03-01 1984-09-10 Midori Sokki:Kk Contactless type potentiometer
JPS6047481A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Magnetoresistive element
JPS6057687A (en) * 1983-09-09 1985-04-03 Hitachi Ltd Magneto-resistance element
JPS60102780A (en) * 1983-11-09 1985-06-06 Hitachi Ltd Magneto-resistance element
JP2015121448A (en) * 2013-12-24 2015-07-02 株式会社デンソー Magnetic detection device and manufacturing method therefor

Also Published As

Publication number Publication date
JPS5296877A (en) 1977-08-15

Similar Documents

Publication Publication Date Title
JPS5931878B2 (en) magnetic center device
US4097802A (en) Magnetoresistive field sensor with a magnetic shield which prevents sensor response at fields below saturation of the shield
RU2180129C2 (en) Detector detecting presence of magnetic mark
JP5867235B2 (en) Magnetic sensor device
JP3206810B2 (en) Magnetic detector
US3716781A (en) Magnetoresistive sensing device for detection of magnetic fields having a shape anisotropy field and uniaxial anisotropy field which are perpendicular
US4117523A (en) Magnetic sensor having a hollow housing sealed with a shield cap
GB2134307A (en) Magnetic head
JP6316429B2 (en) Magnetic sensor device
WO2018139233A1 (en) Magnetoresistive effect element unit and magnetoresistive effect element device
JPWO2017175308A1 (en) Magnetic line sensor and discrimination device using the same
JP2013217768A (en) Magnetic sensor device
JP2019174140A (en) Magnetic sensor
JPH04278415A (en) Potentiometer
EP1145048B1 (en) Reading devices for magnetic tags
JPS58217082A (en) Magnetic sensor device
JP2525199Y2 (en) Magnetic detector
US3019385A (en) Magnetic marking system
KR100433202B1 (en) Shield type magnetic head and magnetic reproducing device
JP3607447B2 (en) Magnetic field sensor
JP6980166B1 (en) Magnetic sensor device
EP0342062A2 (en) Recognising patterns printed in magnetizable ink
JP3623588B2 (en) Magnetic sensor
JPH05258245A (en) Film bias magnetic sensor
JPH04254765A (en) Magnetism detector