JPS5930436A - Manufacture of boiling heat transmitting face - Google Patents

Manufacture of boiling heat transmitting face

Info

Publication number
JPS5930436A
JPS5930436A JP13918382A JP13918382A JPS5930436A JP S5930436 A JPS5930436 A JP S5930436A JP 13918382 A JP13918382 A JP 13918382A JP 13918382 A JP13918382 A JP 13918382A JP S5930436 A JPS5930436 A JP S5930436A
Authority
JP
Japan
Prior art keywords
electroforming
mold
film
nonconductor
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13918382A
Other languages
Japanese (ja)
Inventor
Takao Terabayashi
寺林 隆夫
Noriyoshi Arakawa
荒川 紀義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13918382A priority Critical patent/JPS5930436A/en
Publication of JPS5930436A publication Critical patent/JPS5930436A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Abstract

PURPOSE:To manufacture easily a boiling heat transmitting face whose heat transmitting performance is excellent, by printing a nonconductor film whose evaporation temperature is lower than that of a mold material, in a parallel stripe shape, and thereafter, manufacturing an electroforming mold by use of a high energy density beam, and obtaining a wave plate by electroforming. CONSTITUTION:Plural nonconductor films 5 whose evaporation temperature is lower than that of a mold material 10 are printed in a parallel stripe shape by a printing machine, on the surface of an electroforming mold material 10 whose surface is smoothed. Subsequently, plural grooves 7 are pierced in the direction orthogonal to the film 5 by a high-energy density beam 6. In this case, the film 5 whose evaporation temperature is lower than that of the mold material 10 is more evaporated and removed than the mold material, and an electroforming mold 11 which becomes width B of wodth B of a ridge part between the grooves 7>length (b) of an islandlike nonconductor film 8 between the grooves 7 is manufactured. An electroforming metal 9 is electroformed by a mold 11 manufactured in his way, is stripped off from the mold 11, and a wave plate of the metal 9 on which an opening 13 is formed is obtained in a position corresponding to the film 8. Subsequently, a desired boiling heat transmitting face is manufactured by joining this wave plate to a heater block by soldering.

Description

【発明の詳細な説明】 本発明は沸騰伝熱面の製造方法に係り、特に、伝熱性能
の浸れた沸騰伝熱面を容易に製造することができる沸騰
伝熱面の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a boiling heat transfer surface, and in particular to a method for manufacturing a boiling heat transfer surface that can easily produce a boiling heat transfer surface with excellent heat transfer performance. be.

従来、沸騰伝熱面としては、高熱伝導材である銅やアル
ミニウムなどの金属の微粉末を焼結体としたもの、ある
いは、金属板(材料は、上記と同じ銅やアルミニウム)
の表面を機械的に粗面にして多孔質に近い状態を形成し
たものなどが知られている。
Conventionally, boiling heat transfer surfaces have been made of sintered bodies of fine powder of metals such as copper and aluminum, which are highly thermally conductive materials, or metal plates (the materials are the same copper and aluminum as above).
It is known that the surface of the material is mechanically roughened to form a nearly porous state.

しかし、最近は、沸騰伝熱面の伝熱性能の向上要求にと
もない、第1図に示すような形状のものが発表されてい
る。
However, recently, in response to the demand for improved heat transfer performance of boiling heat transfer surfaces, a shape as shown in FIG. 1 has been announced.

第1図は、本発明の対象となる1lllt騰伝熱面全伝
熱部分拡大斜視図である。
FIG. 1 is an enlarged perspective view of the entire heat transfer portion of the 1llt heat transfer surface to which the present invention is applied.

この第1図において、1は、冷却しだい部分でありヒル
タブロック、2は、ヒータブロック1に、その接合部2
aで接合され、内部にトンネル状の溝4を形成した波板
、3は、波板2の畝部2bに穿設されだ開孔である。
In this FIG.
The corrugated sheet 3, which is joined at point a and has a tunnel-like groove 4 formed therein, is an opening formed in the ridge portion 2b of the corrugated sheet 2.

このように形成した沸騰伝熱面は、前記した焼結体など
の開孔(図示せず)に比較して、開孔3の形状1寸法の
精度のばらつきが小さく、また、開孔3の大きさを、内
部の溝4の大きさに比べて小さくしであるので、気泡(
図示せず)を溝4の内部に適当な時間だけ保持すること
ができ、その伝熱性能が優れているものである。
The boiling heat transfer surface formed in this way has smaller variations in the accuracy of the shape 1 dimension of the aperture 3 than the apertures (not shown) in the sintered body, etc. described above, and Since the size is made smaller than the size of the internal groove 4, air bubbles (
(not shown) can be held inside the groove 4 for a suitable period of time, and its heat transfer performance is excellent.

第1図に係る沸騰伝熱面の、従来の製造方法を略述すれ
ば、まず銅、アルミニウムなどの金属板(厚さは、たと
えば0.05+n+n)に、エツチング。
To briefly describe the conventional manufacturing method of the boiling heat transfer surface shown in FIG. 1, first, a metal plate (thickness: 0.05+n+n), such as copper or aluminum, is etched.

電子ビーム加工、レーザ加工などの方法により、開孔3
(径は、たとえば0.15 +rtmφ)を穿設する。
Opening 3 is made by methods such as electron beam processing and laser processing.
(The diameter is, for example, 0.15 + rtmφ).

次に、塑性加工により、前記開孔3が畝部2bに来るよ
うにして波板2を形成する。そして、この波板2を、そ
の接合部2aで、ヒータブロック1にはんだ接合するも
のである。
Next, the corrugated sheet 2 is formed by plastic working so that the openings 3 are located at the ridges 2b. Then, this corrugated plate 2 is soldered to the heater block 1 at its joint portion 2a.

しかしながら、上記した従来の製造方法では、金属板を
塑性加工により波板2に折曲げるとき、前記金属板の機
械的性質にばらつきがあるため、折曲げ時に発生する塑
性変形量が変動し、開孔3が畝部2 bからはずれたり
、また材料の延性が不足すると、開孔3の穴縁から破断
が生ずることがあった。このように開孔3が畝部2bか
らはずれたり、開孔3の穴縁に破断が生ずると、沸騰伝
熱面の伝熱性能が低下する原因となるので、累月特性の
管理を厳密にしなければならなかった。
However, in the conventional manufacturing method described above, when a metal plate is bent into the corrugated plate 2 by plastic working, the amount of plastic deformation that occurs during bending varies due to variations in the mechanical properties of the metal plate. If the hole 3 was displaced from the ridge 2b or if the material lacked ductility, breakage could occur from the edge of the hole 3. In this way, if the aperture 3 becomes detached from the ridge 2b or if the edge of the aperture 3 breaks, it will cause the heat transfer performance of the boiling heat transfer surface to deteriorate, so the cumulative characteristics should be strictly controlled. I had to.

さらに、溝4の幅t、波板2の波のピッチp。Furthermore, the width t of the groove 4 and the pitch p of the waves of the corrugated plate 2.

波の高さhの寸法は、それぞれt = 0.3〜0.4
闘1) = 0.5〜0.7mm、 h = (1,0
〜1.5 ) を程度とされることが多いだめ、前記折
曲げ時に使用する工具(図示せず)としては、幅が狭く
背の高いものを必要するが、このような工具は強度的に
弱く折曲げ加工中に切損するおそれがあり、前記折曲げ
加工が容易ではなかった。
The dimensions of the wave height h are t = 0.3-0.4, respectively
1) = 0.5~0.7mm, h = (1,0
~1.5), so the tool (not shown) used for the bending process needs to be narrow and tall; however, such a tool is not strong enough. The bending process was not easy because it was weak and there was a risk of breakage during the bending process.

このだめ、従来は、第1図に係る、伝熱性能の優れた沸
騰伝熱面の製造が困難であった。
Unfortunately, conventionally, it has been difficult to manufacture a boiling heat transfer surface with excellent heat transfer performance as shown in FIG.

本発明は、上記した従来技術の欠点を除去して、伝熱性
能の優れた沸騰伝熱面を、容易に製造することができる
、沸騰伝熱面の製造方法の提供を、その目的とするもの
である。
An object of the present invention is to provide a method for manufacturing a boiling heat transfer surface, which eliminates the drawbacks of the above-mentioned prior art and can easily produce a boiling heat transfer surface with excellent heat transfer performance. It is something.

本発明に係る沸騰伝熱面の製造方法の構成は、電鋳型材
の表面に、この電鋳型材よりも蒸発温度の低い不導体膜
を平行縞状に複数本印刷したのち、前記不導体膜と交差
する方向に複数本の平行な溝を高エネルギ密蔗ビームに
より穿設することにより、前記溝間の畝部に前記不導体
膜が島状に残存する電鋳型を製作し、この電鋳型に電鋳
金属を電鋳したのち、前記電鋳金属を前記電鋳型から剥
離して、その畝部に開化が形成された波板を得、この波
板をヒータブロック上に接合するようにしたものである
The method for manufacturing a boiling heat transfer surface according to the present invention has a structure in which a plurality of nonconductor films having a lower evaporation temperature than the electroforming material are printed in parallel stripes on the surface of an electroforming material, and then the nonconductor film is printed on the surface of an electroforming material. An electroforming mold in which the nonconductor film remains in the form of islands in the ridges between the grooves is manufactured by drilling a plurality of parallel grooves in a direction intersecting with the grooves using a high-energy dense metal beam. After electroforming the electroformed metal, the electroformed metal was peeled off from the electroforming mold to obtain a corrugated sheet with openings formed in the ridges, and this corrugated sheet was bonded onto the heater block. It is something.

さらに詳しくは、次の通りである。More details are as follows.

電鋳型材の表面に、平行縞状に不導体膜を印刷により形
成したのち、前記縞の方向と直交方向に、電子ビームあ
るいはレーザビームなどの高エネルギ密度ビー ム加工
法を用いて溝を穿設すると、これらの溝間に形成される
畝部に、前記不導体膜印刷時の縞の間隔で不導体膜が島
状に残存した電鋳型が製作される。この電鋳型により電
鋳を行なうことにより、矩形波状に曲がった電鋳金属の
波板の畝部に、ある間隔で開孔をもつ状態で電鋳が進行
する。前記波板を前記電鋳型から剥離し、はんだ接合あ
るいは拡散接合により、ヒータブロックに接合すること
により所望の沸騰伝熱面が得られる。
After printing a nonconducting film in the form of parallel stripes on the surface of the electroformed material, grooves are bored in a direction orthogonal to the direction of the stripes using a high energy density beam processing method such as an electron beam or a laser beam. When this is done, an electroforming mold is produced in which the nonconductor film remains in the form of islands in the ridges formed between these grooves at the intervals of the stripes during printing of the nonconductor film. By performing electroforming using this electroforming mold, electroforming progresses with openings being formed at certain intervals in the ridges of the corrugated sheet of electroformed metal that is curved into a rectangular wave shape. A desired boiling heat transfer surface can be obtained by peeling off the corrugated plate from the electroforming mold and joining it to the heater block by soldering or diffusion joining.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

第2図〜第6図は、本発明の一実施例に係る沸騰伝熱面
の製造方法を説明するだめのものであり、第2図は、電
鋳型材の表面に、平行縞状に複数本の不導体膜を印刷し
た状態を示す部分斜視図、第3図は、第2図における不
導体膜と直交する方向に、高エネルギ密度ビームにより
溝を加工している状態を示す部分斜視図、第4図は、前
記溝の加工を終了した電鋳型の部分斜視図、第5図は、
第4図に係る電鋳型に、電鋳金属を電鋳した状態を示す
斜視図、第6図は、第5図における電鋳型から剥離した
、その畝部に開孔が形成された前記電鋳金属の波板を示
す部分斜視図である。
2 to 6 are for explaining a method of manufacturing a boiling heat transfer surface according to an embodiment of the present invention, and FIG. 2 shows a plurality of parallel stripes formed on the surface of an electroformed mold material. FIG. 3 is a partial perspective view showing the state in which the nonconductor film of the book is printed. FIG. , FIG. 4 is a partial perspective view of the electroforming mold after the groove has been processed, and FIG.
FIG. 6 is a perspective view showing a state in which electroformed metal has been electroformed into the electroforming mold shown in FIG. 4, and FIG. FIG. 3 is a partial perspective view showing a corrugated metal plate.

まず、表面を平滑にした電鋳型材10(たとえば、ステ
ンレス鋼などの金属材料)を準備する。
First, an electroforming mold material 10 (for example, a metal material such as stainless steel) with a smooth surface is prepared.

この電鋳型材10の表面に、印刷機により、電鋳型材1
0よりも蒸発温度の低い不導体膜5(たとえば、厚さ0
.07mmのエポキシ樹脂の膜)を平行縞状に、幅0.
13mm、ピッチ0.6咽で複数本印刷する(第2図)
。次に、不導体膜5と直交する方向に、高エネルギ密度
ビーム6によシ溝幅0.3ynm 、ピッチ0.6 m
yr 、深さ0.4厘の溝7を複数本穿設する(第3図
)。この溝加工により、溝7間の畝部に、島状の不導体
膜8が残存する電鋳型11が製作される(第4図)。
The electroformed mold material 1 is printed on the surface of this electroformed mold material 10 by a printing machine.
A nonconductor film 5 having an evaporation temperature lower than 0 (for example, a thickness of 0
.. 0.07 mm epoxy resin film) in parallel stripes with a width of 0.07 mm.
Print multiple copies at 13mm and pitch 0.6mm (Figure 2)
. Next, in the direction perpendicular to the nonconductor film 5, a high energy density beam 6 is formed with a groove width of 0.3 ynm and a pitch of 0.6 m.
yr, and a plurality of grooves 7 with a depth of 0.4 mm are bored (Fig. 3). By this groove machining, an electroforming mold 11 in which island-shaped nonconductor films 8 remain in the ridges between the grooves 7 is manufactured (FIG. 4).

ところで、前記高エネルギ密度ビーム6による加工は、
本質的に熱加工であるので、前記したように電鋳型材1
0よりも蒸発温度の低い不導体膜5ば、電鋳型材10よ
シも余計に蒸発除去され、溝7間の畝部の幅B〉溝7間
の島状の不導体膜8の長さl〕となる。
By the way, the processing using the high energy density beam 6 is as follows:
Since it is essentially heat processing, as mentioned above, the electroforming mold material 1
If the nonconductor film 5 has an evaporation temperature lower than 0, the electroformed mold material 10 will be additionally evaporated and removed. l].

このようにして製作した電鋳型11に、電鋳金属9(熱
伝導率の良い、たとえば銅、アルミニウノ・)を0.0
5 mmの厚さで電鋳する(第5図)。
Electroforming metal 9 (having good thermal conductivity, such as copper or aluminum UNO) is added to the electroforming mold 11 manufactured in this way at a rate of 0.0.
Electroform to a thickness of 5 mm (Figure 5).

電鋳した電鋳金属9を電鋳型11から剥離すると、第6
図に示すように、その畝部12bの、前記島状の不導体
膜8に相当する位置に開孔13(−辺が0.13 mm
の正方形状の開孔)が形成された電鋳金属9の波板12
(波のピッチ0.6 rrtm 、高さ0.45m+n
 )ができる。この波板12をヒータブロック(図示せ
ず)に、はんだ接合することにより、所望の沸騰伝熱面
が得られる。
When the electroformed metal 9 is peeled off from the electroforming mold 11, the sixth
As shown in the figure, an opening 13 (with a negative side of 0.13 mm
A corrugated plate 12 of electroformed metal 9 with square openings) formed therein.
(Wave pitch 0.6 rrtm, height 0.45m+n
) can be done. By soldering this corrugated plate 12 to a heater block (not shown), a desired boiling heat transfer surface can be obtained.

以上説明した実施例によれば、次の効果がある。According to the embodiment described above, there are the following effects.

(1)不導体膜5の蒸発温度が電鋳型材1oの蒸発温度
より低くあれば、不導体膜5.電鋳金属9の特性を厳密
に管理する必要がなく、一般のものを使用すればよい。
(1) If the evaporation temperature of the nonconductor film 5 is lower than the evaporation temperature of the electroforming material 1o, the nonconductor film 5. There is no need to strictly control the characteristics of the electroformed metal 9, and a general one may be used.

また、高エネルギ密度ビーム6によって溝7を穿設する
ので、工具の強度を問題にすることもなく、加工精度も
優れている。したがって、伝熱性能の優れた沸騰伝熱面
を容易に製造することができる。
Further, since the groove 7 is bored by the high energy density beam 6, the strength of the tool is not a problem and the machining accuracy is excellent. Therefore, a boiling heat transfer surface with excellent heat transfer performance can be easily manufactured.

(2)高エネルギ密度ビーム6による溝加工時に、島状
の不導体膜8が溝部よりも余計に蒸発除去されるために
、出来上った波板12の開孔13の一辺の長さbが畝部
12bの幅よりも狭くなり、第1図に係る沸騰伝熱面と
同様に、気を包(図示せず)を溝の内部に適当な時間だ
け保持することができる伝熱性能の優れた沸騰伝熱面を
、容易に製造することができる。
(2) During groove machining with the high energy density beam 6, the island-shaped nonconductor film 8 is evaporated and removed more than the groove part, so the length b of one side of the opening 13 of the finished corrugated plate 12 is narrower than the width of the ridge portion 12b, and the heat transfer performance is such that the gas envelope (not shown) can be held inside the groove for an appropriate period of time, similar to the boiling heat transfer surface according to FIG. Excellent boiling heat transfer surfaces can be easily manufactured.

(3)波板12の成形にあたっては、電鋳型11に電鋳
金属9を電鋳するようにしたので、広い面積の波板12
を一度に成形することができ、沸騰伝熱面を能率よく製
造することができる。
(3) When forming the corrugated sheet 12, since the electroformed metal 9 is electroformed into the electroforming mold 11, the corrugated sheet 12 has a large area.
can be molded in one go, making it possible to efficiently manufacture boiling heat transfer surfaces.

なお、本実施例は、不導体膜5と直交する方向に溝7を
穿設する場合について説明したが、本発明の沸騰伝熱面
の製造方法は、不導体膜5と任意の方向に交差する、複
数本の平行な溝を穿設する場合についても、同様に適用
されるものである。
In this embodiment, the grooves 7 are formed in a direction perpendicular to the nonconductor film 5. However, the method for manufacturing a boiling heat transfer surface of the present invention allows the grooves 7 to be formed in a direction perpendicular to the nonconductor film 5. The same applies to the case of drilling a plurality of parallel grooves.

以」二詳細に説明したように本発明によれば、電鋳型材
の表面に、この電鋳型利よりも蒸発温度の低い不導体膜
を平行縞状に複数本印刷したのち、前記不導体膜と交差
する方向に複数本の平行な溝を高エネルギ密度ビームに
より穿設することにより、前記溝間の畝部に前記不導体
膜が島状に残存する電鋳型を製作し、この電鋳型に電鋳
金属を電鋳したのち、前記電鋳金属を前記電鋳型から剥
離して、その畝部に開孔が形成された波板を得、この波
板をヒータブロック上に接合するようにしだので、伝熱
性能の優れた沸騰伝熱面を、容易に且つ能率よく製造す
ることができる沸騰伝熱面の製造方法を提供することが
できる。
As described in detail below, according to the present invention, a plurality of nonconductor films having a lower evaporation temperature than the electroforming material are printed in parallel stripes on the surface of the electroforming material, and then the nonconductor film is An electroforming mold in which the nonconductor film remains in the form of islands in the ridges between the grooves is manufactured by drilling a plurality of parallel grooves in a direction intersecting with the grooves using a high energy density beam. After electroforming the electroformed metal, the electroformed metal is peeled from the electroforming mold to obtain a corrugated plate with holes formed in its ridges, and this corrugated plate is bonded onto the heater block. Therefore, it is possible to provide a method for manufacturing a boiling heat transfer surface that can easily and efficiently produce a boiling heat transfer surface with excellent heat transfer performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の対象となる沸騰伝熱面を示す部分拡
大斜視図、第2図〜第6図は、本発明の一実施例に係る
沸騰伝熱面の製造方法を説明するだめのものであり、第
2図は、電鋳型材の表面に、平行縞状に複数本の不導体
膜を印刷した状態を示す部分斜視図、第3図は、第2図
における不導体膜と直交する方向に、高エネルギ密度ビ
ームにより溝を加工している状態を示す部分斜視図、第
4図は、前記溝の加工を終了した電鋳型の部分斜視図、
第5図は、第4図に係る電鋳型に、電鋳金属を電鋳した
状態を示す斜視図、第6図は、第5図における電鋳型か
ら剥離した、その畝部に開孔が形成された前記電鋳金属
の波板を示す部分斜視図である。 5・・・不導体膜、6・・・高エネルギ密度ビーム、7
・・・溝、8・・・島状の不導体膜、9・・・電鋳金属
、10・・・電鋳型材、11・・電鋳型、12・・・波
板、12b・・・畝部、13・・・開孔。 第1 口 3 第2図 第3図 第40
FIG. 1 is a partially enlarged perspective view showing a boiling heat transfer surface that is the object of the present invention, and FIGS. 2 to 6 are illustrations of a method for manufacturing a boiling heat transfer surface according to an embodiment of the present invention. Fig. 2 is a partial perspective view showing a state in which multiple nonconductor films are printed in parallel stripes on the surface of an electroformed mold material, and Fig. 3 is a partial perspective view showing the nonconductor films in Fig. 2 and FIG. 4 is a partial perspective view showing a state in which a groove is being processed by a high energy density beam in an orthogonal direction; FIG. 4 is a partial perspective view of the electroforming mold after the groove has been processed;
FIG. 5 is a perspective view showing a state in which electroformed metal is electroformed into the electroforming mold shown in FIG. 4, and FIG. 6 is a perspective view showing a state in which an electroformed metal is electroformed into the electroforming mold shown in FIG. FIG. 3 is a partial perspective view showing the corrugated electroformed metal plate. 5... Nonconductor film, 6... High energy density beam, 7
... Groove, 8... Island-shaped nonconductor film, 9... Electroformed metal, 10... Electroformed mold material, 11... Electroformed mold, 12... Corrugated plate, 12b... Ridge Part, 13...opening. 1st mouth 3 Figure 2 Figure 3 Figure 40

Claims (1)

【特許請求の範囲】[Claims] 1、電鋳型材の表面に、この電鋳型材よシも蒸発温度の
低い不導体膜を平行縞状に複数本印刷したのち、前記不
導体膜と交差する方向に複数本の平行な溝を高エネルギ
密度ビームにより穿設するととにより、前記溝間の畝部
に前記不導体膜が島状に残存する電鋳型を製作し、この
電鋳型に電鋳金属を電鋳したのち、前記電鋳金属を前記
電鋳型から剥離して、その畝部に開孔が形成された波板
を得、この波板をヒータブロック上に接合することを特
徴とする沸騰伝熱面の製造方法。
1. On the surface of the electroformed mold material, a plurality of parallel stripes of a nonconductor film, which has a low evaporation temperature as that of the electroformed mold material, are printed, and then a plurality of parallel grooves are printed in the direction intersecting the nonconductor film. By drilling with a high energy density beam, an electroforming mold in which the nonconductor film remains in the form of islands in the ridges between the grooves is manufactured, and after electroforming the electroformed metal into this electroforming mold, the electroforming A method for manufacturing a boiling heat transfer surface, comprising: peeling metal from the electroforming mold to obtain a corrugated sheet with holes formed in its ridges, and joining this corrugated sheet onto a heater block.
JP13918382A 1982-08-12 1982-08-12 Manufacture of boiling heat transmitting face Pending JPS5930436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13918382A JPS5930436A (en) 1982-08-12 1982-08-12 Manufacture of boiling heat transmitting face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13918382A JPS5930436A (en) 1982-08-12 1982-08-12 Manufacture of boiling heat transmitting face

Publications (1)

Publication Number Publication Date
JPS5930436A true JPS5930436A (en) 1984-02-18

Family

ID=15239488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13918382A Pending JPS5930436A (en) 1982-08-12 1982-08-12 Manufacture of boiling heat transmitting face

Country Status (1)

Country Link
JP (1) JPS5930436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172882U (en) * 1988-05-24 1989-12-07
CN100419128C (en) * 2004-06-21 2008-09-17 鸿富锦精密工业(深圳)有限公司 Producer of radiator and production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172882U (en) * 1988-05-24 1989-12-07
JPH0541755Y2 (en) * 1988-05-24 1993-10-21
CN100419128C (en) * 2004-06-21 2008-09-17 鸿富锦精密工业(深圳)有限公司 Producer of radiator and production

Similar Documents

Publication Publication Date Title
CN1938847B (en) Heat sink manufacturing method
JPS58122808A (en) Manufacture of monolith extruding die
JP2003158227A (en) Heat sink, its manufacturing method, and pressing jig
JPH10505463A (en) Multilayer electronic device manufacturing method
DE102004005529A1 (en) Stacked piezoelectric element, e.g. for fuel injection device in motor vehicle, has band-shaped outer groove section comprising recessed part and insulating and conductive sections
JPH04500585A (en) How to form contact bumps inside contact pads
JPS5930436A (en) Manufacture of boiling heat transmitting face
GB2182525A (en) Method of manufacturing ceramic vibration plate for speaker
US3155460A (en) Fine mesh screens
JPS5830118A (en) Electronic part, and method and apparatus for producing same
US4290857A (en) Method of forming fine bore
JPH11162720A (en) Chip resistor and its adjusting method
CA2268224A1 (en) Method of producing an ink jet head
KR20030020814A (en) Method of manufacturing multi-core ferrule
JPH09129504A (en) Method of manufacturing laminated electronic component
JPH11297627A (en) Heater structure of heat treatment furnace
JP2003217609A (en) Method for manufacturing separator for solid high polymer type fuel cell
JPS5941282B2 (en) Resistance element, resistance element assembly and manufacturing method thereof
JPH11162721A (en) Manufacture of chip resistor
JPH03269977A (en) Manufacture of electric connection member
JP2679055B2 (en) Conductive core for alkaline batteries
JP2677829B2 (en) Method for forming divided grooves on ceramic substrate
JPH08155935A (en) Production of ceramic sheet provided with slits and slit processing blade attaching block used therein
JPS5939679B2 (en) boiling heat transfer surface
JPH1158343A (en) Laser processing ceramic composite material