JPS5931569B2 - Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel - Google Patents

Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel

Info

Publication number
JPS5931569B2
JPS5931569B2 JP54008770A JP877079A JPS5931569B2 JP S5931569 B2 JPS5931569 B2 JP S5931569B2 JP 54008770 A JP54008770 A JP 54008770A JP 877079 A JP877079 A JP 877079A JP S5931569 B2 JPS5931569 B2 JP S5931569B2
Authority
JP
Japan
Prior art keywords
steel
thermal expansion
coefficient
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54008770A
Other languages
Japanese (ja)
Other versions
JPS55104426A (en
Inventor
千秋 大内
洋司 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP54008770A priority Critical patent/JPS5931569B2/en
Priority to US06/104,754 priority patent/US4256516A/en
Priority to DE19792951217 priority patent/DE2951217A1/en
Priority to FR7931150A priority patent/FR2445386B1/en
Priority to CA000342612A priority patent/CA1147580A/en
Priority to GB7944515A priority patent/GB2040999B/en
Publication of JPS55104426A publication Critical patent/JPS55104426A/en
Priority to US06/197,138 priority patent/US4373951A/en
Publication of JPS5931569B2 publication Critical patent/JPS5931569B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は低熱膨張率高降伏点非磁性鋼の製造方法の創
案に係り、熱膨張率がフェライト鋼レベルないしそれ以
下に低くて降伏点が高く、しかも透磁率が低くて機械力
旺後においても上昇することのない非磁性鋼を低コスト
に製造することのできる方法を提供しようとするもので
あり、より具体的には0〜100℃間の平均熱膨張率が
1.25X10−”/’C以下で常温の降伏強度(O8
2%耐度)が36Ky/m4以上のような特性を有する
非磁性鋼の好ましい製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-magnetic steel with a low thermal expansion coefficient and high yield point, which has a thermal expansion coefficient as low as or lower than that of ferrite steel, a high yield point, and a low magnetic permeability. The purpose of this invention is to provide a method for manufacturing non-magnetic steel at low cost that does not increase even after mechanical stress. Yield strength at room temperature (O8
The present invention relates to a preferable method for manufacturing non-magnetic steel having a characteristic of 2% resistance) of 36 Ky/m4 or more.

近時開発された超高速陸上輸送方式としての磁気浮上
式高速鉄道(リニアモーターカー)や核融合炉のプラズ
マ発生装置Qこおける構造部材その他において鉄系の非
磁性材料の採用を必要とする分野が次第に拡大され、要
望が高まっている。
Fields that require the use of iron-based non-magnetic materials in structural components and other parts of recently developed ultra-high-speed land transportation systems such as magnetic levitation high-speed trains (maglev trains) and plasma generators for nuclear fusion reactors (Q). is gradually expanding and demand is increasing.

然して鉄系の非磁性鋼としては基本的にその組成をオー
ステナイト組織を有するように選定することにより略適
切な非磁性を得ることができ、その代表的な例としてオ
ーステナイト系ステンレス鋼がある。又その他にもHa
dfield鋼(0.9〜1.3%C111〜14%M
n)なども非磁性鋼として有名であり、その改良型とし
てのMn−Cr鋼(例えばDINX40Mn、Cr18
鋼)、Mn−Cr−Ni鋼(例えばDINX55Mn、
Ni、Crl4鋼)、Mn−Cに−Ni−V鋼(例えば
DINX45Mn、Ni、Cに、V1376鋼)なども
低炭素高マンガン非磁性鋼として知られている。ところ
が上記したような非磁性鋼における共通問題点として熱
膨張率が普通炭素鋼レベル(160〜1.3X10〜5
/’C)に比較して著しく高い(186〜169×10
−57’C)ことが挙げられ、構造物への適用Oこ際し
て大きな障害となっている。特に前記した磁気浮上式リ
ニアモークカーの構造物のように使用中の温度変化によ
る膨張ζこ伴う変形や寸法精度の重要な場合Cこは熱膨
張率ができるだけ低い方が望ましい。父上記のような従
来の非磁性鋼においては引張強さは高いにも拘わらず降
伏点が著しく低いので構造物として適用される場合Qこ
好ましくないことが多く、この降伏点を高くするために
はC量を多くしたり、CrやNi、Vなどの合金元素を
多量Cこ添加したりすることにより或る程度目的を達す
ることができるが、このC量を多くすることは、熱膨張
率を大きくすることであり、又Cr、Ni、Vなどの合
金元素を多量に添加することはその価格を著しく高額化
する不利かある。 本発明は上記したような実情に鑑み
検討を重ねて創案されたものであり、前記した磁気浮上
式高速鉄道におけるガイドウエイ構造物や路床用鉄筋或
いは核融合炉の構造物その他に採用されるに好ましい非
磁性鋼材を適切に得しめ、特に従来の非磁性鋼の欠点で
ある高熱膨張率、低降伏強度を改善して熱膨張率が普通
鋼並(0〜100℃の平均熱膨張率が1.0〜1.3X
10−5/゜c)に低く、しかも降伏点(0.2%耐力
)が36Kp/M4上と高いと共Cこ冷間加工した状態
でも透磁率が1.1以下の非磁性鋼を安価に製造するこ
とQこ成功した。即ち本発明においてはC,:0.5%
未満、S1:2チ未満、Mn: 20〜30%、N:0
.04%未満を含有し、しかもそのMnとCとの間にく
Mn(へ)> 16XC(ニ)+18・・・・・・・・
・ I Mn(ニ)>−12XC(至)+21.5・・・
・・・・・・IIなる不等式の関係を倒れも満足させるこ
とができ、必要に応じてCr:2%未満の範囲で含有し
、残部がFeおよび不可避不純物からなる鋼塊又は鋼片
を1220℃以下に加熱してから熱間圧延を行G),圧
延仕上り温度(FT)をFT(’C)<800+400
XC(至)なる不等式を満足させることOこより、0℃
から100℃の間の平均熱膨張率が1.25Xi0−5
7’c以下の低熱膨張率で、しかも降伏点( 0.2%
耐力)が36K9A4以上の高降伏点を有する高マンガ
ン非磁性鋼を得るものである。
However, as iron-based nonmagnetic steel, approximately appropriate nonmagnetism can be obtained by basically selecting the composition to have an austenitic structure, and a typical example thereof is austenitic stainless steel. Also, there are other Ha
dfield steel (0.9~1.3%C111~14%M
Mn-Cr steel (e.g. DINX40Mn, Cr18
steel), Mn-Cr-Ni steel (e.g. DINX55Mn,
Ni, Crl4 steel), Mn-C, -Ni-V steel (for example, DINX45Mn, Ni, C, V1376 steel), etc. are also known as low carbon high manganese nonmagnetic steels. However, a common problem with non-magnetic steels as mentioned above is that the coefficient of thermal expansion is at the level of ordinary carbon steel (160~1.3X10~5
/'C) is significantly higher than (186-169×10
-57'C), which poses a major obstacle in its application to structures. In particular, in cases where dimensional accuracy and deformation caused by expansion due to temperature changes during use, such as the structure of the magnetically levitated linear moke car described above, are important, it is desirable that the coefficient of thermal expansion be as low as possible. Although the conventional non-magnetic steels mentioned above have high tensile strength, their yield points are extremely low, so when used as structures, Q is often undesirable. The objective can be achieved to some extent by increasing the amount of C or adding a large amount of alloying elements such as Cr, Ni, and V. However, increasing the amount of C increases the coefficient of thermal expansion. In addition, adding large amounts of alloying elements such as Cr, Ni, and V has the disadvantage of significantly increasing the price. The present invention was created after repeated studies in view of the above-mentioned circumstances, and is applicable to guideway structures, roadbed reinforcing bars, nuclear fusion reactor structures, etc. in the above-mentioned magnetic levitation high-speed railways. In particular, we have improved the high thermal expansion coefficient and low yield strength, which are the shortcomings of conventional non-magnetic steel, and created a material with a thermal expansion coefficient comparable to that of ordinary steel (an average thermal expansion coefficient of 0 to 100°C). 1.0~1.3X
10-5/゜c), and its yield point (0.2% yield strength) is as high as 36Kp/M4, making it possible to produce non-magnetic steel with a magnetic permeability of 1.1 or less even when cold-worked at low cost. It was successfully manufactured. That is, in the present invention, C: 0.5%
less than, S1: less than 2 inches, Mn: 20-30%, N: 0
.. Contains less than 0.04%, and between Mn and C, Mn(e) > 16XC(d)+18...
・I Mn(d)>-12XC(to)+21.5...
・・・・・・It is possible to satisfy the relationship of the inequality II even when falling down, and if necessary, the steel ingot or billet containing Cr in a range of less than 2%, with the balance consisting of Fe and unavoidable impurities, can be made into 1220 Hot rolling is performed after heating to below ℃G), and the rolling finish temperature (FT) is set to FT('C)<800+400
By satisfying the inequality XC (to) O, 0℃
The average coefficient of thermal expansion between 100℃ and 1.25Xi0-5
Low thermal expansion coefficient of 7'c or less, and yield point (0.2%
A high manganese nonmagnetic steel having a high yield point of 36K9A4 or higher (yield strength) is obtained.

上記したような本発明における成分限定理由について説
明すると以下の通りである。即ち、Cはオーステナイト
を安定化させる重要な元素であって、それが増加すれば
する程、他のオーステナイト安定化元素を節約すること
ができるし、又オーステナイト鋼の強化元素としても有
効であって,Cが0.1%当り1.8Kv一の耐力上昇
と2.2KS’/一の引張強さの上昇が可能である。
The reasons for limiting the ingredients in the present invention as described above are as follows. That is, C is an important element that stabilizes austenite, and the more it increases, the more other austenite stabilizing elements can be saved, and it is also effective as an element for strengthening austenitic steel. , C per 0.1%, it is possible to increase the yield strength by 1.8Kv and increase the tensile strength by 2.2KS'/.

従ってこのCが或る程度に含有されることが好ましいが
、一方このCが多過ぎると熱間加工性を阻害したり、熱
膨張率を本発明の目的程度とするために更に多量のMn
を必要とするので経済的に好ましくなく、更には被削性
を悪くする等の事情から0,5%未満とする。次にMn
は、オーステナイト安定化元素として他のものζこ比較
して安価であり有効な元素であって、高Mn鋼のオース
テナイトの安定性は基本的番こC量とMn量のバランス
で決定されることは第2図(こも示す通りであり、高C
楓低Mnで安定化する。
Therefore, it is preferable that this C be contained to a certain extent, but on the other hand, if this C is too large, hot workability may be inhibited, and an even larger amount of Mn may be added to maintain the thermal expansion coefficient to the level desired by the present invention.
This is not economically preferable because it requires 0.5%, and furthermore, it worsens machinability, so it is set to less than 0.5%. Next, Mn
is an element that is cheaper and more effective as an austenite stabilizing element than other elements, and the stability of austenite in high Mn steel is determined by the balance between the basic C content and Mn content. is as shown in Figure 2 (high C
Kaede stabilizes with low Mn.

従ってその下限のMn量は高C鋼において約7%である
が後に述べる熱膨張率を低く維持する必要があることか
ら実質的に20係以上にする必要がある。又このMnを
30%以上添加することはコストアップとなり、しかも
製造上における困難性も高まるので、30%を上限とし
た。然して約30鋼種についての熱膨張率に関する重回
帰分析を行った結果ζこよれば、Cは熱膨張率を上昇さ
せ、Mnは反対にこれを小さくする傾向があり、平均熱
膨張率を普通鋼なみの1.25刈0−5’/’C(0〜
100℃平均)以下となる範囲は前記した(1)式の如
くなり、これを図示すると前記した第1図に示すa・・
・a線以上である。又C,Mnは共にオーステナイト安
定化元素であり、それらが増加すると共に透磁率を低下
させるが、20%冷間加工を施しても安定して非磁性が
得られる範囲を上記同様に重回帰分析して求めた結果は
前記した(II)式の如くであって、これを図示すると
上記した第1図に示すb・・・b線の如くである。
Therefore, the lower limit of Mn content is about 7% in high C steel, but it is necessary to keep the coefficient of thermal expansion low, which will be described later, so it is practically necessary to make it 20% or more. Furthermore, adding 30% or more of Mn increases the cost and also increases the difficulty in manufacturing, so 30% is set as the upper limit. However, as a result of multiple regression analysis on the coefficient of thermal expansion of about 30 steel types, it was found that C tends to increase the coefficient of thermal expansion, while Mn tends to decrease it, making the average coefficient of thermal expansion lower than that of ordinary steel. Normal 1.25 cutting 0-5'/'C (0~
The range in which the temperature is below 100°C (average) is as shown in equation (1) above, and this is illustrated by a... shown in Figure 1 above.
・A line or higher. In addition, C and Mn are both austenite stabilizing elements, and as they increase, magnetic permeability decreases, but multiple regression analysis was performed in the same manner as above to find the range in which stable non-magnetism can be obtained even after 20% cold working. The result obtained is as shown in the above-mentioned formula (II), and this is illustrated as the lines b...b shown in FIG. 1 above.

即ち熱膨張率を普通鋼なみの1.25X10−5/’C
以下とすると共に冷間加工によっても1.1以下の透磁
率を得るためにはC,Mn量(こ関して前記したような
制限に加えて前記(I) , (II)式を同時に満足
させることが必要であり、これを要約して本発明域を示
すと第1図におけるハツチングを施した範囲となる。し
かしながら従来の高C −{JtMn非磁性鋼では熱膨
張率は満足せず実質的にC,Mn量は(I)式によって
決定される。なお前述した第2図においては20%冷間
加工および80%冷間加工をなした場合における安定オ
ーステナイト相を得るためのC,Mn量のバランス関係
が示されており、20%冷間加工の場合に比し80%冷
間加工の場合は少許ずれるとしても始んど同様である。
In other words, the coefficient of thermal expansion is 1.25X10-5/'C, which is the same as that of ordinary steel.
In order to obtain magnetic permeability of 1.1 or less even by cold working, the amount of C and Mn (in addition to the above-mentioned restrictions regarding this, formulas (I) and (II) must be satisfied at the same time). To summarize this and show the area of the present invention, it is the hatched area in Figure 1. However, the conventional high C-{JtMn nonmagnetic steel does not satisfy the thermal expansion coefficient and has a substantial The amounts of C and Mn are determined by the formula (I).In addition, in Figure 2 mentioned above, the amounts of C and Mn to obtain a stable austenite phase in the case of 20% cold working and 80% cold working are shown. The balance relationship is shown, and the case of 80% cold working is similar to that of 20% cold working, even if there is a slight deviation.

Nについては、0.005%未満ではオーステナイトの
安定化が失われ易く、又それが0.04%を超えると鋼
の勲間加工性を損うので0.005〜0.04%とする
Regarding N, if it is less than 0.005%, the stabilization of austenite is likely to be lost, and if it exceeds 0.04%, the machinability of the steel will be impaired, so it is set at 0.005 to 0.04%.

又Ni,Cr,VはオーステナイトMn鋼の強度を上昇
させる有効な元素であるが、経済性の観点からはNiと
Crが夫々2%以下、Vは0.5%以下であることが好
ましく、この範囲内の添加では本発明の特徴である熱膨
張率の著しく低い性能を損うことがない。
Further, Ni, Cr, and V are effective elements for increasing the strength of austenitic Mn steel, but from the viewpoint of economic efficiency, it is preferable that Ni and Cr are each 2% or less, and V is 0.5% or less. Addition within this range does not impair the extremely low coefficient of thermal expansion, which is a feature of the present invention.

又本発明(こおいては上記したような成分の鋼塊又は鋼
片を熱間圧延するζこ当ってその均熱及び加熱温度に関
し充分注意を払うことが必要である。
In addition, in the present invention (in this case, when hot rolling a steel ingot or slab having the above-mentioned composition), it is necessary to pay sufficient attention to the soaking and heating temperature.

即ち第3図は高Mnオーステナイト鋼を加熱し、高温引
張試験を行ったときの引張温度と高温延性の関係を示し
たものであるが、約1250’C以上では絞りが著しく
低下し、熟間割れが生じ易くなることが示されている。
然して大型鋼塊では成分偏析が著しくなるので実操業に
おいてはこれより更に低温の1220℃以下で加熱する
ことが望ましい。更に圧延条件に関してはそれが高Mn
オーステナイト鋼の降伏強度(耐力)に大きく影響する
ものであって、オーステナイト低温域での圧延による細
粒化効果は非常に太きい。
In other words, Figure 3 shows the relationship between tensile temperature and high-temperature ductility when high-Mn austenitic steel was heated and subjected to a high-temperature tensile test. It has been shown that cracks are more likely to occur.
However, in the case of large steel ingots, component segregation becomes significant, so in actual operation it is desirable to heat the steel ingots at a lower temperature of 1220° C. or lower. Furthermore, regarding the rolling conditions, it is
It greatly affects the yield strength (yield strength) of austenitic steel, and the grain refining effect of rolling in the austenite low temperature range is very large.

即ち第4図は圧延仕上り温度と降伏強度(0.2%耐力
)との関係を示したものであるが、0.23C−21.
4Mn鋼については900℃以下、0.12C−27.
4Mn鋼に関しては850℃以下の仕上温度に制御する
こ済とにより10Ky/ml上の降伏強度上昇を達成す
ることができも然してこれとは別に多くの高Mnオース
テナイト鋼について本発明者が検討した結果は第5図に
示す通りであって、降伏強度36K9/一以上を得るに
はCそれ自体の強化作用とのバランスで決まり、これを
一般的に言うならば800〜950℃以下に仕上温度を
制御することとなり、又概ね次の(自)式を満足する圧
延仕上り温度とすることによって達成できる。仕上温度
FT(’0<800+400xC(イ)・・・III本発
明によるものの具体的な実施例をその比較例と共Oこ説
明すると以下の如くである。
That is, FIG. 4 shows the relationship between rolling finishing temperature and yield strength (0.2% proof stress), and 0.23C-21.
For 4Mn steel, below 900°C, 0.12C-27.
Regarding 4Mn steel, it is possible to achieve an increase in yield strength of over 10 Ky/ml by controlling the finishing temperature to 850°C or less. Apart from this, the present inventor has also studied many high Mn austenitic steels. The results are shown in Figure 5. Obtaining a yield strength of 36K9/1 or higher is determined by the balance with the reinforcing effect of carbon itself, and generally speaking, this is achieved by setting the finishing temperature to 800 to 950 degrees Celsius or less. This can be achieved by controlling the rolling finish temperature to approximately satisfy the following (self) equation. Finishing temperature FT ('0<800+400xC (a)...III Specific examples of the present invention, together with comparative examples thereof, will be explained as follows.

即ち本発明者等は具体的に次の第1表に示すような成分
組成の25Ky鋼塊を夫々準備し、それらの鋼塊に対し
同じく第1表の右側に示すように本発明による製造条件
と本発明外の製造条件で圧延した。
That is, the present inventors specifically prepared 25Ky steel ingots having the composition shown in Table 1 below, and applied the manufacturing conditions according to the present invention to these steel ingots as shown on the right side of Table 1. It was rolled under manufacturing conditions outside the present invention.

父上記したような各鋼番の鋼についてその特性を測定し
た結果は次の第2表に示す通りであった。
The properties of each steel number as mentioned above were measured and the results are shown in Table 2 below.

即ちAグループの鋼において見られるように加熱温度を
1220℃以上に高くし過ぎると鋼板に疵が生ずるが、
A−Dの各グループのものに共通してこの加熱温度を1
220゜C以下とすることにより高Mn鋼板製造上の1
つの問題点となっている表面疵を解消していることが認
められる。又圧延仕上温度を低くすることにより良好な
降伏強度が得られており、D3鋼板では950℃仕上で
も好ましい降伏強度を得しめ、合金元素の添加を大幅に
節約することが可能である。なおこのときの圧延条件は
1000゜C以下での累積圧下率が低温仕上番こなる程
連続的に大きくなるようにし、例えば仕上り温度750
℃で約60%となるように行ったものである。一方本発
明の特徴である低熱膨張率(こついては重回帰分析Qこ
よりO〜100℃の平均熱膨張率αが次のm式で表わさ
れることが確認された。
In other words, as seen in Group A steels, if the heating temperature is too high above 1220°C, flaws will occur in the steel plate.
This heating temperature is 1 in common for each group of A-D.
By setting the temperature to 220°C or less, one improvement in the production of high Mn steel sheets is achieved.
It is recognized that the surface flaws, which were one of the major problems, have been resolved. In addition, good yield strength is obtained by lowering the rolling finishing temperature, and D3 steel plate can obtain a preferable yield strength even when finished at 950°C, making it possible to significantly save on the addition of alloying elements. The rolling conditions at this time are such that the cumulative reduction rate below 1000°C increases continuously as the finishing temperature increases, for example, at a finishing temperature of 750°C.
The temperature was adjusted to approximately 60% at ℃. On the other hand, it was confirmed from multiple regression analysis Q that the average coefficient of thermal expansion α from 0 to 100° C. is expressed by the following formula m.

α=1.80+0.48C−0.03Mn−・・・・・
PJ又この(IV)式で計算される等熱膨張率線ζこつ
いては第6図に示される通りである。更に熱膨張率につ
いてはCr量やN量の変化に対しても殆んど変化しない
ことは第7図と第8図に示す通りであって高Cr、高N
系の高Mn鋼に対しても熱膨張率はそのC,Mn量が略
支配的であって、上記した(IV)式の適用が可能であ
ることを確認した。以上説明したような本発明Oこよれ
ば、従来の高Mn非磁性鋼の不可避的欠点である高熱膨
張率および低降伏屯を共に解消し、特に殊更な合金元素
を添加することなく普通鋼なみ又はそれ以上(こ低熱膨
張率化し且つ高降伏点化することが可能で、しかもそれ
らの目的を安価に達成することができるものであり、加
うるに高Mn鋼製造上の問題であった表面疵発生の如き
も全面的ζこ解決し、大量に必要とされる厚板、形鋼な
いし棒鋼などに関して非磁性鋼として充分に即応し得る
ものであるから工業的Cこその効果の大きい発明である
α=1.80+0.48C-0.03Mn-...
PJ and the constant thermal expansion coefficient line ζ calculated by this formula (IV) are as shown in FIG. Furthermore, as shown in Figures 7 and 8, the coefficient of thermal expansion hardly changes even when the Cr content or N content changes;
It was confirmed that the coefficient of thermal expansion of high-Mn steels is also substantially dominated by the amounts of C and Mn, and that the above formula (IV) can be applied. According to the present invention as explained above, both the high coefficient of thermal expansion and low yield strength, which are the unavoidable drawbacks of conventional high-Mn nonmagnetic steels, can be solved, and the steel can be made to the same level as ordinary steel without adding special alloying elements. or higher (this makes it possible to lower the coefficient of thermal expansion and increase the yield point, and achieve these objectives at low cost. In addition, it is possible to reduce the surface area, which has been a problem in the production of high-Mn steel. Industrial C is a highly effective invention because it completely solves problems such as the occurrence of defects and can be used as a non-magnetic steel for thick plates, shaped steel, and steel bars that are required in large quantities. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は本発明におけるC量とMn量のバランス関係を示した
図表、第2図は安定オーステナイト相を得るためのC,
Mn量のバランス関係を示した図表,第3図は高温引張
試験による引張温度、歪速度と絞りとの関係を示す図表
、第4図は圧延仕上温度と降伏強度(0.2%耐力)と
の関係Cこついて若干例を示した図表、第5図は0.2
%耐力ζこ及ぼすC量と圧延仕上温度の関係を要約して
示す図表、第6図は安定オーステナイト域での等熱膨張
率線図、第7図は高Mn鋼の熱膨張率とN量との関係を
示す図表、第8図は高Mn鋼の熱膨張率とCr量との関
係を示した図表である。 然してこれらの図面において附記されているところは具
体的に用いられた鋼種であり、又第6図において夫々の
線に附記されている数字は0〜100℃の平均熱膨張率
: XlO−”/’Cを示すものである。
The drawings show the technical contents of the present invention, and Figure 1 is a diagram showing the balance relationship between the amount of C and the amount of Mn in the present invention, and Figure 2 is a diagram showing the balance relationship between the amount of C and the amount of Mn in the present invention, and Figure 2 shows the balance between C and Mn in order to obtain a stable austenite phase.
Figure 3 is a graph showing the relationship between the balance of Mn content, Figure 3 is a graph showing the relationship between tensile temperature, strain rate, and reduction of area in a high-temperature tensile test, and Figure 4 is a graph showing the relationship between finishing rolling temperature and yield strength (0.2% proof stress). A diagram showing some examples of the relationship C, Figure 5 is 0.2
A diagram summarizing the relationship between the amount of C exerted on the % proof stress ζ and the finishing temperature of rolling, Figure 6 is a diagram of constant thermal expansion coefficient in the stable austenite region, and Figure 7 is the coefficient of thermal expansion and N amount of high Mn steel. FIG. 8 is a chart showing the relationship between the coefficient of thermal expansion and the amount of Cr in high Mn steel. However, what is appended in these drawings is the steel type specifically used, and the numbers appended to each line in FIG. 6 are the average coefficient of thermal expansion from 0 to 100°C: 'C.

Claims (1)

【特許請求の範囲】 1 C:0.5%以下、Si:2%以下、Mn:20〜
30%、N:0.005〜0.04%を含有し残部が鉄
及び不可避不純物からなり、前記したCとMnとの間に
下記不等式の関係を共に満足する鋼を1220℃以下に
加熱して熱間圧延を行い、仕上げ温度をそのC量に応じ
て800℃+400℃×C(%)以下とすることを特徴
とする低熱膨張率高降伏点非磁性鋼の製造方法。 Mn(%)>16×C(%)+18 Mn(%)>−12×C(%)+21.5
[Claims] 1 C: 0.5% or less, Si: 2% or less, Mn: 20~
Steel containing 30%, N: 0.005 to 0.04%, the remainder consisting of iron and unavoidable impurities, and satisfying the relationship of the following inequality between C and Mn, is heated to 1220 ° C. or less. A method for producing a nonmagnetic steel with a low coefficient of thermal expansion and a high yield point, characterized in that hot rolling is carried out at a temperature of 800° C. + 400° C.×C (%) or less depending on the amount of C. Mn (%) > 16 x C (%) + 18 Mn (%) > -12 x C (%) + 21.5
JP54008770A 1978-12-26 1979-01-30 Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel Expired JPS5931569B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP54008770A JPS5931569B2 (en) 1979-01-30 1979-01-30 Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel
US06/104,754 US4256516A (en) 1978-12-26 1979-12-18 Method of manufacturing non-magnetic Fe-Mn steels having low thermal expansion coefficients and high yield points
DE19792951217 DE2951217A1 (en) 1978-12-26 1979-12-19 NON-MAGNETIC STEELS WITH LOW THERMAL EXPANSION COEFFICIENTS AND HIGH STRENGTH LIMITS, AND METHOD FOR THE PRODUCTION THEREOF
FR7931150A FR2445386B1 (en) 1978-12-26 1979-12-19 NON-MAGNETIC STEEL WITH A LOW COEFFICIENT OF THERMAL EXPANSION AND A HIGH SUSPENSION RESISTANCE AND METHOD FOR ITS MANUFACTURE
CA000342612A CA1147580A (en) 1978-12-26 1979-12-21 Nonmagnetic steels having low thermal expansion coefficients and high yield points and method of manufacturing the same
GB7944515A GB2040999B (en) 1978-12-26 1979-12-28 Nonmagnetic steel having low thermal expansion coefficient and high yield point
US06/197,138 US4373951A (en) 1978-12-26 1980-10-15 Nonmagnetic steels having low thermal expansion coefficients and high yield points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54008770A JPS5931569B2 (en) 1979-01-30 1979-01-30 Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel

Publications (2)

Publication Number Publication Date
JPS55104426A JPS55104426A (en) 1980-08-09
JPS5931569B2 true JPS5931569B2 (en) 1984-08-02

Family

ID=11702123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54008770A Expired JPS5931569B2 (en) 1978-12-26 1979-01-30 Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel

Country Status (1)

Country Link
JP (1) JPS5931569B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143213A (en) * 1990-10-05 1992-05-18 Kobe Steel Ltd Production of high mn nonmagnetic steel excellent in local deformability
DE112008003230T5 (en) * 2007-11-30 2010-10-07 Nippon Piston Ring Co., Ltd. Steel products for piston rings and piston rings
JP6998468B2 (en) * 2018-05-23 2022-01-18 ファ,マンチャオ NPR steel materials for lock bolts and their production methods
CN108754339B (en) * 2018-05-23 2020-06-19 何满潮 Production method of NPR anchor rod steel material
KR102218441B1 (en) * 2019-10-08 2021-02-19 주식회사 포스코 High strength wire rod having non-magnetic property and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910892A (en) * 1972-05-12 1974-01-30
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS52150722A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Preparation of nonmagnetic steel material superior in mechanical properties
JPS5531810A (en) * 1978-08-24 1980-03-06 Nippon Zeon Co Ltd Solventless epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910892A (en) * 1972-05-12 1974-01-30
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS52150722A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Preparation of nonmagnetic steel material superior in mechanical properties
JPS5531810A (en) * 1978-08-24 1980-03-06 Nippon Zeon Co Ltd Solventless epoxy resin composition

Also Published As

Publication number Publication date
JPS55104426A (en) 1980-08-09

Similar Documents

Publication Publication Date Title
CN102906294A (en) Austenite steel material having superior ductility
CN109023069B (en) NbC nanoparticle reinforced X80 plastic pipe steel plate and manufacturing method thereof
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
CN111187977B (en) 690 MPa-grade anti-seismic, corrosion-resistant and fire-resistant medium-thickness plate steel and manufacturing method thereof
CN111519097A (en) 460 MPa-level structural steel and preparation method thereof
KR101903181B1 (en) Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
US4373951A (en) Nonmagnetic steels having low thermal expansion coefficients and high yield points
KR101623242B1 (en) Duplex stainless steel with supper corrosion resistance and manufacturing method thereof
CN106544585A (en) Plate and its production method in a kind of high intensity for Wide Band Oxygen Sensors automobile axle housing
JPS5931569B2 (en) Manufacturing method of low thermal expansion coefficient high descending point non-magnetic steel
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
USRE28772E (en) High strength corrosion-resistant stainless steel
JP3293378B2 (en) Method for producing high-strength extra-thick rolled H-section steel for construction with a flange thickness of 80 mm or more that has fire resistance, excellent weldability, and little change in strength in the thickness direction
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production
KR910002941B1 (en) Making method of a hot rolled sheet excellant in tension and in tenacity for oil well-pipes
JPH03240918A (en) Production of wide flange shape excellent in refractoriness and reduced in yield ratio
JPH0475305B2 (en)
JPS582571B2 (en) Manufacturing method of Tin-based low yield ratio composite structure high tensile strength steel plate
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JPS5828329B2 (en) Manufacturing method of thick-walled high-toughness steel plate
JPS601928B2 (en) Manufacturing method for hot-rolled high-strength steel sheets with excellent workability
JPS60190516A (en) Production of nonmagnetic steel sheet for constructing superconductive magnet for nuclear fission reactor
JP2002105540A (en) Method for producing high strength hot rolled steel sheet
JPH06104855B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet with excellent fire resistance for construction
JPS6325054B2 (en)