JPH02236506A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH02236506A
JPH02236506A JP26578588A JP26578588A JPH02236506A JP H02236506 A JPH02236506 A JP H02236506A JP 26578588 A JP26578588 A JP 26578588A JP 26578588 A JP26578588 A JP 26578588A JP H02236506 A JPH02236506 A JP H02236506A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
amorphous
substrate
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26578588A
Other languages
Japanese (ja)
Inventor
Hitoshi Tamada
仁志 玉田
Maki Saito
斉藤 真樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26578588A priority Critical patent/JPH02236506A/en
Priority to US07/424,768 priority patent/US5022729A/en
Priority to EP89119535A priority patent/EP0365039B1/en
Priority to DE68914240T priority patent/DE68914240T2/en
Publication of JPH02236506A publication Critical patent/JPH02236506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a large refractive index (n) over the entire area from near IR to visible regions and to lower a propagation loss so that the optical waveguide having high efficiency is constituted by constituting the above device on the amorphous light guide formed by adding TiO2 at 0<Ti(Ti+Ta) approx.<60 in atomic % to Ta2O5. CONSTITUTION:The amorphous optical waveguide 2 which consists of the Ta2O5 doped with the TiO2 and is adjusted to 0 to 60atomic% Ti with respect to the sum of Ti and Ta is formed on a substrate 1. This light guide 2 is sufficiently low in loss from the near IR to visible region and the large refractive index is obtainable therewith. For example, the refractive index (n) at 0.6328mum wavelength can be varied in an about 0.2 to 2.4 range by selecting the doping quantity of the Ti. The optical waveguide is constituted with high efficiency in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信,光集積回路等における光導波路装置
に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical waveguide device for optical communications, optical integrated circuits, and the like.

(発明の概要〕 本発明は、基板上にTa.O,にTil2がドープされ
たアモルファス導波路を形成した光導波路装置であって
、光導波を高効率をもって行うことができるようにする
(Summary of the Invention) The present invention is an optical waveguide device in which an amorphous waveguide in which Ta.

〔従来の技術〕[Conventional technology]

光通信,光集積回路等における光導波路は、導波光を強
く閉じ込めることができるようにできるだけ高屈折率の
光導波材料によって構成されることが望まれる。
Optical waveguides in optical communications, optical integrated circuits, etc. are desired to be constructed of optical waveguide materials with as high a refractive index as possible so that guided light can be strongly confined.

従来、低損失導波路としては、TatOs+ Nb2O
5などのアモルファス膜, PLZT (Pb+ Li
, Zr, Tiの複合酸化物)の単結晶膜, As.
S,などのカルコゲナイドが高屈折率導波路として用い
られて来た。これら各材料の屈折率は、Ta,O,で1
.9 〜2.2 . NbzOsで2.1〜2.3 ,
 PLZTで2.6程度,カルコゲナイド系では、2.
3より大なる高屈折率を有する。しかしながら、PLZ
Tについては、単結晶膜として生成させることが必要で
あることから、この膜生成の基板は、サファイヤなどの
限られた単結晶基板が用いられる必要がある。また、カ
ルコゲナイド系では、可視光域では光吸収が大であるこ
とから可視光域の光導波路とすることができない。更に
Ta.O,については、光ICで良く用いられるLiN
b03基板,LiTaOx基板に比し、その屈折率が小
さいことから、このような基板に対する光導波路として
構成することができない。
Conventionally, as a low-loss waveguide, TatOs+Nb2O
Amorphous films such as 5, PLZT (Pb+ Li
, a composite oxide of Zr, Ti), a single crystal film of As.
Chalcogenides such as S, have been used as high refractive index waveguides. The refractive index of each of these materials is 1 for Ta and O.
.. 9-2.2. 2.1 to 2.3 for NbzOs,
About 2.6 for PLZT and 2.6 for chalcogenide.
It has a high refractive index greater than 3. However, PLZ
Since T needs to be produced as a single crystal film, a limited number of single crystal substrates such as sapphire must be used as the substrate for producing this film. In addition, chalcogenide-based materials have large light absorption in the visible light range, so they cannot be used as optical waveguides in the visible light range. Furthermore, Ta. Regarding O, LiN, which is often used in optical ICs, is used.
Since its refractive index is smaller than that of the b03 substrate and the LiTaOx substrate, it cannot be configured as an optical waveguide for such substrates.

〔発明が解決しようとする課題] 上述したように従来、特に近赤外から可視光域にわたっ
て低伝ra損(<1dB/cm)をもって、LtNbO
*+ LxTa03のような基板上に薄膜光導波路を構
成することができていない。
[Problems to be Solved by the Invention] As mentioned above, conventional LtNbO
*+ It is not possible to construct a thin film optical waveguide on a substrate such as LxTa03.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による光導波路装置は、第1図に示すように、基
板(1)上に、Ta2OsにTiO2がドープされ、T
iとTaの和に対するTiがO〜60原子%とされたア
モルファス光導波路(2)を形成する。
As shown in FIG. 1, the optical waveguide device according to the present invention has Ta2Os doped with TiO2 on a substrate (1), and T2Os is doped with TiO2.
An amorphous optical waveguide (2) is formed in which Ti is O to 60 atomic % with respect to the sum of i and Ta.

〔作用〕[Effect]

上述の本発明装置の光導波路(2)は、近赤外から可視
域にわたって充分低損失でかつ大きな屈折率が得られた
.例えば0.6328μmの波長における屈折率nは、
2.2〜2.4程度の範囲においてTiのドーブ量の選
定によって可変できた。
The optical waveguide (2) of the device of the present invention described above had sufficiently low loss and a large refractive index over the near infrared to visible range. For example, the refractive index n at a wavelength of 0.6328 μm is
It could be varied by selecting the amount of Ti doping in the range of about 2.2 to 2.4.

〔実施例〕〔Example〕

第2図Aに示すように、基板(1)例えばLiNbO,
i板上にTazOsにTiOzがドーブされた薄膜l2
ΦをCVD(化学的気相成長)法によって形成する。こ
のCVDは、タンクルベンタエトキシドTa (OC2
8S) s及びチタンテトライソブ口ボキシドTi (
0− i−CJt) 4を原料ガスとして用いて基板温
度600゜Cの下で基板(1)上にアモルファス(非品
質)膜として気相成長させる。
As shown in FIG. 2A, a substrate (1), for example, LiNbO,
Thin film l2 of TazOs doped with TiOz on an i-board
Φ is formed by CVD (chemical vapor deposition). This CVD is performed using tankurbentaethoxide Ta (OC2
8S) s and titanium tetraisobutoxide Ti (
Using 0-i-CJt) 4 as a source gas, an amorphous (poor quality) film is grown in vapor phase on the substrate (1) at a substrate temperature of 600°C.

この上に例えばフォトレジストによるエッチングレジス
ト(図示せず)を、最終的に得ようとする光導波路のパ
ターンに、周知の技術によって被着し、これをマスクと
して、アモルファス薄膜Q(Dを、例えばRIE(反応
性イオンエッチング)によってエッチングして第2図B
,に示すように光導波路(2)を形成する。この場合、
薄膜I2Oを光導波路(2)以外においてその全厚さに
わたってエッチング除去することもできるが伝播損の低
減化をはがる上で第2図Btに示すように薄膜QΦの光
導波路(2)以外のエッチングを一部の厚さだけ残して
おくこともできるし、或いは第2図81で説明したと?
様のエッチングを行って後に例えばSiO■, Taz
Osなどより成る保護被膜(3)を形成することもでき
る.今、基板(1)上に形成したTie.がドーブされ
たアモルファス薄膜QIについて、そのTiのドーブ量
を変えて、波長0.6328μmに対する屈折率を測定
した結果を、第3図に示す。第3図において横軸は、↑
iとTaの和に対するTiの割合Ti/ (Ti +T
a) (原子%)で、縦軸に屈折率をとったものである
。これによれば、屈折率nは、Ti量に比例して増大し
、Ti/ (Ti +Ta) =46(原子%)でn 
=2.35となる。
On top of this, an etching resist (not shown) made of photoresist, for example, is applied to the pattern of the optical waveguide to be finally obtained using a well-known technique, and using this as a mask, an amorphous thin film Q (D) is formed, for example. Etched by RIE (Reactive Ion Etching) to form Figure 2B.
An optical waveguide (2) is formed as shown in . in this case,
Although it is possible to remove the thin film I2O over the entire thickness of the optical waveguide (2) other than the optical waveguide (2), in order to reduce propagation loss, as shown in FIG. It is also possible to leave only a part of the etching thickness, or as explained in FIG. 281.
For example, SiO■, Taz
A protective film (3) made of Os or the like can also be formed. Now, the Tie. FIG. 3 shows the results of measuring the refractive index at a wavelength of 0.6328 μm for the amorphous thin film QI doped with Ti by varying the amount of Ti doping. In Figure 3, the horizontal axis is ↑
The ratio of Ti to the sum of i and Ta is Ti/(Ti +T
a) (atomic %), with the refractive index plotted on the vertical axis. According to this, the refractive index n increases in proportion to the amount of Ti, and when Ti/(Ti + Ta) = 46 (atomic %), n
=2.35.

このとき例えば第3図中点Aで示されるサンプルについ
て導波光の伝播を調べてみたところ、15m以上導波し
、サンプル端面が光り、充分低損失となっていることが
確認された。しかしながらTi/(Ti +Ta) >
60 (原子%)では結晶化が起り、伝播損は2,激に
増大した。すなわち、O<Ti/(Ti+Ta)≦60
(原子%)の範囲で、またより好ましくは15< Ti
/ (Ti +Ta) <60 (原子%)で良好なア
モルファス膜が生成され、屈折率nが2.2〜2.4に
選定できる。
At this time, for example, when the propagation of the guided light was investigated for the sample shown by the middle point A in FIG. 3, it was confirmed that the wave was guided for more than 15 m, the end face of the sample was illuminated, and the loss was sufficiently low. However, Ti/(Ti + Ta) >
At 60 (atomic %), crystallization occurred and the propagation loss significantly increased by 2. That is, O<Ti/(Ti+Ta)≦60
(atomic %) and more preferably 15<Ti
/ (Ti + Ta) <60 (atomic %), a good amorphous film is produced, and the refractive index n can be selected from 2.2 to 2.4.

尚、上述した例では、基板温度が600″Cでアモルフ
ァス膜I2O、すなわち光導波路(2)の生膜を行った
が、例えば光CVDの適用により、基板温度を低めると
きは、アモルファス膜におけるTiのドープ量をより大
とすることができることによって、より屈折率nを高め
ることができる。
In the above example, the amorphous film I2O, that is, the raw film of the optical waveguide (2) was formed at a substrate temperature of 600"C. However, when lowering the substrate temperature by applying photo-CVD, for example, the Ti in the amorphous film By increasing the amount of doping, the refractive index n can be further increased.

また前記A点のサンプルについて、波長0.4765μ
mに対する屈折率nと伝播損を測疋したところ、この場
合n =2.425となり、伝播損についても0.63
28μmのときと同じであった。
Also, regarding the sample at point A, the wavelength is 0.4765μ
When we measured the refractive index n and propagation loss for m, in this case n = 2.425, and the propagation loss was also 0.63.
It was the same as when it was 28 μm.

〔発明の効果] 上述したように、本発明はTazOsにTiO2を、0
<Ti/ (Ti +Ta)≦60(原子%)をもって
添加したアモルファス光導波路によって構成したことに
よって、近赤外から可視域全域にわたって、大きな屈折
率nが得られ、かつ低伝播損とすることができるので、
効率の高ル)光導波路を構成することができる。
[Effect of the invention] As described above, the present invention adds TiO2 to TazOs and
By constructing the amorphous optical waveguide doped with <Ti/ (Ti + Ta)≦60 (atomic %), a large refractive index n can be obtained over the entire range from near infrared to visible range, and low propagation loss can be achieved. Because you can
A highly efficient optical waveguide can be constructed.

また、その光導波路が、アモルファス膜であることから
、基板(1)としては、単結晶基板であるなどの制約が
ないことから、材料の選定の自由度が大で、したがって
基板(1)の材料としてはその屈折率が低いものが選べ
ることから光導波路との屈折率差を充分大とすることが
でき、光導波路の閉じ込めを効率良く行うことができる
In addition, since the optical waveguide is an amorphous film, the substrate (1) is not limited to a single crystal substrate, so there is a high degree of freedom in selecting the material. Since a material with a low refractive index can be selected, the difference in refractive index with the optical waveguide can be made sufficiently large, and the optical waveguide can be efficiently confined.

また、光導波路がアモルファス膜より成ることから、そ
の加工が容易であるので、光IC等において微細加工が
可能となり、実用上の利益は極めて大きい。
In addition, since the optical waveguide is made of an amorphous film, it is easy to process, so microfabrication is possible in optical ICs, etc., and the practical benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例の一部の斜視図、第2図は本
発明装置の製造工程図、第3図は光導波路のアモルファ
ス膜のTiドープ量と屈折率との関係の測定曲線図であ
る。 (1)は基板、(2)は光導波路である。
Fig. 1 is a perspective view of a part of an example of the device of the present invention, Fig. 2 is a manufacturing process diagram of the device of the present invention, and Fig. 3 is a measurement curve of the relationship between the Ti doping amount of the amorphous film of the optical waveguide and the refractive index. It is a diagram. (1) is a substrate, and (2) is an optical waveguide.

Claims (1)

【特許請求の範囲】[Claims] 基板上に、Ta_2O_5にTiO_2がドープされT
iとTaの和に対するTiが0〜60原子%とされたア
モルファス光導波路が形成されて成る光導波路装置。
On the substrate, Ta_2O_5 is doped with TiO_2 and T
An optical waveguide device comprising an amorphous optical waveguide in which Ti is 0 to 60 atomic % relative to the sum of i and Ta.
JP26578588A 1988-10-21 1988-10-21 Optical waveguide device Pending JPH02236506A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26578588A JPH02236506A (en) 1988-10-21 1988-10-21 Optical waveguide device
US07/424,768 US5022729A (en) 1988-10-21 1989-10-20 Optical waveguide and second harmonic generator
EP89119535A EP0365039B1 (en) 1988-10-21 1989-10-20 Optical waveguide and second harmonic generator
DE68914240T DE68914240T2 (en) 1988-10-21 1989-10-20 Optical waveguide and generator for generating the second harmonic.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26578588A JPH02236506A (en) 1988-10-21 1988-10-21 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPH02236506A true JPH02236506A (en) 1990-09-19

Family

ID=17422009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26578588A Pending JPH02236506A (en) 1988-10-21 1988-10-21 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPH02236506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096733A1 (en) * 2007-02-05 2008-08-14 Epiphotonics Inc. Light amplifier and method for manufacturing the same
JP2009139734A (en) * 2007-12-07 2009-06-25 Nec Corp Optical device, optical integrated device, and manufacturing method of them
JP2013164615A (en) * 2013-04-18 2013-08-22 Nec Corp Optical device, optical integrated device, and manufacturing method of optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096733A1 (en) * 2007-02-05 2008-08-14 Epiphotonics Inc. Light amplifier and method for manufacturing the same
JP2008192829A (en) * 2007-02-05 2008-08-21 Univ Waseda Optical amplifier and manufacturing method therefor
JP2009139734A (en) * 2007-12-07 2009-06-25 Nec Corp Optical device, optical integrated device, and manufacturing method of them
JP2013164615A (en) * 2013-04-18 2013-08-22 Nec Corp Optical device, optical integrated device, and manufacturing method of optical device

Similar Documents

Publication Publication Date Title
US5303319A (en) Ion-beam deposited multilayer waveguides and resonators
JP4204108B2 (en) Optical waveguide device and manufacturing method thereof
Yoshioka et al. Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1− xScxN thin films
EP1436652A2 (en) Integrated photonic crystal structure and method of producing same
CN109683334B (en) Transmission type optical beam splitter and manufacturing method thereof
US20040258355A1 (en) Micro-structure induced birefringent waveguiding devices and methods of making same
JPS60114811A (en) Optical waveguide and its production
EP0576685B1 (en) Waveguide type light directional coupler
US5824419A (en) Thin film of potassium niobate, process for producing the thin film, and optical device using the thin film
JPH02236506A (en) Optical waveguide device
Gottlieb et al. Fabrication and characterization of mercurous chloride acoustooptic devices
JPH11326966A (en) Second harmonic generator
JP2004325536A (en) Nonlinear optical device
JPH11335199A (en) Production of single crystal membrane
JPS5917510A (en) Optical waveguide
EP0957395B1 (en) A second harmonic wave-generating element
JP2556206B2 (en) Method for manufacturing dielectric thin film
JPS6118933A (en) Device for changing wavelength of light
JPS5930026A (en) Light integrated spectrum analyzer
JP3552135B2 (en) Waveguide and wavelength conversion element using the same
Kupreychik et al. Infrared Acousto-Optic Filters Based on a Biaxial Crystal of Indium Iodide for Combined Spectral-Polarization Analysis of Optical Images
JPS62299913A (en) Waveguide type polarizer
JPH06174908A (en) Production of waveguide type diffraction grating
JPH0723927B2 (en) Method of manufacturing optical waveguide
JPH04256904A (en) Polarizing element