JPS5930026A - Light integrated spectrum analyzer - Google Patents

Light integrated spectrum analyzer

Info

Publication number
JPS5930026A
JPS5930026A JP14063582A JP14063582A JPS5930026A JP S5930026 A JPS5930026 A JP S5930026A JP 14063582 A JP14063582 A JP 14063582A JP 14063582 A JP14063582 A JP 14063582A JP S5930026 A JPS5930026 A JP S5930026A
Authority
JP
Japan
Prior art keywords
thin film
substrate
surface wave
spectrum analyzer
piezoelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14063582A
Other languages
Japanese (ja)
Inventor
Kiyotaka Wasa
清孝 和佐
Tsuneo Mitsuyu
常男 三露
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14063582A priority Critical patent/JPS5930026A/en
Publication of JPS5930026A publication Critical patent/JPS5930026A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/125Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to obtain a monolithic semiconductor, by providing a piezoelectric thin film surface wave transducer between both a collimation lens and a Fourier transformation lens, which are arranged on an As-S series thin film optical waveguide provided on a semiconductor substrate. CONSTITUTION:An As-S series thin film optical waveguide 12 is provided on a semiconductor substrate 11. A collimation lens 14 and a Fourier transformation lens 15 are sequentially arranged in the propagating direction 13 of light on the waveguide 12. A piezoelectric thin film surface wave transducer 17 is provided on the substrate 11 so as to cross the waveguide 12 at a right angle between both leses 14 and 15. In this case, e.g., a ZnO piezoelectric thin film is used as a constituting material of the transducer 17. A facing electrode 21 is provided between a piezoelectric thin film 18, on the surface of which a comb shaped electrode 19 is provided, and the substrate 11. In this way, e.g., monolithic integration of a semiconductor element such as a laser and an acoustooptic element can be formed on the substrate 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光集積回路に関する。特に、本発明は、光集
積スペクトラム・アナライザの構造と構成材料に関して
いる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical integrated circuits. In particular, the present invention relates to the structure and materials of construction of optical integrated spectrum analyzers.

従来例の構成とその問題点 光集積スペクトラム・アナライザは音響光学デバイスの
一種であり、従来LiNbO3のような圧電性単結晶基
板上に作られていた。この場合、例えば表面を研磨した
L I NbO5単結晶基板の表面層にTi 金属を拡
散させて光導波路を形成するとともに、導波路上に例え
ば凹部を機械的に形成して、一対のジオデシックレンズ
を配置し、さらに上記光導波路と直交する位置に、例え
ば櫛型電極を上記LiNbO3基板」二に設けて、表面
波トランスデユーサを形成し、上記一対のレンズ間で上
記光導波路を伝搬する光と上記表面波トランスデユーサ
で励起した表面波と相互作用させて、スペクトラム・ア
ナライザを実現させようとするものである。
Conventional Structure and Problems The optical integrated spectrum analyzer is a type of acousto-optic device, and has conventionally been fabricated on a piezoelectric single crystal substrate such as LiNbO3. In this case, for example, an optical waveguide is formed by diffusing Ti metal into the surface layer of a L I NbO5 single crystal substrate whose surface has been polished, and a pair of geodesic lenses is formed by mechanically forming, for example, a recess on the waveguide. A surface wave transducer is formed by providing, for example, a comb-shaped electrode on the LiNbO3 substrate at a position perpendicular to the optical waveguide, and the light propagating through the optical waveguide between the pair of lenses. The purpose is to create a spectrum analyzer by interacting with the surface waves excited by the surface wave transducer.

すなわち、櫛型電極に入れた信号で表面波を励起させる
とともに、コリメート用のジオデシックレンズを通過さ
せだ導波光を、上記信号の周波数に応じて、上記表面波
によって空間的な方向変位を与えた後1、フーリエ変換
用のジオデシックレンズを通し、その焦点に設けた光ダ
イオードアレイ」二に、上記信号のスペクトラム分布を
リアルタイムで検出しようとするものである。この装置
は、従来の電気的なスペクトラム・アナライザが入力デ
ータを掃引速度でサンプリングし、信号を直列的に処理
していただめ、例えば短いパルス信号とか、周波数の予
測のつかない入力には高確度で処理できないという欠点
を除去するものである。しかし、LiNbQ3基板を用
いているため、本質的に例えば■−■族半導体デバイス
とのモノリシック化が不可能であるという欠点があった
That is, a surface wave was excited by a signal inserted into a comb-shaped electrode, and the guided light was passed through a geodesic lens for collimation, and the surface wave gave a spatial directional displacement according to the frequency of the signal. 1) a photodiode array placed at the focal point of a geodesic lens for Fourier transform; 2) the spectral distribution of the above signal is detected in real time. This device is highly accurate for inputs with unpredictable frequencies, such as short pulse signals, because conventional electrical spectrum analyzers sample input data at a sweep rate and process the signals serially. This eliminates the drawback that it cannot be processed using However, since a LiNbQ3 substrate is used, there is a drawback that it is essentially impossible to form a monolith with, for example, a ■-■ group semiconductor device.

発明の目的 発明者らは、この種の装置に、薄膜多層構造基板を導入
することにより、従来の欠点を除去することに成功し、
新規な光集積スペクトラム・アナライザを発明した。
Purpose of the Invention The inventors have succeeded in eliminating the conventional drawbacks by introducing a thin film multilayer structure substrate into this type of device,
Invented a new optical integrated spectrum analyzer.

したがって、本発明の目的は、薄膜多層構造からなる光
集積スペクトラム・アナライザの構造と構成材料を与え
る。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a structure and materials for an optical integrated spectrum analyzer having a thin film multilayer structure.

発明の構成 以下本発明を、図を用いて説明する。Composition of the invention The present invention will be explained below with reference to the drawings.

第1図に本発明にかかる光集積スペクトラム・アナライ
ザの要部構造を示す。同図において、本発明にかかる光
集積スペクトラム・アナライザは、半導体基板11と、
上記半導体基板上に設けたAs−8系薄膜光導波路12
と、上記光導波路12上に、光の伝搬方向13に順次配
列させた、コリメーションレンズ14とフーリエ変換レ
ンズ15ト、上記コリメーシぢンレンストシーリエ変換
しンズ間の光導波路に直交して上記基板上に、表面波1
6を励振すべく設けた圧電薄膜表面波トランスデユーサ
17からなる多層構造をとっている0この場合、圧電薄
膜表面波トランスデユーサ17は、圧電性薄膜18とそ
の表面に設けた櫛型電極19からなっている。外部から
の入力信号が、櫛型電極端子101に導入されると、表
面波16が励振され、例えばコリメーションレンズ14
の焦点に設けた半導体レーザー102の光がコリメーシ
ョンされた後、上記表面波16で、空間的方向分布を変
化され、さらにフーリエ変換レンズ16を通過した後、
このフーリエ変換レンズの焦点に配置された光ダイオー
ドアレイ103上に達する。
FIG. 1 shows the main structure of an optical integrated spectrum analyzer according to the present invention. In the figure, the optical integrated spectrum analyzer according to the present invention includes a semiconductor substrate 11,
As-8 thin film optical waveguide 12 provided on the semiconductor substrate
A collimation lens 14 and a Fourier transform lens 15 are arranged in sequence in the light propagation direction 13 on the optical waveguide 12, and the substrate is perpendicular to the optical waveguide between the collimation lens and Fourier transform lens. Above, surface wave 1
In this case, the piezoelectric thin film surface wave transducer 17 consists of a piezoelectric thin film 18 and a comb-shaped electrode provided on its surface. It consists of 19. When an input signal from the outside is introduced into the comb-shaped electrode terminal 101, the surface wave 16 is excited, and for example, the collimation lens 14
After the light from the semiconductor laser 102 provided at the focal point is collimated, the spatial direction distribution is changed by the surface wave 16, and after passing through the Fourier transform lens 16,
It reaches onto a photodiode array 103 placed at the focal point of this Fourier transform lens.

この場合、半導体基板11としては、Si 、 GaA
s 。
In this case, the semiconductor substrate 11 is made of Si, GaA
s.

InPなどの半導体結晶を用いると、例えば光ダイオー
ドアレイが基板内に集積できる利点がある。
The use of semiconductor crystals such as InP has the advantage that, for example, photodiode arrays can be integrated within the substrate.

また、AS−8系薄膜光導波路の構成材料として、非晶
質のAS2  S3薄膜が有効であることを発明者らは
発見した。これは、例えばコリメーションレンズやフー
リエ変換レンズが、電子ビーム照射による書きこみで容
易にできる点にある。As −S系料として有効である
ことも発明者らは確認した。
Furthermore, the inventors have discovered that an amorphous AS2 S3 thin film is effective as a constituent material for an AS-8 thin film optical waveguide. This is because, for example, a collimation lens or a Fourier transform lens can be easily formed by writing using electron beam irradiation. The inventors also confirmed that it is effective as an As-S-based material.

半導体基板と薄膜光導波路との界面には、通常伝搬光が
基板内に入らないように、例えば屈折率が半導体基板の
値と薄膜光導波路の値との間の薄膜例えば石英の薄膜を
バッフ1層として挿入する〇さらに、表面波トランスデ
ユーサの構成利料として、ZnOあるいはAINが、圧
電変換特性、形成の容易さの両面から、特に有効である
ことを発明者らは発見し、これに基づいて、この種のデ
バイスに最適の表面波トランスデユーサを発明した。
At the interface between the semiconductor substrate and the thin film optical waveguide, a thin film such as a thin film of quartz with a refractive index between that of the semiconductor substrate and that of the thin film optical waveguide is usually used as a buffer 1 to prevent propagating light from entering the substrate. Furthermore, the inventors have discovered that ZnO or AIN is particularly effective as a component of a surface wave transducer in terms of both piezoelectric conversion properties and ease of formation. Based on this, we have invented a surface wave transducer that is ideal for this type of device.

すなわち、薄膜表面波トランスデユーサの構成には、通
常圧電薄膜の膜厚が表面波の波長の5゜チ必要とされる
が、この場合、圧電薄膜の膜厚が光伝搬路に比べて厚く
なりすぎ、表面波が光伝搬路に導入され難い欠点があっ
た。しかし、発明者らは、第2図に示すごとく、櫛型電
極19と対向して、新たに対向電極21を基板と圧電薄
膜の界面に挿入すると、znoあるいはA/N圧電薄膜
の膜厚が、表面波の波長の数チ(2〜3%)で、充分大
きな電気機械結合例えば15チが得られ、表面波の光伝
搬路への導入が容易になることを確認した0この場合、
St 、 GaAs 、 InPなどの表面には、。
In other words, in the configuration of a thin film surface wave transducer, the thickness of the piezoelectric thin film is normally required to be 5 degrees of the wavelength of the surface wave. This has the disadvantage that it is difficult for surface waves to be introduced into the optical propagation path. However, as shown in FIG. 2, the inventors discovered that when a new counter electrode 21 is inserted at the interface between the substrate and the piezoelectric thin film, facing the comb-shaped electrode 19, the thickness of the zno or A/N piezoelectric thin film increases. It was confirmed that a sufficiently large electromechanical coupling, for example, 15 degrees, can be obtained with several inches (2 to 3%) of the wavelength of the surface wave, making it easy to introduce the surface wave into the optical propagation path. In this case,
On the surfaces of St, GaAs, InP, etc.

あらかじめガラス状態のバッファ層を形成しておき、こ
の上に対向電極を形成した後、例えばスパッタリング法
でZn○あるいはAIN薄膜を蒸着する。
After forming a buffer layer in a glass state in advance and forming a counter electrode thereon, a Zn◯ or AIN thin film is deposited by, for example, sputtering.

これらの薄膜はC軸配向しており、いわゆるレーリー波
の基本モードが励振される。
These thin films are C-axis oriented, and the so-called fundamental mode of Rayleigh waves is excited.

さらに、発明者らは、Si 基板の場合、ZnO薄膜を
表面波の波長の20〜30優にすると、レーリー波の高
次モード(セザワモード)が励振され、特に高周波の表
面波の励振に有効であることをも確認し、この種の基板
材料、圧電拐料などの組合せが、光スペクトラム・アナ
ライザの機能をより向上させ、例えば、従来のL lN
bO3基板を用いた光スペクトラム・アナライザでは得
られない特徴を生み出すことが明確になった。
Furthermore, in the case of a Si substrate, the inventors found that when the ZnO thin film is made to have a wavelength of 20 to 30 times the wavelength of the surface waves, the higher-order mode of Rayleigh waves (Sezawa mode) is excited, which is particularly effective for excitation of high-frequency surface waves. We also confirm that this kind of combination of substrate materials, piezoelectric materials, etc. can further improve the functionality of optical spectrum analyzers, e.g.
It has become clear that this method produces features that cannot be obtained with optical spectrum analyzers using bO3 substrates.

以下具体的な実施例をあげて、本発明の詳細な説明する
The present invention will be described in detail below with reference to specific examples.

実施例の説明 実施例1 表面が平滑なGaAs基板上に、厚さ0.1μmの石英
のバッファ層をスパッタ蒸着した。次に、この基板の表
面波トランスデユーサ部に、厚さ0.1μmのAI薄膜
を真空蒸着し対向電極を形成し、このの上にスパッタ蒸
着で厚さ11.tmのZnO圧電薄膜を形成し、さらに
この上に周期20〜301im厚さ0゜1μmのAI櫛
型電極を真空蒸着およびホトリソグラフィ技術で形成し
て、帯域126〜190 MHz のレーリー波基本モ
ードの表面波トランスデユーサを形成した。
Description of Examples Example 1 A quartz buffer layer with a thickness of 0.1 μm was sputter-deposited on a GaAs substrate with a smooth surface. Next, an AI thin film with a thickness of 0.1 μm is vacuum-deposited on the surface wave transducer portion of this substrate to form a counter electrode, and sputter-deposited on this to a thickness of 11 μm. tm ZnO piezoelectric thin film is formed, and on top of this, an AI comb-shaped electrode with a period of 20 to 301 mm and a thickness of 0° and 1 μm is formed using vacuum evaporation and photolithography techniques, thereby producing a Rayleigh wave fundamental mode in a band of 126 to 190 MHz. A surface wave transducer was formed.

次に、基板全面に、真空蒸着法により、As2S3薄膜
を厚さ1/1m蒸着し、光導波路とした。最後に、電子
ビーム照射でフレズネルレンズからなる焦点距離5胴の
コリメーションレンズおよびフーリエ変換レンズを形成
した。
Next, an As2S3 thin film was deposited to a thickness of 1/1 m over the entire surface of the substrate by vacuum evaporation to form an optical waveguide. Finally, a collimation lens with a focal length of 5 and a Fourier transform lens made of a Fresnel lens were formed by electron beam irradiation.

実施例2 表面酸化したSt 基板上の表面波トランスデユーサ部
に、スパッタ蒸着で厚さ3μmのZnO圧電薄膜を形成
し、この上に周期8・5〜17μm厚  4さ0,1t
zmのAI櫛型電極を実施例1と同様の加工法で形成し
て、帯域300〜eooMHz  のセザワモードの表
面波トランスデユーサを形成した。
Example 2 A ZnO piezoelectric thin film with a thickness of 3 μm was formed by sputter deposition on a surface wave transducer portion on a surface-oxidized St substrate, and on this a ZnO piezoelectric thin film with a period of 8.5 to 17 μm was formed.
zm AI comb-shaped electrodes were formed using the same processing method as in Example 1 to form a Sezawa mode surface wave transducer with a band of 300 to eoo MHz.

次にフーリエ変換レンズの焦点部に5ip−n光グイオ
ードアレイを形成した後、実施例1と同様の加工法でA
s2S3の光導波路とレンズを形成した。
Next, after forming a 5ip-n optical guide array at the focal point of the Fourier transform lens, A
An s2S3 optical waveguide and lens were formed.

発明の効果 本発明にかかる光集積スペクトラム・アナライザは、半
導体基板上に形成しているため、例えば上記半導体基板
に光ダイオード、レーザなどの半導体素子を音響光学素
子とモノリシックに集積化できる特長がある。さらに、
AI!2−83薄膜光導波路は、電子ビーム照射による
書き込みのみで、導波路、集光器など各種の微小光素子
が形成できる特長があり、この種の装置の製造を容易に
する。
Effects of the Invention Since the optical integrated spectrum analyzer according to the present invention is formed on a semiconductor substrate, it has the feature that, for example, semiconductor elements such as photodiodes and lasers can be monolithically integrated with acousto-optic elements on the semiconductor substrate. . moreover,
AI! The 2-83 thin film optical waveguide has the advantage that various microscopic optical elements such as waveguides and condensers can be formed by simply writing by electron beam irradiation, making it easy to manufacture this type of device.

なお、本発明にかかる光集積スペクトラム・アナライザ
は、音響光学デバイスの特長と半導体デバイスの特長を
生かしたもので、リアルタイムの信号処理デバイスとし
て、その工業的価値は高い。
Note that the optical integrated spectrum analyzer according to the present invention takes advantage of the features of an acousto-optic device and the features of a semiconductor device, and has high industrial value as a real-time signal processing device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(3)は本発明にかかる光集積スペクトラム・ア
ナライザの要部上面図、回申)は同(5)のaaZ線断
面図、第2図は本発明にかかる光集積スペクトラム・ア
ナライザの要部断面図である。 11・・・・・・半導体基板、12・・・・・・薄膜光
導波路、14・・・・・・コリメーションレンズ、16
・・・・・・フーリエ変換レンズ、17・・・・パ・表
面波トランスデユーサ。
FIG. 1 (3) is a top view of the essential parts of the optical integrated spectrum analyzer according to the present invention, FIG. It is a sectional view of the main part. 11...Semiconductor substrate, 12...Thin film optical waveguide, 14...Collimation lens, 16
...Fourier transform lens, 17...P/Surface wave transducer.

Claims (1)

【特許請求の範囲】 (1)半導体基板と、上記半導体基板上に設けたAs−
3系薄膜光導波路と、上記光導波路上に、光の伝搬方向
に順次配列させた、コリメーションレンズとフーリエ変
換レンズと、上記コリメーションレンズとフーリエ変換
レンズ間の光導波路ニ直交して上記基板上に設けた圧電
薄膜表面波トランスデユーサを有することを特徴とする
光集積スペクトラム・アナライザ。 (2)半導体基板をSi 、 GaAs 、 InPの
中の一種で構成したことを特徴とする特許請求の範囲第
1項言己載の光集積スペクトラム・アナライザ。 (3)  As −S系薄膜光導波路をAs 2 S3
 薄膜で構成したことを特徴とする特許請求の範囲第1
項言己載の光集積スペクトラム・アナライザ。 (4)圧電薄膜表面波トランスデユーサをZnOあるい
はAIN圧電薄膜表面波トランスデユーサで構成したこ
とを特徴とする特許請求の範囲第1項記載の光集積スペ
クトラム・アナライザ。 (6)圧電薄膜表面波トランスデユーサをセザワモード
表面波で励振することを特徴とする特許請求の範囲第1
項記載の光集積スペクトラム・アナライザ。
[Claims] (1) A semiconductor substrate and an As-
A three-system thin film optical waveguide, a collimation lens and a Fourier transform lens arranged sequentially in the light propagation direction on the optical waveguide, and a light waveguide arranged orthogonally to the optical waveguide between the collimation lens and the Fourier transform lens on the substrate. What is claimed is: 1. An optical integrated spectrum analyzer comprising: a piezoelectric thin film surface wave transducer; (2) The optical integrated spectrum analyzer according to claim 1, characterized in that the semiconductor substrate is made of one of Si, GaAs, and InP. (3) As-S thin film optical waveguide with As 2 S3
Claim 1 characterized in that the structure is made of a thin film.
A self-contained optical integrated spectrum analyzer. (4) The optical integrated spectrum analyzer according to claim 1, wherein the piezoelectric thin film surface wave transducer is constructed of a ZnO or AIN piezoelectric thin film surface wave transducer. (6) Claim 1, characterized in that the piezoelectric thin film surface wave transducer is excited by Sezawa mode surface waves.
Optical integrated spectrum analyzer described in Section 1.
JP14063582A 1982-08-12 1982-08-12 Light integrated spectrum analyzer Pending JPS5930026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14063582A JPS5930026A (en) 1982-08-12 1982-08-12 Light integrated spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14063582A JPS5930026A (en) 1982-08-12 1982-08-12 Light integrated spectrum analyzer

Publications (1)

Publication Number Publication Date
JPS5930026A true JPS5930026A (en) 1984-02-17

Family

ID=15273267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14063582A Pending JPS5930026A (en) 1982-08-12 1982-08-12 Light integrated spectrum analyzer

Country Status (1)

Country Link
JP (1) JPS5930026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163425U (en) * 1984-04-10 1985-10-30 日本電気株式会社 optical frequency modulator
JPS636505A (en) * 1986-06-27 1988-01-12 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide film and its production
JPS6425015A (en) * 1987-07-20 1989-01-27 Fuji Photo Film Co Ltd Light spectrum analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163425U (en) * 1984-04-10 1985-10-30 日本電気株式会社 optical frequency modulator
JPS636505A (en) * 1986-06-27 1988-01-12 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide film and its production
JPS6425015A (en) * 1987-07-20 1989-01-27 Fuji Photo Film Co Ltd Light spectrum analyzer

Similar Documents

Publication Publication Date Title
US4512638A (en) Wire grid polarizer
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
JPH0296121A (en) Wavelength converting element
US5418866A (en) Surface acoustic wave devices for controlling high frequency signals using modified crystalline materials
JP3165106B2 (en) Optical tunable wavelength filter
JPS5930026A (en) Light integrated spectrum analyzer
JP3876666B2 (en) Optical device and manufacturing method thereof
JPS5930025A (en) Light integrated spectrum analyzer
Valette et al. Integrated-optical circuits achieved by planar technology on silicon substrates: application to the optical spectrum analyser
JPS5821211A (en) Thin film lens of integrated optical structure
JPS58173704A (en) Optical focusing device
JP2517772B2 (en) Grating optical coupler
JPH02236506A (en) Optical waveguide device
JPS62257133A (en) Waveguide type deflector
Mottier et al. Broad band Bragg deflector for optical waveguides on silicon substrates
JPS58172619A (en) Substrate for optical device
JPS5930506A (en) Substrate for optical device
KR100224747B1 (en) Acousto-optic deflector
JPH11281828A (en) Optical waveguide device
JPS6234126A (en) Optical waveguide type device
JPH06337446A (en) Waveguide type acoustic optical device
JPH0375730A (en) Optical deflector
JPS63116109A (en) Waveguide type optical element and its manufacture
Sriram et al. Heterodyne receiver on silicon: an exercise in integration
JPS5924832A (en) Acousto-optical device