JPS5939679B2 - boiling heat transfer surface - Google Patents

boiling heat transfer surface

Info

Publication number
JPS5939679B2
JPS5939679B2 JP5564381A JP5564381A JPS5939679B2 JP S5939679 B2 JPS5939679 B2 JP S5939679B2 JP 5564381 A JP5564381 A JP 5564381A JP 5564381 A JP5564381 A JP 5564381A JP S5939679 B2 JPS5939679 B2 JP S5939679B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer surface
boiling heat
grooved surface
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5564381A
Other languages
Japanese (ja)
Other versions
JPS57172193A (en
Inventor
由夫 小山
金司 遠藤
健一 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5564381A priority Critical patent/JPS5939679B2/en
Publication of JPS57172193A publication Critical patent/JPS57172193A/en
Publication of JPS5939679B2 publication Critical patent/JPS5939679B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は、接触する液体に有利に熱伝達を行なうことの
できる沸騰伝熱面に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiling heat transfer surface capable of advantageously transferring heat to a liquid with which it comes in contact.

一般に沸騰熱伝達を促進する方法としては、金属性の管
や板などの伝熱面表面に、第1図に示すような内部が広
く、開口部1が小さい微小空間2(いわゆる、リエント
ラント・キャビティ)を多数形成し、これを安定な沸騰
気泡核として使用する方法が知られている。
In general, as a method to promote boiling heat transfer, a micro-space 2 (so-called reentrant cavity) with a large interior and a small opening 1 is placed on the heat-transfer surface of a metal tube or plate, as shown in Figure 1. ) is used as stable boiling bubble nuclei.

なお、その促進効果を目詰りから守るためには、上記の
微小空間が隣接する空間と内部で連通しているものが良
いといわれている。
In order to protect the promoting effect from clogging, it is said that it is preferable that the above-mentioned minute spaces communicate internally with adjacent spaces.

このような伝熱面は、通常の平滑面に比べて格段に良好
な沸騰伝熱特性を有するため、蒸発器等の熱交換器の分
野における工業的価値は非常に大きなものであり、これ
までにその製作法について数多くの考案がなされている
Such a heat transfer surface has much better boiling heat transfer characteristics than a normal smooth surface, so it has great industrial value in the field of heat exchangers such as evaporators. Many ideas have been made regarding its production method.

例としては、管や板の表面に金属粉末を焼結させて多孔
層部を設けたもの、第2図のように金属板3を切削して
溝を成形した後、ローレットをかけて突起部4を潰し、
多孔層を設けたもの、そして、第3図に示すように電子
ビーム加工またはレーザー加工により金属薄板5にベル
状、テーパ状の孔をあけ、その後孔径の犬なる側を多数
の細溝(内部連通用)を有する金属面6に接合すること
によって多孔層を設けたもの等が挙げらたる。
For example, a porous layer is formed by sintering metal powder on the surface of a tube or plate, or a groove is formed by cutting a metal plate 3 as shown in Fig. 2, and then knurled to form a protrusion. Crush 4,
Then, as shown in FIG. 3, a bell-shaped or tapered hole is made in the thin metal plate 5 by electron beam processing or laser processing, and then a number of narrow grooves (internal grooves) are formed on the dog side of the hole diameter. Examples include those in which a porous layer is provided by bonding to a metal surface 6 having a hole (for communication).

しかし、焼結による方法は焼結時の雰囲気や接合剤など
の管理が難しく、また、金属粉末がお互いに溶融結合し
ているため形状が複雑であり、均一な製品を多量に作る
にはその工程管理が非常に複雑になってしまうという欠
点があった。
However, with the sintering method, it is difficult to control the atmosphere and bonding agent during sintering, and the shape is complicated because the metal powders are fused together, so it is difficult to produce uniform products in large quantities. The drawback was that process control became extremely complex.

また、切削後口−レット加工により製作する方法も孔形
状のコントロールが難しく、特にチタンなどの展延性の
劣る材料に加工を施すことは非常に困難である。
Furthermore, in the manufacturing method using hole-let processing after cutting, it is difficult to control the hole shape, and it is particularly difficult to process materials with poor malleability such as titanium.

また、電子ビーム加工またはレーザー加工によって多孔
板を作り、それを細溝を有する面に接合する方法も、多
孔板の加工が電子ビーム加工などの特殊なものに限定さ
れていること、そして、この方法で先に述べたりエンド
ラント・キャビティを形成するためには、どうしても多
孔板をある程度厚(しなければならないことなどの大き
な欠点を持っていた。
In addition, the method of making a perforated plate by electron beam processing or laser processing and joining it to a surface with narrow grooves is limited to special methods such as electron beam processing, and this In order to form an endrant cavity using the method described above, it had a major drawback, such as the necessity of making the perforated plate a certain thickness.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、伝熱面表面に非常に簡単な方法で従
来より言われているリエントラント・キャビティ、つま
りは内部が広く開口部が小さい微小空間を多数形成し、
もって高性能な沸騰伝熱面を容易に提供することにある
The present invention has been made in consideration of the above circumstances, and its purpose is to form a reentrant cavity, which is conventionally known as a reentrant cavity, on the surface of a heat transfer surface using a very simple method. forms many small micro-spaces,
The object of the present invention is to easily provide a high-performance boiling heat transfer surface.

すなわち、本発明は厚さ方向に貫通する孔を多数有する
多孔材を溝付面に接合して沸騰伝熱面を構成するにあた
り、上記孔を細長い形状を有する長孔とし、その長孔の
長手方向の長さが少なくとも前記溝付面の溝を挾む山部
先端幅より大きく、かつ、前記長孔を溝付面の山部の尾
根方向と交差するように接合して構成することによって
、前記目的を達成せんとしたものである。
That is, when the present invention forms a boiling heat transfer surface by bonding a porous material having a large number of holes penetrating through the thickness to a grooved surface, the holes are made into long holes having an elongated shape. The length in the direction is at least larger than the width of the tips of the ridges sandwiching the grooves of the grooved surface, and the elongated holes are joined so as to intersect with the ridge direction of the ridges of the grooved surface, The aim was to achieve the above objective.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第6図は本発明の沸騰伝熱面の概略構成を示す外観図で
あり、第4図、第5図でそれぞれ示される多孔材7(長
孔8の長さt=o、6mm、間隙δ11=Q、17WJ
ピッチp1=Q、211i[、p2=−0,8mtn
、板厚t=0.15mm) と溝付面9(溝間隙δf
= 0.67W7m、溝深さh=o、6mm、山部先
端10の幅W=0.2朋)によって構成されている。
FIG. 6 is an external view showing a schematic configuration of the boiling heat transfer surface of the present invention, and the porous material 7 (length t of long hole 8, 6 mm, gap δ11) shown in FIGS. 4 and 5, respectively. =Q, 17WJ
Pitch p1=Q, 211i[, p2=-0,8mtn
, plate thickness t=0.15mm) and grooved surface 9 (groove gap δf
= 0.67W7m, groove depth h=o, 6mm, and width W of the tip 10 of the crest 10=0.2mm).

その接合方法としては、圧着、シーム溶接等が考えられ
るが、単に機械的固定し、接触させているだけでも十分
性能は発揮される。
Possible joining methods include crimping, seam welding, etc., but sufficient performance can be achieved by simply mechanically fixing and contacting.

このように構成されているので、その表面には第7図(
第6図の矢視a−a断面)に示したような理想的な空間
11が形成されるとともに、第8図(第6図の矢視b−
b断面)に示す如く、多孔材の孔が溝付面の山部先端1
0に位置した場合でも、その部分を塞ぐことなく気泡離
脱に役立つため、非常に良好な沸騰伝熱特性が実現され
る。
Since it is constructed in this way, its surface is shown in Figure 7 (
An ideal space 11 as shown in the cross section taken along arrow a-a in FIG. 6) is formed, and the
As shown in cross section b), the pores of the porous material are located at the tip of the crest 1 of the grooved surface.
Even when it is located at 0, it does not block that part and helps to remove bubbles, so very good boiling heat transfer characteristics are achieved.

上記の二つの利点のうちでも、特に後者は、溝付面の山
部先端幅が加工上の制約を受けて比較的大きくなった場
合に著しく効力を発揮するものである。
Of the above two advantages, the latter is particularly effective when the width of the tip of the crest of the grooved surface becomes relatively large due to processing constraints.

本発明による沸騰伝熱面を適用した第9図に示すような
伝熱管12(管軸方向に溝を有する外径D=25.4朋
の1フルーテツド管”13に多孔材14を巻きつけたも
のであり、多孔材、溝付面の各寸法は上記のものとほぼ
同じである)のフレオンR113におけるプール沸騰熱
伝達率を調べたところ、第10図の実線Pに示す如くな
った。
A porous material 14 is wound around a heat exchanger tube 12 (a fluted tube 13 having an outer diameter D=25.4 mm and having grooves in the tube axis direction and having a groove in the tube axis direction) as shown in FIG. 9 to which the boiling heat transfer surface according to the present invention is applied. The pool boiling heat transfer coefficient of Freon R113 (the dimensions of the porous material and the grooved surface are almost the same as those described above) was investigated, and the result was as shown by the solid line P in FIG.

ただし、第10図の特性図において横軸は平均熱流速q
(W/y4 )、縦軸はプール沸騰熱伝達率α(W/
y4K)をそれぞれ対数尺度で示したものであり、また
、図中の実線Qは参考のため多孔材を巻きつけない場合
のフルーテッド管の結果を示したものである。
However, in the characteristic diagram in Figure 10, the horizontal axis is the average heat flow rate q
(W/y4), and the vertical axis is the pool boiling heat transfer coefficient α (W/y4).
y4K) are shown on a logarithmic scale, and the solid line Q in the figure shows the results for a fluted pipe without a porous material wrapped around it for reference.

この特性図からも明らかなように本発明に係る沸騰伝熱
面においては沸騰熱伝達の促進が確実に実現される。
As is clear from this characteristic diagram, the boiling heat transfer surface according to the present invention reliably promotes boiling heat transfer.

以上、詳述したように厚さ方向に貫通する孔を多数有す
る多孔材を溝付面に接合して構成する沸騰伝熱面におい
て、前記孔を細長い形状を有する長孔とし、その長孔の
長手方向の長さが少なくとも前記溝付面の溝を挾む山部
先端幅より大きく、かつ、前記長孔が溝付面の山部の尾
根方向と交差するように接合構成することによって理想
的な気泡核を形成することが可能となり、極めて高性能
な沸騰伝熱面を提供することができる。
As described above, in a boiling heat transfer surface constructed by bonding a porous material having a large number of holes penetrating in the thickness direction to a grooved surface, the holes are long holes having an elongated shape. Ideally, the length in the longitudinal direction is at least larger than the width of the tips of the crests sandwiching the grooves of the grooved surface, and the long holes intersect with the direction of the ridges of the ridges of the grooved surface. This makes it possible to form bubble nuclei, providing an extremely high-performance boiling heat transfer surface.

なお上記長孔の配置関係は、その長孔の側方間隙が溝付
面の溝間隙および溝深さの各溝形状寸法より小さくすれ
ば好ましい構成となる。
The arrangement of the elongated holes is preferably such that the lateral gaps of the elongated holes are smaller than the groove dimensions of the grooved surface and the groove depth.

なお、本発明の効果は上記の条件さえ満足すれば得られ
るものであり、多孔材や溝付面の製作方法、そしてその
二つの要素を接合する方法などによって制限されるもの
ではない。
Note that the effects of the present invention can be obtained as long as the above conditions are satisfied, and are not limited by the method of manufacturing the porous material or the grooved surface, or the method of joining the two elements.

具体的に述べれば、多孔材に関しては厚さ方向に貫通し
た長孔が存在すればよいわけであり、孔の形状はもちろ
んのこと板状ではなく、網状のものでも良い。
To be more specific, the porous material only needs to have elongated holes penetrating the material in the thickness direction, and the shape of the holes may, of course, be net-like instead of plate-like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は理想的な沸騰伝熱面形状を示す断面図、第2図
は従来の伝熱面の断面図、第3図は他の従来の伝熱面の
断面図、第4図は本発明の一実施例である伝熱面に使用
する多孔材の平面図、第5図は本発明の伝熱面を構成す
る溝付面を示す図、第6図は本発明の一実施例の概略構
成を示す図、第7図は第6図の矢視a−a断面を示す図
、第8図は第6図の矢視b−b断面を示す図、第9図は
本発明に係る伝熱管を示す図、第10図は実験データを
示す特性図である。 7・・・・・・多孔材、8・・・・・・長孔、9・・・
・・・溝付面。
Figure 1 is a sectional view showing an ideal boiling heat transfer surface shape, Figure 2 is a sectional view of a conventional heat transfer surface, Figure 3 is a sectional view of another conventional heat transfer surface, and Figure 4 is a cross-sectional view of a conventional heat transfer surface. FIG. 5 is a plan view of a porous material used for a heat transfer surface according to an embodiment of the present invention, FIG. 5 is a diagram showing a grooved surface constituting the heat transfer surface of the present invention, and FIG. 7 is a cross-sectional view taken along arrow a-a in FIG. 6, FIG. 8 is a cross-sectional view taken along arrow bb-b in FIG. 6, and FIG. 9 is a diagram illustrating the present invention. A diagram showing a heat exchanger tube, and FIG. 10 is a characteristic diagram showing experimental data. 7... Porous material, 8... Long hole, 9...
...Grooved surface.

Claims (1)

【特許請求の範囲】 1 厚さ方向に貫通する孔を多数有する多孔材を、溝付
面に接合して構成する沸騰伝熱面において、前記孔を細
長い形状を有する長孔とし、その長孔の長手方向の長さ
が少なくとも前記溝付面の溝を挾む山部先端幅より大き
く、かつ前記長孔の長手方向を前記溝付面の山部の尾根
方向と交差するように接合して構成したことを特徴とす
る沸騰伝熱面。 2 溝付面を管体に形成し、かつ前記管体の管軸方向に
溝を形成したことを特徴とする特許請求の範囲第1項記
載の沸騰伝熱面。
[Scope of Claims] 1. In a boiling heat transfer surface constructed by joining a porous material having a large number of holes penetrating in the thickness direction to a grooved surface, the holes are long holes having an elongated shape, and the long holes are The length in the longitudinal direction is at least larger than the width of the tip of the ridges sandwiching the grooves of the grooved surface, and the longitudinal direction of the elongated hole is joined so as to intersect with the ridge direction of the ridges of the grooved surface. A boiling heat transfer surface characterized by comprising: 2. The boiling heat transfer surface according to claim 1, characterized in that a grooved surface is formed on a tube body, and grooves are formed in the tube axis direction of the tube body.
JP5564381A 1981-04-15 1981-04-15 boiling heat transfer surface Expired JPS5939679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5564381A JPS5939679B2 (en) 1981-04-15 1981-04-15 boiling heat transfer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5564381A JPS5939679B2 (en) 1981-04-15 1981-04-15 boiling heat transfer surface

Publications (2)

Publication Number Publication Date
JPS57172193A JPS57172193A (en) 1982-10-22
JPS5939679B2 true JPS5939679B2 (en) 1984-09-25

Family

ID=13004488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5564381A Expired JPS5939679B2 (en) 1981-04-15 1981-04-15 boiling heat transfer surface

Country Status (1)

Country Link
JP (1) JPS5939679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112199A (en) * 1982-12-17 1984-06-28 Hitachi Ltd Heat-exchanging wall and manufacture thereof
US4709754A (en) * 1985-07-18 1987-12-01 International Business Machines Corp. Heat transfer element with nucleate boiling surface and bimetallic fin formed from element

Also Published As

Publication number Publication date
JPS57172193A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
US5351397A (en) Method of forming a nucleate boiling surface by a roll forming
JPS5984095A (en) Heat exchanging wall
EP0162827A2 (en) Tube for heat exchanger
JPS5939679B2 (en) boiling heat transfer surface
JPS6176883A (en) Heat pipe consisting of aluminum, steel or gray cast iron
JPS6064194A (en) Heat transfer tube
JPS59225900A (en) Production of heat exchanger
JPS5833098A (en) Ebullition type heat transfer pipe
JPH0244165A (en) Heat transfer tube for liquid falling film type evaporator
KR100467339B1 (en) Manufacturing method for condenser tube
JPS6226709Y2 (en)
JPS6099999A (en) Boiling heat transfer wall
JPS5925150B2 (en) heat pipe
JPH0284255A (en) Heat exchanger tube and its manufacture
JPS5931366B2 (en) filter element
JPS597764B2 (en) Manufacturing method of sintered fin tube
JP2891976B1 (en) Manufacturing method of cylindrical material
JPH0526247Y2 (en)
JPS6076219A (en) Composite member and its manufacture
JPS6314578U (en)
JPS5932114Y2 (en) Perforated tape lead for capacitor
JPS59170796U (en) Heat exchanger tube for evaporator
JPS59191214U (en) single blade end mill
JPH02179314A (en) Manufacture of clad sections by hot extrusion
JPH049631B2 (en)