JPH04254765A - Magnetism detector - Google Patents

Magnetism detector

Info

Publication number
JPH04254765A
JPH04254765A JP3015098A JP1509891A JPH04254765A JP H04254765 A JPH04254765 A JP H04254765A JP 3015098 A JP3015098 A JP 3015098A JP 1509891 A JP1509891 A JP 1509891A JP H04254765 A JPH04254765 A JP H04254765A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detection device
field generator
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3015098A
Other languages
Japanese (ja)
Inventor
Shinkichi Shimizu
信吉 清水
Shigemi Kurashima
茂美 倉島
Shigeo Tanji
丹治 成生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3015098A priority Critical patent/JPH04254765A/en
Publication of JPH04254765A publication Critical patent/JPH04254765A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the output characteristic of a magnetism detector which detects the magnetic field produced when an electric current is made to flow to a magnetic field generating body. CONSTITUTION:A magnetic reluctance element 2 utilizing the magnetic reluctance of a magnetic body or semiconductor and a magnetic field generating body 22 which generates a magnetic field to be detected are housed in a magnetic shield container 24 and the magnetic field generating body 22 is composed of a laminated body of a plurality of nonmagnetic metallic plates 23 piled up upon another with insulating layers 27 in between. In addition, the magnetic shield container 24 is made of a nonconductive soft magnetic material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気検出装置、特に、磁
界発生体に電流を流したとき発生する磁界を検出し、そ
の検出磁界から磁界発生体に流れる電流を検知する磁気
検出装置の構成に関する。
[Industrial Application Field] The present invention relates to a magnetic detection device, and more particularly, to a configuration of a magnetic detection device that detects a magnetic field generated when a current is passed through a magnetic field generator, and detects a current flowing through the magnetic field generator from the detected magnetic field. Regarding.

【0002】0002

【従来の技術】図4は従来の磁気検出装置の基本構成図
、図5は従来の磁気検出装置の構成例を示す主要構成図
、図6は従来の磁気検出装置の具体的構成例を示す側面
図であり、図4,図5の磁気検出装置は特開平1−29
9481号公報に開示されたものである。
[Prior Art] FIG. 4 is a basic configuration diagram of a conventional magnetic detection device, FIG. 5 is a main configuration diagram showing an example of the configuration of a conventional magnetic detection device, and FIG. 6 is a specific configuration example of a conventional magnetic detection device. This is a side view, and the magnetic detection device shown in FIGS.
This is disclosed in Japanese Patent No. 9481.

【0003】図4において、磁性体コアを使用しない磁
気検出装置1は、磁性体または半導体の磁気抵抗を利用
した例えばバーバーポール型磁気抵抗素子2と、検出磁
界Hを発生する磁界発生体3とを、磁気シールド容器4
に収容してする。検出磁界Hの強さに比例する磁気抵抗
素子2の出力は、駆動回路5によって検知される。
In FIG. 4, a magnetic detection device 1 that does not use a magnetic core includes, for example, a barber pole type magnetoresistive element 2 that uses magnetic resistance of a magnetic material or a semiconductor, and a magnetic field generator 3 that generates a detection magnetic field H. , magnetically shielded container 4
It will be accommodated in The output of the magnetoresistive element 2, which is proportional to the strength of the detection magnetic field H, is detected by the drive circuit 5.

【0004】図5(イ) において、磁気検出装置6は
、パーマロイ等の磁性体の磁気抵抗を利用した磁気抵抗
素子7と、電流iを流して検出磁界Hを発生させる磁界
発生体8とを、パーマロイにてなる磁気シールド容器9
に収容する。磁気抵抗素子7は、その磁気抵抗体パター
ンの所定方向にバイアス磁界を印加する磁石を内蔵する
。銅等の板材より形成した磁界発生体8は、磁気抵抗素
子7の3方を囲うコ字形である。
In FIG. 5(a), the magnetic detection device 6 includes a magnetoresistive element 7 that utilizes the magnetic resistance of a magnetic material such as permalloy, and a magnetic field generator 8 that generates a detection magnetic field H by flowing a current i. , magnetically shielded container 9 made of permalloy
to be accommodated. The magnetoresistive element 7 has a built-in magnet that applies a bias magnetic field in a predetermined direction of the magnetoresistive pattern. The magnetic field generator 8 formed from a plate material such as copper is U-shaped and surrounds the magnetoresistive element 7 on three sides.

【0005】図5(ロ) において、磁気検出装置10
は、パーマロイ等の磁性体の磁気抵抗を利用した磁気抵
抗素子7と、電流iを流して検出磁界Hを発生させる磁
界発生体11とを、パーマロイにてなる磁気シールド容
器9に収容する。銅等の板材より形成した磁界発生体1
1は、磁気抵抗素子7の一側に対向する。
In FIG. 5(b), a magnetic detection device 10
A magnetic resistance element 7 that utilizes the magnetic resistance of a magnetic material such as permalloy, and a magnetic field generator 11 that generates a detection magnetic field H by passing a current i are housed in a magnetically shielded container 9 made of permalloy. Magnetic field generator 1 formed from a plate material such as copper
1 faces one side of the magnetoresistive element 7.

【0006】従来の磁気検出装置6および10は、その
装置全体を導電性であるパーマロイ等の磁気シールド容
器9で磁気シールドし、磁気シールド容器9に孔をあけ
、磁気シールドによって減少した発生磁界に合わせて増
幅回路の増幅率を調整するため、密封性に欠ける問題点
があった。
In the conventional magnetic detection devices 6 and 10, the entire device is magnetically shielded with a magnetic shield container 9 made of conductive permalloy or the like, and a hole is made in the magnetic shield container 9 to absorb the generated magnetic field reduced by the magnetic shield. At the same time, the amplification factor of the amplifier circuit was adjusted, which caused the problem of poor sealing.

【0007】図6の磁気検出装置12は、磁気検出装置
6および10の前記問題点に対処した構成であり、磁気
抵抗素子7はプリント配線板13の下面に実装し、プリ
ント配線板13に形成した回路はリード端子14を介し
てプリント配線板15に接続する。磁気抵抗素子7の下
方には、電流iを流して検出磁界を発生させる磁界発生
体16を配設し、磁気抵抗素子7および磁界発生体16
を覆う磁気シールド容器17は、銅の静電シールドケー
ス18に収容する。 磁気シールド容器17には導電性を有するパーマロイを
使用し、銅等にてなる磁界発生体16には、電流iを流
すためのリード端子19が垂下する。
A magnetic detection device 12 shown in FIG. 6 has a configuration that addresses the above-mentioned problems of the magnetic detection devices 6 and 10. The magnetic resistance element 7 is mounted on the lower surface of a printed wiring board 13, and is formed on the printed wiring board 13. The resulting circuit is connected to a printed wiring board 15 via lead terminals 14. A magnetic field generator 16 that generates a detection magnetic field by passing a current i is disposed below the magnetoresistive element 7, and the magnetoresistive element 7 and the magnetic field generator 16
A magnetically shielded container 17 that covers the is housed in a copper electrostatic shielding case 18. The magnetic shielding container 17 is made of conductive permalloy, and the magnetic field generator 16 made of copper or the like has a lead terminal 19 hanging therefrom to allow the current i to flow therethrough.

【0008】[0008]

【発明が解決しようとする課題】以上説明したように磁
気検出装置12は、それ以前の磁気検出装置6および1
0のに比べ、磁気抵抗素子7および磁界発生体16の磁
気的密封性に優れるが、磁気シールド容器17には導電
性を有するパーマロイ(Fe−Ni合金)を使用し、検
出磁界Hを発生させる磁界発生体16は一枚の板材より
形成している。そこで、磁界発生体16に流す電流iが
高速パルス (例えば40A/μs 程度)になると、
パーマロイが高周波になると磁気シールド効果が低下し
、電流iにより発生する磁界の変化率(dΦ/dt)が
大きくなり、磁界発生体16およびその周囲の導体(例
えばパーマロイ)にはLenzの法則によって渦電流が
発生する。その結果、渦電流によって磁界発生体16に
発生する磁界が乱され、磁気抵抗素子7からの出力波形
に乱れが生じるという問題点があった。
As explained above, the magnetic detection device 12 is different from the previous magnetic detection devices 6 and 1.
0, the magnetic resistance element 7 and the magnetic field generator 16 have excellent magnetic sealing properties, but the magnetic shield container 17 uses conductive permalloy (Fe-Ni alloy) to generate the detection magnetic field H. The magnetic field generator 16 is formed from a single plate. Therefore, when the current i flowing through the magnetic field generator 16 becomes a high-speed pulse (for example, about 40 A/μs),
When the frequency of permalloy becomes high, the magnetic shielding effect decreases, the rate of change (dΦ/dt) of the magnetic field generated by the current i increases, and the magnetic field generator 16 and the surrounding conductor (for example, permalloy) have vortices due to Lenz's law. A current is generated. As a result, there is a problem in that the magnetic field generated in the magnetic field generator 16 is disturbed by the eddy current, and the output waveform from the magnetoresistive element 7 is disturbed.

【0009】図7は、高周波電流iを磁気検出装置12
の磁界発生体16に流したときの電流波形と、磁気検出
装置12からの出力波形との比較図であり、出力波形A
には電流波形Bに見られない波形乱れCおよびDが観察
される。
FIG. 7 shows how the high frequency current i is detected by the magnetic detection device 12.
It is a comparison diagram of the current waveform when flowing through the magnetic field generator 16 and the output waveform from the magnetic detection device 12, and the output waveform A
Waveform disturbances C and D that are not seen in current waveform B are observed.

【0010】0010

【課題を解決するための手段】図1は本発明による磁気
検出装置の基本構成図であり、図4の磁気検出装置1と
共通部分に同一符号を使用した図1(イ) において、
磁性体コアを使用しない磁気検出装置21は、例えばバ
ーバーポール型磁気抵抗素子2と、検出磁界Hを発生す
る磁界発生体22を、磁気シールド容器24に収容する
。磁気抵抗素子2の出力は駆動回路5によって検知され
る。磁界発生体22は図1(イ),(ロ) に示す如く
、複数の非磁性金属板23を重ねた積層体であり、さら
に本発明の効果を一層有効にするには、絶縁層27を介
して非磁性金属板23を積層するおよび/または、磁気
シールド容器24をパーマロイ等の導電性磁性材料に替
えて非導電性の軟磁性材料例えばフェライト(Mn−Z
n) にて形成する。
[Means for Solving the Problems] FIG. 1 is a basic configuration diagram of a magnetic detection device according to the present invention, and in FIG.
A magnetic detection device 21 that does not use a magnetic core includes, for example, a barber pole magnetoresistive element 2 and a magnetic field generator 22 that generates a detection magnetic field H, housed in a magnetic shielding container 24 . The output of the magnetoresistive element 2 is detected by the drive circuit 5. As shown in FIGS. 1A and 1B, the magnetic field generator 22 is a laminate made up of a plurality of non-magnetic metal plates 23, and in order to make the effects of the present invention even more effective, an insulating layer 27 is added. A non-magnetic metal plate 23 is laminated through the magnetic shield container 24, and/or a non-conductive soft magnetic material such as ferrite (Mn-Z
n).

【0011】[0011]

【作用】上記手段によれば、一枚板で構成した従来の磁
界発生体に替えて積層構成の磁界発生体を、例えば厚さ
3mmの銅板より形成した従来の磁界発生体に替え、厚
さ0.5mmの銅の薄板を6枚重ねにした本発明の磁界
発生体を組み込めば、各銅薄板に渦電流が発生し、銅薄
板に発生した渦電流は銅薄板間で相殺するようになるた
め、磁気抵抗素子に及ぼす渦電流の影響は著しく小さく
なる。 そして、銅薄板間に絶縁層を設けることによって渦電流
の影響は一層小さくなる。さらに、渦電流は導電性の構
成部材に発生するため、導電性である従来のパーマロイ
に替えて非導電性材料にて磁気シールド容器を形成すれ
ば、磁気シールド容器に渦電流が発生しないようになる
。それらの結果、磁気検出装置の出力波形と磁界発生体
に流す電流波形との対応が正確になる。
[Operation] According to the above means, instead of the conventional magnetic field generating body composed of a single plate, the magnetic field generating body having a laminated structure is replaced with the conventional magnetic field generating body formed from a copper plate having a thickness of 3 mm, for example, and the thickness If the magnetic field generator of the present invention, which is made of six 0.5 mm thin copper plates stacked together, is incorporated, eddy currents will be generated in each thin copper plate, and the eddy currents generated in the thin copper plates will be canceled out between the thin copper plates. Therefore, the influence of eddy currents on the magnetoresistive element is significantly reduced. By providing an insulating layer between the thin copper plates, the influence of eddy currents is further reduced. Furthermore, since eddy currents occur in electrically conductive components, forming the magnetically shielded container with a non-conductive material instead of the conventional permalloy, which is electrically conductive, will prevent eddy currents from occurring in the magnetically shielded container. Become. As a result, the correspondence between the output waveform of the magnetic detection device and the current waveform flowing through the magnetic field generator becomes accurate.

【0012】0012

【実施例】図2は本発明の実施例による磁気検出装置の
主要構成図(イ) とその磁界発生体の斜視図(ロ) 
、図3は図2に示す磁気検出装置の出力特性図である。
[Embodiment] Figure 2 is a main configuration diagram (a) of a magnetic detection device according to an embodiment of the present invention and a perspective view of its magnetic field generator (b).
, FIG. 3 is an output characteristic diagram of the magnetic detection device shown in FIG. 2.

【0013】図6の磁気検出装置12と共通部分に同一
符号を使用した図2において、磁気検出装置25の磁気
抵抗素子7はプリント配線板13の下面に実装し、プリ
ント配線板13に形成した回路はリード端子14を介し
てプリント配線板15に接続する。磁気抵抗素子7の下
方には、電流iを流して検出磁界Hを発生させる磁界発
生体26を配設し、磁気抵抗素子7および導体16を覆
う磁気シールド容器17は、銅の静電シールドケース1
8に収容する。銅やアルミニウム等の非磁性金属材料よ
りほぼI形の非磁性金属板29, 30を形成し、それ
ぞれ複数枚の金属板29,30 を直接または絶縁層2
7を介して積層した磁界発生体26には、装着用の一対
の透孔27と、電流iを流すため一対のリード端子19
を固着する一対の透孔28とが設けられ、透孔28に固
着した一対のリード端子19は、装着した磁界発生体2
6より垂下するようになる。
In FIG. 2, in which the same reference numerals are used for the same parts as the magnetic detection device 12 in FIG. The circuit is connected to a printed wiring board 15 via lead terminals 14. A magnetic field generator 26 that causes a current i to flow and generates a detection magnetic field H is disposed below the magnetoresistive element 7, and a magnetic shielding container 17 that covers the magnetoresistive element 7 and the conductor 16 is a copper electrostatic shielding case. 1
Accommodate in 8. Almost I-shaped non-magnetic metal plates 29 and 30 are formed from non-magnetic metal materials such as copper and aluminum, and a plurality of metal plates 29 and 30 are respectively connected directly or with the insulating layer 2.
The magnetic field generator 26 laminated through the wire 7 has a pair of through holes 27 for attachment, and a pair of lead terminals 19 for passing the current i.
A pair of through holes 28 are provided for fixing the magnetic field generator 2 , and a pair of lead terminals 19 fixed to the through holes 28 are connected to the attached magnetic field generator 2 .
It starts to droop from 6.

【0014】磁気シールド容器17はパーマロイにて形
成してもよいが、導電性であるパーマロイに替えて、非
導電性の軟磁性材料例えばフェライト(Mn−Zn) 
にて形成すれば、磁界発生体26に高周波パルス電流i
を流したとき発生する渦電流に影響されないようになる
The magnetic shielding container 17 may be made of permalloy, but instead of conductive permalloy, it may be made of a non-conductive soft magnetic material such as ferrite (Mn-Zn).
If the high frequency pulse current i is formed in the magnetic field generator 26,
It becomes unaffected by eddy currents that occur when flowing.

【0015】図3において、(イ) は磁界発生体26
に流す高周波電流の波形,(ロ)は磁界発生体26を積
層構成とし磁気シールド容器17をパーマロイにて作成
した磁気検出装置25の出力波形,(ハ)は磁界発生体
26を積層構成とし磁気シールド容器17をフェライト
(Mn−Zn) とした磁気検出装置25の出力波形で
ある。ただし、磁界発生体26には、絶縁塗料を介して
複数枚の金属板29と30を積層したものを使用した。
In FIG. 3, (a) indicates the magnetic field generator 26.
(b) is the output waveform of the magnetic detection device 25 in which the magnetic field generator 26 has a laminated structure and the magnetic shield container 17 is made of permalloy; (c) shows the output waveform of the magnetic detection device 25 in which the magnetic field generator 26 has a laminated structure and the magnetic shield container 17 is made of permalloy. This is an output waveform of the magnetic detection device 25 in which the shield container 17 is made of ferrite (Mn-Zn). However, for the magnetic field generator 26, a plurality of metal plates 29 and 30 were laminated with an insulating paint interposed therebetween.

【0016】図3(ロ) において、磁気抵抗素子7お
よび磁界発生体26をパーマロイにてなる磁気シールド
容器17に収容した磁気検出装置25の出力波形Eは、
従来の出力波形Aより電流波形Bに近づき、従来の波形
乱れCおよびDがほぼ消滅する。しかし、定電流に対し
出力の安定性がやや悪く、渦電流の影響が残るようにな
る。
In FIG. 3(b), the output waveform E of the magnetic detection device 25 in which the magnetoresistive element 7 and the magnetic field generator 26 are housed in a magnetically shielded container 17 made of permalloy is as follows.
The current waveform B is closer to that of the conventional output waveform A, and the conventional waveform disturbances C and D almost disappear. However, the stability of the output is somewhat poor with respect to constant current, and the effects of eddy currents remain.

【0017】図3(ハ) において、磁気抵抗素子7お
よび磁界発生体26をフェライト(Mn−Zn) にて
なるシールド容器17に収容した磁気検出装置25の出
力波形Fは、従来の出力波形Aおよび図3(ロ) の出
力波形Eより優れ、電流波形Bとほぼ同一になる。
In FIG. 3(c), the output waveform F of the magnetic detection device 25 in which the magnetoresistive element 7 and the magnetic field generator 26 are housed in a shield container 17 made of ferrite (Mn-Zn) is different from the conventional output waveform A. It is superior to the output waveform E in FIG. 3(b), and is almost the same as the current waveform B.

【0018】磁気抵抗素子7には、磁気抵抗体パターン
の長さ方向にバイアス磁界を印加せしめることが有効で
あり、該バイアス磁界は磁気抵抗素子7に永久磁石を内
蔵すればよいし、該永久磁石としてフェライト磁石,F
e−Cr−Co磁石,アルニコ磁石またはプラスチック
磁石が利用できる。
It is effective to apply a bias magnetic field to the magnetoresistive element 7 in the length direction of the magnetoresistive pattern. Ferrite magnet as magnet, F
e-Cr-Co magnets, alnico magnets or plastic magnets can be used.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、高
周波パルス電流を磁界発生体に流す磁気検出装置におい
て、出力波形を原電流波形と同等な波形となし得た効果
がある。
As explained above, according to the present invention, an output waveform can be made into a waveform equivalent to the original current waveform in a magnetic detection device that causes a high-frequency pulse current to flow through a magnetic field generator.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明による磁気検出装置の基本構成図で
ある。
FIG. 1 is a basic configuration diagram of a magnetic detection device according to the present invention.

【図2】  本発明の実施例による磁気検出装置の主要
構成の説明図である。
FIG. 2 is an explanatory diagram of the main configuration of a magnetic detection device according to an embodiment of the present invention.

【図3】  図2に示す磁気検出装置の出力特性図であ
る。
3 is an output characteristic diagram of the magnetic detection device shown in FIG. 2. FIG.

【図4】  従来の磁気検出装置の基本構成図である。FIG. 4 is a basic configuration diagram of a conventional magnetic detection device.

【図5】  従来の磁気検出装置の構成例を示す主要構
成図である。
FIG. 5 is a main configuration diagram showing a configuration example of a conventional magnetic detection device.

【図6】  従来の磁気検出装置の具体的構成例を示す
側面図である。
FIG. 6 is a side view showing a specific configuration example of a conventional magnetic detection device.

【図7】  従来の磁気検出装置の磁界検出用導体に高
周波電流を流したときの出力特性図である。
FIG. 7 is an output characteristic diagram when a high frequency current is passed through a magnetic field detection conductor of a conventional magnetic detection device.

【符号の説明】[Explanation of symbols]

2,7 は磁性体または半導体の磁気抵抗を利用した磁
気抵抗素子 17,25 は磁気シールド容器 21,25 は磁気検出装置 22,26 は検出磁界を発生する磁界発生体23,2
9,30は磁界発生体を構成する非磁性金属板27は非
磁性金属板の積層間の絶縁層
2, 7 are magnetic resistance elements 17, 25 are magnetic shield containers 21, 25 are magnetic detection devices 22, 26 are magnetic field generators 23, 2 that generate detection magnetic fields
9 and 30 constitute a magnetic field generator, and a non-magnetic metal plate 27 is an insulating layer between laminated layers of non-magnetic metal plates.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  磁性体または半導体の磁気抵抗を利用
した磁気抵抗素子 (2,7)と、検出磁界を発生する
磁界発生体(22,26) とを、磁気シールド容器(
17,24) に収容し、該磁界発生体(22,26)
が複数の非磁性金属板(23,29,30)の積層体で
あることを特徴とする磁気検出装置。
Claim 1: A magnetoresistive element (2, 7) using magnetoresistance of a magnetic material or a semiconductor and a magnetic field generator (22, 26) that generates a detection magnetic field are placed in a magnetically shielded container (
17, 24), and the magnetic field generator (22, 26)
A magnetic detection device characterized in that is a laminate of a plurality of nonmagnetic metal plates (23, 29, 30).
【請求項2】  前記磁界発生体(22,26) が絶
縁層(27)を介して複数の非磁性金属板(23,29
,30)を積層した積層体であることを特徴とする前記
請求項1記載の磁気検出装置。
2. The magnetic field generator (22, 26) is connected to a plurality of non-magnetic metal plates (23, 29) via an insulating layer (27).
.
【請求項3】  前記磁気シールド容器(17,24)
 が非導電性の軟磁性材料にてなることを特徴とする前
記請求項1記載の磁気検出装置。
[Claim 3] The magnetic shield container (17, 24)
2. The magnetic detection device according to claim 1, wherein the magnetic detection device is made of a non-conductive soft magnetic material.
JP3015098A 1991-02-06 1991-02-06 Magnetism detector Withdrawn JPH04254765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015098A JPH04254765A (en) 1991-02-06 1991-02-06 Magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015098A JPH04254765A (en) 1991-02-06 1991-02-06 Magnetism detector

Publications (1)

Publication Number Publication Date
JPH04254765A true JPH04254765A (en) 1992-09-10

Family

ID=11879370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015098A Withdrawn JPH04254765A (en) 1991-02-06 1991-02-06 Magnetism detector

Country Status (1)

Country Link
JP (1) JPH04254765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066328A (en) * 1999-08-27 2001-03-16 Yazaki Corp Current sensor and electric circuit using same
JP2018081024A (en) * 2016-11-17 2018-05-24 アルプス電気株式会社 Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066328A (en) * 1999-08-27 2001-03-16 Yazaki Corp Current sensor and electric circuit using same
JP2018081024A (en) * 2016-11-17 2018-05-24 アルプス電気株式会社 Current sensor

Similar Documents

Publication Publication Date Title
USRE31613E (en) Measuring transformer
KR0139640B1 (en) Magnetic field shaping in an acoustic pick-up assembly
JP3490737B2 (en) Logo ski coil
US4309655A (en) Measuring transformer
US5942893A (en) Shielded eddy current sensor for enhanced sensitivity
US7977934B2 (en) High bandwidth open-loop current sensor
RU2180129C2 (en) Detector detecting presence of magnetic mark
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
US10274524B2 (en) Current sensor including a first flow path portion and a second flow path folder and power conversion apparatus including the same
US5587651A (en) Alternating current sensor based on parallel-plate geometry and having a conductor for providing separate self-powering
GB2211308A (en) Electric current sensing device
JPWO2018139233A1 (en) Magnetoresistive element device and magnetoresistive element device
US11493537B2 (en) Magnetic field-based current sensor for frequency-compensated measurement of alternating currents
JPH04254765A (en) Magnetism detector
EP0930508A1 (en) Magnetic impedance effect device
US20190041432A1 (en) Magnetic sensor and electric current sensor including same
US6595419B1 (en) Shielded magnetic reading devices
JP4336724B2 (en) Metal detector
JP3634281B2 (en) Magneto-impedance effect sensor
CN209927923U (en) Current detection device based on PCB
US20200018804A1 (en) Electric current sensor
JP3094635B2 (en) Current sensor
JPH01240867A (en) Current detector
JPH06149450A (en) Tablet for digitizer
CN112394216B (en) Leakage current sensor, leakage current detection circuit, and power supply device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514