JPS593094A - Device for producing belt-like silicon crystal - Google Patents

Device for producing belt-like silicon crystal

Info

Publication number
JPS593094A
JPS593094A JP11297382A JP11297382A JPS593094A JP S593094 A JPS593094 A JP S593094A JP 11297382 A JP11297382 A JP 11297382A JP 11297382 A JP11297382 A JP 11297382A JP S593094 A JPS593094 A JP S593094A
Authority
JP
Japan
Prior art keywords
die
band
cooling
crystal
forward end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11297382A
Other languages
Japanese (ja)
Other versions
JPS5950638B2 (en
Inventor
Naoaki Maki
真木 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11297382A priority Critical patent/JPS5950638B2/en
Publication of JPS593094A publication Critical patent/JPS593094A/en
Publication of JPS5950638B2 publication Critical patent/JPS5950638B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Abstract

PURPOSE:To improve the pulling speed of belt-like silicon and to prevent the generation of neck-down by providing regulators for cooling temp. which are made into a U shape so as to cover the forward end part of a die and controls the temp. by flowing cooling gas in the fine holes on the die side. CONSTITUTION:A heat shielding plate 14 plays the role of weakening the heat radiation which is radiated by a melt 11 and arrives at the forward end of a die 13, and said plate is opened with a window at which the forward end part of the die 13 is exposed. A crucible 12 is inserted into a crucible holder 15 formed of carbon. A pair of plate-like heaters 16 (16a, 16b) are provided on the outer side of a crucible holder 15. The heaters 16 are installed in parallel in the longitudinal direction of the die 13 and the holder 15, and are worked to make notches 17 alternately from the top and bottom by which the electric resistance value is controlled. A pair of U shaped regulators 19 (19a, 19b) for cooling temp. are installed at both ends in the longitudinal direction in the forward end part of the die 13 so as to oppose to each other.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、帯状シリコン結晶の製造装置の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in an apparatus for manufacturing band-shaped silicon crystals.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、結晶製造技術の1つとして帯状シリコン結晶の成
長方法が開発されているが、この帯状シリコン結晶を成
長させる炉内の平面図を第1図(a) K 、そのA 
−A’断面図を(b)に示す。この第1図は、シリコ、
ン融液11を収容する石英ガラス製ルツ?12にカー?
ンで作られたスリ。
Recently, a method for growing band-shaped silicon crystals has been developed as one of the crystal manufacturing techniques, and the plan view inside the furnace in which this band-shaped silicon crystal is grown is shown in Figure 1 (a) K and A.
-A' cross-sectional view is shown in (b). This figure 1 shows silico,
A glass made of quartz glass containing the melt 11? Car at 12?
A pickpocket made of

ト(間隙)を有するキャピラリ・ダイJ3(z3a、z
3b)(以下単にゲイト言つ)t=その長辺方向をルツ
?12の長辺方向に平行に設置した状態を示す。このダ
イ13の先端部は鋭く、ナイフェツジ状に加工されてお
り、また、これらのダイ13はルツデ12上に設けられ
た熱遮蔽板14に強く固定されている。この熱遮蔽板1
4は融液1ノの熱輻射を上記ダイ13の先端に到達する
のを弱める役割をはだすもので、ダイ13の先端部を露
出させ、る窓があけられている。ルツボ12は、カーボ
ンで形成されたルツホホルダー15内に挿入されている
。このルツデホルダー15の外側には、一対の板状のヒ
ータ16(16a、16b)が設けられていル。
Capillary die J3 (z3a, z
3b) (Hereinafter simply referred to as gate) t = Its long side direction is Ruth? 12 is shown installed parallel to the long side direction. The tips of the dies 13 are sharp and processed into a knife shape, and these dies 13 are strongly fixed to a heat shield plate 14 provided on the slide 12. This heat shield plate 1
Reference numeral 4 serves to weaken the thermal radiation of the melt 1 from reaching the tip of the die 13, and a window is opened to expose the tip of the die 13. The crucible 12 is inserted into a crucible holder 15 made of carbon. A pair of plate-shaped heaters 16 (16a, 16b) are provided on the outside of this lute holder 15.

このヒータ16は上記ダイ13およびルッがホルダー1
5の長手方向に平行に設置され、かつ上下から交互に切
込み17が加工されてこれにより電気抵抗値を制御する
仕組みになっている。
This heater 16 is connected to the die 13 and the holder 1.
5 is installed in parallel to the longitudinal direction, and cuts 17 are formed alternately from above and below, thereby controlling the electrical resistance value.

18はチャンバー側壁である。18 is a chamber side wall.

上記のように構成された成長装置の石英ルッデ12に多
結晶シリコンを入れ、ヒータ16の温度を約1500℃
に上昇させる。すると、多結晶シリコンはシリコン融液
11となシ、そしてこのシリコン融液11が毛細管現象
によシ、ダイノ3の先端部まで上昇する。この上昇した
シリコン融液11に上方から種子結晶(図示せず)を接
触させ、次に徐々に引き上げることにょシ、帯状シリコ
ン結晶を成長させることができる。
Polycrystalline silicon is placed in the quartz Rudde 12 of the growth apparatus configured as described above, and the temperature of the heater 16 is set to approximately 1500°C.
to rise to. Then, the polycrystalline silicon becomes a silicon melt 11, and this silicon melt 11 rises to the tip of the dyno 3 due to capillary action. By bringing a seed crystal (not shown) into contact with the rising silicon melt 11 from above and then gradually pulling it up, a band-shaped silicon crystal can be grown.

本発明者は上述した成長装置において、幅広のシリコン
結晶の成長を試みたところ、引上げ速度が5〜10簡/
分と非常に遅く、また種子結晶よシ必ず幅が狭くなシ、
1咽程度に減少(以下ネックダウンと呼ぶ)シ、その後
のリボン幅の拡幅操作が複雑であり、長い幅広の結晶が
得られなかった。上記した従来技術は、帯状シリコン結
晶の大量生産を考えると、時間的にも材料的にも損失で
あシ、大量生産には最適な技術ではない。この原因は固
液界面近傍の引上げ方向の温度勾配が低く、横方向の温
度分布が悪いことにある。本発明者はダイの先端に種子
結晶を接触後1固液界面の温度分布を非接触測定法で測
定したところ、種子結晶(幅100 mm )の中央部
で低温で、両端部で高温、つまり固液界面の温度分布は
種子幅に対して凹型となってぃた・上記温度分布の場合
、帯状シリコン結晶の成長では、種子幅と同じ幅の結晶
を成長開始よシ得ることは困難となシ、必ずネックダウ
ンを生じる。さらに、ネックダウン後の拡幅では、両端
の温度が高いため、拡幅程度がおそく、温度の低い中央
部でダイと固着する確率が高かった。さらに本発明者は
引上げ方向の温度勾配を熱電対で測定したところグイ先
端部で100イと勾配がなだらかであった。このことは
引上げ速度が5〜10M/分と遅いことを意味する。
The present inventor attempted to grow a wide silicon crystal using the above-mentioned growth apparatus, and found that the pulling rate was 5 to 10 times a day.
The seed crystal is very slow, and the width of the seed crystal is always narrow.
The process of reducing the ribbon width to about one neck (hereinafter referred to as neck-down) and then widening the ribbon width was complicated, and it was not possible to obtain long and wide crystals. Considering the mass production of band-shaped silicon crystals, the above-mentioned conventional technology causes a loss in terms of time and materials, and is not an optimal technology for mass production. The reason for this is that the temperature gradient in the pulling direction near the solid-liquid interface is low and the temperature distribution in the lateral direction is poor. The present inventor measured the temperature distribution at the solid-liquid interface using a non-contact measurement method after contacting the seed crystal with the tip of the die, and found that the seed crystal (width 100 mm) had a low temperature at the center and a high temperature at both ends. The temperature distribution at the solid-liquid interface was concave with respect to the seed width. In the case of the above temperature distribution, when growing band-shaped silicon crystals, it is difficult to start growing crystals with the same width as the seed width. This will definitely result in neck down. Furthermore, when widening after necking down, since the temperature at both ends was high, the degree of widening was slow, and there was a high probability that the core would stick to the die at the lower temperature center. Furthermore, the present inventor measured the temperature gradient in the pulling direction using a thermocouple, and found that the gradient was as gentle as 100 I at the tip of the goo. This means that the pulling speed is as slow as 5 to 10 M/min.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、引上げ速度を大幅に向上させ、ネック
ダウンの発生を防止し、成長開始より幅広帯状結晶を引
上げることを可能ならしめた大量生産に適した帯状シリ
コン結晶の製造装置を提供することにある。
An object of the present invention is to provide an apparatus for producing band-shaped silicon crystals that is suitable for mass production and that greatly increases the pulling speed, prevents the occurrence of neck-down, and makes it possible to pull wide band-shaped crystals from the start of growth. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明者は前記した従来技術の欠点の改良を目的として
鋭意研究を重ねた結果、成長開始直後の固液界面の温度
分布を凸型にして、同時に引上げ方向の温度勾配を急峻
にすることにょシ、従来技術の欠点を改善できることを
見′出した。
As a result of extensive research aimed at improving the drawbacks of the prior art described above, the present inventor has developed a method to make the temperature distribution at the solid-liquid interface convex immediately after the start of growth, and at the same time to steepen the temperature gradient in the pulling direction. It has been found that the drawbacks of the prior art can be improved.

そこで本発明においては、固液界面付近に一対の冷却温
度調整器を設置する。この冷却温度調整器はダイ先端部
をおおうようにコの字型とし、ダイ側に細孔を設けて冷
却ガスを流して、固液界面付近の温度を下げるように制
御する。また、冷却温度調整器は耐熱を考慮して例えば
モリブデンを使用し、冷却ガス供給手段としてモリブデ
ンノやイブあるいはステンレスパイプをこの冷却温度調
整器に溶接加工する。更に、冷却温度調整器は帯状シリ
コン結晶の成長中に炉外よりダイ長手方向に移動可能な
構造とし、固液界面の温度分布を任意に制御できるよう
にすることが好ましい。モリブデンあるいはステンレス
パイプは例えはチャンバ側面で支持され、さらに冷却温
度調整器は熱遮蔽板上をスライドする構成とする。冷却
温度調整器の移動は手動、あるいはモータによる自動も
可能である。
Therefore, in the present invention, a pair of cooling temperature regulators are installed near the solid-liquid interface. This cooling temperature regulator is U-shaped so as to cover the tip of the die, and has small holes on the die side to flow cooling gas to control the temperature near the solid-liquid interface. In addition, the cooling temperature regulator is made of, for example, molybdenum in consideration of heat resistance, and molybdenum, tube, or stainless steel pipe is welded to the cooling temperature regulator as a cooling gas supply means. Furthermore, it is preferable that the cooling temperature regulator has a structure that allows it to be moved in the longitudinal direction of the die from outside the furnace during the growth of the band-shaped silicon crystal, so that the temperature distribution at the solid-liquid interface can be arbitrarily controlled. The molybdenum or stainless steel pipe is supported, for example, on the side of the chamber, and the cooling temperature regulator is configured to slide on a heat shield plate. The cooling temperature regulator can be moved manually or automatically by a motor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グイ先端部にその長手方向に2個冷却
温度調整器を設置することによって、引上げ直後の固液
界面の温度分布を凸型に形成することができ、かつ、固
液界面周辺の温度を従来技術と比べて、十分に低温とす
ることができるため、帯状シリコン結晶表面からの熱の
放散が良くなシ、ひいては引上げ方向の温度勾配が急峻
になる。従って引上げ直後のネックダウンを生じること
なく、種子結晶の幅と同じ帯状シリコン結晶を引上げる
ことが可能となシ、かつ、引上げ方向の温度勾配が急峻
となるため、従来の技術で達成できなかった高速引上げ
が可能となる。従って、時間的、材料的損失が減少し、
高速化のため大幅に帯状シリコン結晶の生−産量が増加
する。その他の作用効果として、固液界面近傍にガスを
噴出するため、ダイ先端部と炉1内雰、囲気・が遮断で
き、グイ先端部のシリコン融液にスラップが浮遊するこ
とを防止することができる。
According to the present invention, by installing two cooling temperature regulators in the longitudinal direction at the tip of the goo, the temperature distribution at the solid-liquid interface immediately after pulling can be formed in a convex shape, and the solid-liquid interface Since the surrounding temperature can be made sufficiently lower than in the prior art, heat dissipation from the band-shaped silicon crystal surface is improved, and the temperature gradient in the pulling direction becomes steeper. Therefore, it is possible to pull a band-shaped silicon crystal with the same width as the seed crystal without causing neckdown immediately after pulling, and because the temperature gradient in the pulling direction becomes steep, this is not possible with conventional techniques. This enables high-speed pulling. Therefore, time and material losses are reduced,
Due to the increased speed, the production amount of band-shaped silicon crystals will increase significantly. Another effect is that since the gas is ejected near the solid-liquid interface, the tip of the die can be isolated from the atmosphere inside the furnace 1 and the surrounding air, which prevents scrap from floating in the silicon melt at the tip of the goo. can.

〔発明の実施例〕[Embodiments of the invention]

第2図(荀は本発明の一実施例の概略構成を示す平面図
であり、(b)はそのA−A’断面図である。
FIG. 2 is a plan view showing a schematic configuration of an embodiment of the present invention, and FIG. 2(b) is a sectional view taken along line AA'.

尚、第1図と同一部分には同一符号を付して、その詳し
い説明は省略する。この実施例装置が第1図に示した従
来装置と異なる点は、ダイ13の先端部長手方向の両端
にコの字型の一対の冷却温度調整器x9(19ar1e
b”)を相対向させて設置したことにある。この冷却温
度調整器19は耐熱を考慮してモリブデンで構成され、
さらに冷却ガスであるアルがンガスの流路となるモリブ
デンあるいはステンレスパイプ20(20a、20b)
が溶接で接続されている。このパイプ20はチャンバ1
8で支持され、チャンバ外側でフレキシブルパイプ22
(、?、?A。
Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. The difference between this embodiment device and the conventional device shown in FIG. 1 is that a pair of U-shaped cooling temperature regulators x9 (19ar1e
b") are installed facing each other. This cooling temperature regulator 19 is made of molybdenum in consideration of heat resistance.
Furthermore, molybdenum or stainless steel pipes 20 (20a, 20b) serve as flow paths for aluminum gas, which is a cooling gas.
are connected by welding. This pipe 20 is the chamber 1
8 and a flexible pipe 22 outside the chamber.
(,?,?A.

22b)に接続されている。冷却温度調整器19の形状
はダイ13の幅に依存するが、ダイ幅100mnの場合
、幅20wm長さ60間厚さ10圏であシ、ダイ側側面
には冷却ガス流出入口となる0、5簡φの細孔23がお
いている。冷却温度調整器19の移動(図中矢印”21
 a 。
22b). The shape of the cooling temperature regulator 19 depends on the width of the die 13, but in the case of a die width of 100 mm, the width is 20 w, the length is 60 mm, and the thickness is 10 mm. There is a pore 23 with a diameter of 5. Movement of the cooling temperature regulator 19 (arrow “21” in the figure)
a.

21b)はチャンバ外よシ手動あるいはモTり等(図示
せず)で冷却ノfイデ20を移動させることにより、熱
遮蔽板14上をスライドする。
21b) slides on the heat shield plate 14 by moving the cooling rod 20 manually or by a motor (not shown) outside the chamber.

゛本発明者はこの実施例装置を使用し、種子結晶とダイ
先端のシリコン融液の固液界面の温度分布を測定し丸。
゛The present inventor used this example device to measure the temperature distribution at the solid-liquid interface between the seed crystal and the silicon melt at the tip of the die.

第3図にデータを示す。第3図(a)は従来装置の温度
分布であるが、ダイ中央部(図の0点)で1427±1
℃、右側(R点)で1434±1℃、左側(L点)で1
434±2℃で、凹型になっていた。(b)は本実施例
による温度分布であるが、各々の冷却温度調整器19を
ダイ中央部よシ約20mg移動させた位置に設定した場
合である。尚、アルゴンガスの流量は各各5 l/mi
nである。温度分布は0点で1440±1℃、R点で1
434±1℃、L点で1434±2℃と凸型fなった。
Figure 3 shows the data. Figure 3(a) shows the temperature distribution of the conventional device, which shows a temperature distribution of 1427±1 at the center of the die (point 0 in the figure).
℃, 1434±1℃ on the right side (point R), 1 on the left side (point L)
It had a concave shape with a temperature of 434±2°C. (b) shows the temperature distribution according to this embodiment, when each cooling temperature regulator 19 is set at a position moved about 20 mg from the center of the die. The flow rate of argon gas is 5 l/mi each.
It is n. Temperature distribution is 1440±1℃ at 0 point, 1 at R point
The temperature was 434±1℃, and the convex f was 1434±2℃ at the L point.

次に本発明者は従来装置と本実施例装置での引上げ方向
の温度勾配を熱電対で測定しへ。従来装置の場合、ダイ
直上で100″C/cmであるのに対し、本実施例装置
で200℃hであった。
Next, the inventor used a thermocouple to measure the temperature gradient in the pulling direction between the conventional device and the device of this embodiment. In the case of the conventional device, the temperature was 100″C/cm directly above the die, whereas in the device of this embodiment, the temperature was 200° C.h.

さらに本発明者は第3図(a) t (b)の温度分布
で引上げ実験を行った。この場合、ダイ幅102鏑、種
子結晶幅98+mとした。その状況で゛の引上げ初期の
種子結晶41(41&、41b)と帯状シリコン結晶4
2(42&、42b)の形状を第3図(a) 、 (b
)にそれぞれ対応させて第4図(a)。
Furthermore, the present inventor conducted a pulling experiment with the temperature distribution shown in FIGS. 3(a) and 3(b). In this case, the die width was 102 m, and the seed crystal width was 98+m. In that situation, the seed crystal 41 (41&, 41b) and the band-shaped silicon crystal 4 at the initial stage of pulling
2 (42&, 42b) are shown in Figure 3 (a) and (b).
) in Fig. 4(a).

(b)に示す。(a)の場合、引上げ直後約25m+1
1程度まで細くなシ、幅100鵡まで拡幅するのに約2
m、時間にして約1.5時間が必要で、幅100WII
tで拡幅後の安定成長での引上げ速度は平均10〜15
 as1分であった。(b)の場合、引上げ直後約51
1II+で幅は100mmまで拡幅し、安定成長での引
上げ速度は平均20〜25ツ/分と従来技術の約2倍に
向上した。また結晶の成長に伴い(、)の場論幅の変動
があるが、伽)の場合、冷却温度調整器の位置を微調整
することによシ、幅100簡±1+a++の制御が可能
であった。第2図に示す本実施例装置のように冷温度調
整器を使用すると、固液界面の温度分布の制御が比較的
簡単に行うことができ、ひいては第4図(&)に示すネ
、クダウン部を発生させずに引上げ開始直後所、望の幅
まで広げることが可能であシ、また従来装置と比較する
と約2倍の高速引上げが可能であ、る、従って、時間的
、材料的な損失が大幅に減少し、帯状シリコン結晶の生
産量が大幅に向上し、大量生産が可能で、太陽電池等の
素子に利用する場合、その大幅なコストダウンが可能に
なる。
Shown in (b). In case of (a), approximately 25m+1 immediately after lifting
It takes about 2 to narrow the width to about 1, and widen it to 100 mm in width.
m, it takes about 1.5 hours, and the width is 100WII.
The average pulling speed during stable growth after widening at t is 10 to 15
It was 1 minute. In the case of (b), approximately 51
With 1II+, the width was increased to 100 mm, and the pulling speed during stable growth was 20 to 25 tons/min on average, which is about twice as high as that of the conventional technology. Also, as the crystal grows, the field width of (,) changes, but in the case of (), it is possible to control the width of 100 ± 1 + a++ by finely adjusting the position of the cooling temperature regulator. Ta. If a cold temperature regulator is used as in the device of this embodiment shown in FIG. 2, the temperature distribution at the solid-liquid interface can be controlled relatively easily. It is possible to widen the width to the desired width immediately after the start of pulling without causing any cracks, and it is also possible to pull at a speed approximately twice as high as that of conventional equipment. Therefore, it saves time and materials. Loss is significantly reduced, the production amount of band-shaped silicon crystals is greatly improved, mass production is possible, and costs can be significantly reduced when used in elements such as solar cells.

尚、本発明者は従来装置で、他の制御要素つまり引上は
速度、ヒータパワーで制御を試みたが、非常に引上げ制
御が複雑で、引上げの失敗確率が高く、またネックダウ
ンの解決には至らなかった。
The inventor of the present invention attempted to control other control elements, that is, speed and heater power for pulling, with a conventional device, but the pulling control was extremely complicated, the probability of failure in pulling was high, and it was difficult to resolve the neckdown. was not achieved.

本発明の他の作用効果として、帯状シリコン結晶が安定
成長している段階で、外部ノイーズ等によシヒータノ譬
ワーあるいは引上げ速度が変化し、結晶の幅の変化が生
じた場合、炉外↓り冷却温度調整器の設定位置を変更す
ることにより、容易にかつ時間的にはやく、幅の制御を
行い得ることが挙げられる。
Another effect of the present invention is that when the belt-shaped silicon crystal is growing stably, if the sheather or pulling speed changes due to external noise, etc., and the width of the crystal changes, the width of the crystal changes. By changing the setting position of the cooling temperature regulator, the width can be controlled easily and quickly.

また、固液界面の温度分布を制御する手段として、グイ
近傍に小さなヒータを設置することが考えられるが、ヒ
ータ形状、グイとヒータの間隔に依存する放電現象、ノ
9ワー制御による時間的遅れ等を考慮すると、本発明の
方が比較的簡単に制御でき、かつパワー制御のための制
御系が不必要であるため、安価に製作することができる
。またヒータは固液界面の温度分布は制御できるが、弓
1上げ速度を向上させることはできない。
In addition, as a means of controlling the temperature distribution at the solid-liquid interface, it is possible to install a small heater near the guipure, but there is a discharge phenomenon that depends on the shape of the heater, the distance between the guipure and the heater, and a time delay due to the 9W control. Considering the above, the present invention can be controlled relatively easily and does not require a control system for power control, so it can be manufactured at low cost. Further, although the heater can control the temperature distribution at the solid-liquid interface, it cannot improve the speed at which the bow 1 is raised.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) t (b)は従来装置を示す平面図と断
面図、第2図(+1) 、 (b)は本発明の一実施例
を示す千″面図と断面図、第3図(IL) 、 (b)
および第4図(a)。 (b) U従来装置と本実施例装置の作用効果を説明す
るための図である。 11・・・シリコン融液、12・・・石英ガラス製ルッ
−113h、13b・・・グイ、14・・・熱遮蔽板、
15・・・ルツがホルダー、16m、16b・・・ヒー
タ、17・・・切込み、18・・・チャソノ9側壁、1
9m 。 19b・・・冷却温度調整器、j Oa e j Ob
・・・冷却パイプ、21m、21b・・・冷却温度調整
器の移動方向、22g、22b・・・フレキシブルパイ
プ、4 ’1 a e 4 i b ”・種子結晶、4
2a e 42b・・・帯状シリコン結晶。 出願人代理人 弁理士 鈴 江武 彦 第3図 (b) 1!:ja                    
       IMD第4図 −一一一一]〜1″′
FIGS. 1(a) and 1(b) are a plan view and a sectional view showing a conventional device, FIGS. Figure (IL), (b)
and Figure 4(a). (b) U is a diagram for explaining the effects of the conventional device and the device of this embodiment. 11... Silicon melt, 12... Quartz glass Lu-113h, 13b... Gui, 14... Heat shielding plate,
15... Ruth is holder, 16m, 16b... Heater, 17... Notch, 18... Chasono 9 side wall, 1
9m. 19b...Cooling temperature regulator, j Oa e j Ob
...Cooling pipe, 21m, 21b...Movement direction of cooling temperature regulator, 22g, 22b...Flexible pipe, 4'1 ae4ib''・Seed crystal, 4
2a e 42b... Band-shaped silicon crystal. Applicant's agent Patent attorney Hiko Suzu Etake Figure 3 (b) 1! :ja
IMD Figure 4-111]~1″'

Claims (1)

【特許請求の範囲】 (リ シリコン融液が収容されたルツボと、このルツデ
上に設けられた熟達2蔽板と、この熱遮蔽板を貫通して
設けられ上記ルツデ内のシリコン融液にその一端が浸漬
されるスロットを有した一対のダイと、上記シリコン融
液およびダイを加熱する加熱源とを具備し、上記ダイの
スロットを介して上昇したシリコン融液に種子結晶を接
触させ、この種子結晶を引き上げることによって帯状シ
リコン結晶を成長せしめる帯状シリコン結晶の製造装置
において、上記熱遮蔽板上に突出したグイ先端部を覆い
、かつ、ダイ側に冷却ガスの流出入口となる細孔を有す
るコの字型の一対の冷却温度調整器を設置したことを特
徴とする帯状シリコン結晶の製造装置。 (2)前記冷却温度調整器はダイ長手方向に移動できる
機構を有する特許請求の範囲第1項記載の帯状シリコン
結晶の製造装置。 (3)前記冷却温度調整器はモリブデンで構成され、冷
却ガスにアルゴンガスを特徴する特許請求の範囲第1項
記載の帯状シリコン結晶の製造装置。
[Scope of claims] A pair of dies each having a slot into which one end is immersed, and a heating source for heating the silicon melt and the die, a seed crystal is brought into contact with the silicon melt rising through the slot of the die, and the seed crystal is brought into contact with the silicon melt rising through the slot of the die. In an apparatus for manufacturing a band-shaped silicon crystal that grows a band-shaped silicon crystal by pulling up a seed crystal, the device covers the tip of the goo protruding on the heat shielding plate and has a pore on the die side that serves as an inlet and an inlet for cooling gas. An apparatus for manufacturing a band-shaped silicon crystal, characterized in that a pair of U-shaped cooling temperature regulators are installed. (2) The cooling temperature regulator has a mechanism that can move in the longitudinal direction of the die. (3) The apparatus for manufacturing a band-shaped silicon crystal according to Claim 1, wherein the cooling temperature regulator is made of molybdenum, and the cooling gas is argon gas.
JP11297382A 1982-06-30 1982-06-30 Manufacturing equipment for band-shaped silicon crystals Expired JPS5950638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11297382A JPS5950638B2 (en) 1982-06-30 1982-06-30 Manufacturing equipment for band-shaped silicon crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11297382A JPS5950638B2 (en) 1982-06-30 1982-06-30 Manufacturing equipment for band-shaped silicon crystals

Publications (2)

Publication Number Publication Date
JPS593094A true JPS593094A (en) 1984-01-09
JPS5950638B2 JPS5950638B2 (en) 1984-12-10

Family

ID=14600191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11297382A Expired JPS5950638B2 (en) 1982-06-30 1982-06-30 Manufacturing equipment for band-shaped silicon crystals

Country Status (1)

Country Link
JP (1) JPS5950638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173929A (en) * 1986-01-27 1987-07-30 三菱電機株式会社 Controller of circuit breaker
JPS62173921A (en) * 1986-01-27 1987-07-30 三菱電機株式会社 Static overcurrent detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173929A (en) * 1986-01-27 1987-07-30 三菱電機株式会社 Controller of circuit breaker
JPS62173921A (en) * 1986-01-27 1987-07-30 三菱電機株式会社 Static overcurrent detector

Also Published As

Publication number Publication date
JPS5950638B2 (en) 1984-12-10

Similar Documents

Publication Publication Date Title
TWI522500B (en) Silicon single crystal and method for manufacture thereof
US10662548B2 (en) Method for achieving sustained anisotropic crystal growth on the surface of a silicon melt
US2789039A (en) Method and apparatus for zone melting
GB590458A (en) Improvements in or relating to the treatment of silicon
CN107217296B (en) A kind of silicon wafer horizontal growth apparatus and method
US3453352A (en) Method and apparatus for producing crystalline semiconductor ribbon
US4116641A (en) Apparatus for pulling crystal ribbons from a truncated wedge shaped die
WO1984002540A1 (en) Apparatus and method for thermally treating a semiconductor substrate
JPS593094A (en) Device for producing belt-like silicon crystal
US4046617A (en) Method of crystallization
KR19990063097A (en) Method and apparatus for producing single crystal
JP2985040B2 (en) Single crystal manufacturing apparatus and manufacturing method
CN103320848B (en) A kind of polycrystalline ingot furnace
US4239734A (en) Method and apparatus for forming silicon crystalline bodies
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
US4304623A (en) Method for forming silicon crystalline bodies
JPS5950636B2 (en) Band-shaped silicon crystal manufacturing equipment
JPH02112227A (en) Manufacture of semiconductor crystal layer
CN211051465U (en) Temperature equalizing structure of zone melting device
JPS58120591A (en) Production of single crystal
JP7115592B1 (en) Single crystal manufacturing equipment
Koh et al. Oxide mixed crystals grown by heater-immersed zone melting method with multi-capillary holes
CN218673115U (en) Heating body and horizontal zone smelting furnace comprising same
JPS62500517A (en) How to improve the crystallinity of semiconductor ribbons
JP2609712B2 (en) Single crystal manufacturing method and temperature measuring jig therefor