JPS5929667B2 - Sintered material for cutting tools with excellent toughness and wear resistance - Google Patents

Sintered material for cutting tools with excellent toughness and wear resistance

Info

Publication number
JPS5929667B2
JPS5929667B2 JP9038178A JP9038178A JPS5929667B2 JP S5929667 B2 JPS5929667 B2 JP S5929667B2 JP 9038178 A JP9038178 A JP 9038178A JP 9038178 A JP9038178 A JP 9038178A JP S5929667 B2 JPS5929667 B2 JP S5929667B2
Authority
JP
Japan
Prior art keywords
sintered material
powder
cutting
solid solution
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9038178A
Other languages
Japanese (ja)
Other versions
JPS5518549A (en
Inventor
泰次郎 大西
賢一 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9038178A priority Critical patent/JPS5929667B2/en
Publication of JPS5518549A publication Critical patent/JPS5518549A/en
Publication of JPS5929667B2 publication Critical patent/JPS5929667B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、特にすぐれた耐摩耗性と靭性が要求される
高硬度鋼などの切削に使用した場合に、すぐれた切削特
性を示す立方晶窒化硼素含有の緻密な焼結材料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a dense sintered material containing cubic boron nitride that exhibits excellent cutting properties when used for cutting high-hardness steel, which requires particularly excellent wear resistance and toughness. This relates to binding materials.

近年、苛酷な使用条件下での切削に際して比較的良好な
切削特性を示す切削工具用焼結材料として、立方晶窒化
硼素を主成分(一般に含有量90容量係以上)と−少量
の金属成分を含有した焼結材料(この場合鉄族金属、タ
ングステンカーバイドが原料粉末の混合時および高温高
圧焼結時に容器などよシ混入含有する)′が提案され、
市販されてお択確かに前記焼結材料は、約1100℃ま
での高温まで安定で、かつダイヤモンドに次ぐ著しく高
い硬さをもつ立方晶窒化硼素を主成分として含有するた
め、耐摩耗性にすぐれ、しかも鉄族金属およびこれらの
合金に対して反応しにくい性質をもつものであるため、
高硬度鋼やNi基耐熱合金の切削加工に使用されている
In recent years, sintered materials for cutting tools that exhibit relatively good cutting properties when cutting under harsh operating conditions have been developed, with cubic boron nitride as the main component (generally containing 90% by volume or more) and a small amount of metal components. A sintered material that contains iron (in this case, iron group metals and tungsten carbide are mixed into containers etc. during mixing of raw material powder and high-temperature, high-pressure sintering) was proposed.
The sintered material, which is commercially available and is certainly a good choice, is stable up to high temperatures of about 1100°C and contains cubic boron nitride, which has extremely high hardness second only to diamond, as a main component, so it has excellent wear resistance. Moreover, it has properties that make it difficult to react with iron group metals and their alloys.
It is used for cutting high-hardness steel and Ni-based heat-resistant alloys.

しかしながら、上記従来焼結材料は、上記のように高硬
度をもつものの、十分な靭性を備えたものではないため
に、この靭性不足が原因で切削時にチッピング摩耗を起
しやすく、したがって本来具備しているすぐれた耐摩耗
性を十分に発揮することができないのが現状である。
However, although the conventional sintered materials mentioned above have high hardness as mentioned above, they do not have sufficient toughness, and this lack of toughness tends to cause chipping wear during cutting. At present, it is not possible to fully demonstrate the excellent wear resistance that it has.

本発明者等は、上述のような観点から、靭性および耐摩
耗性にすぐれた切削工具用焼結材料を得べく研究を行な
った結果、洗結材料を、 (a) 高温硬さ、弾性係数、および熱伝導性がいず
れも高く、一方熱膨張係数が小さく、さらにスケルトン
組織を形成し易く、しかも前記スケルトン組織は抗折強
度が大きく、結合相を構成する焼結助剤金属とのぬれ性
も良好な、組成式:%式% ) ) で現わされる立方晶高融点化合物固溶体と、(b)
スケルトン組織の形成を促進しかつスケルトンの強固な
接合を行なう、Al*NtscomFesMn、および
Siのうちの1種または2種以上からなる焼結助剤金属
と、 (c) 高硬度を有する立方晶窒化硼素、から構成す
ると、上記焼結助剤金属によって強固に結合された、上
記立方晶窒化硼素と上記立方晶高融点化合物固溶体の3
次元スケルトン組織を有し、したがって前記スケルトン
組織によるすぐれた靭性と、前記立方晶窒化硼素による
すぐれた耐摩耗性とを有する焼結材料が得られ、この焼
結材料を、特に高硬度鋼の切削に使用した場合にきわめ
てすぐれた切削性能を示すという知見を得たのである。
From the above-mentioned viewpoints, the present inventors conducted research to obtain a sintered material for cutting tools that has excellent toughness and wear resistance, and as a result, the sintered material has the following characteristics: , and thermal conductivity are both high, while the coefficient of thermal expansion is small, and furthermore, the skeleton structure is easy to form, and the skeleton structure has high flexural strength and wettability with the sintering aid metal constituting the binder phase. (b)
A sintering aid metal consisting of one or more of Al*NtscomFesMn and Si, which promotes the formation of a skeleton structure and provides strong bonding of the skeleton; (c) cubic nitridation having high hardness; When composed of boron, three of the cubic boron nitride and the cubic high melting point compound solid solution are strongly bonded by the sintering aid metal.
A sintered material is obtained which has a dimensional skeleton structure and therefore has excellent toughness due to the skeleton structure and excellent wear resistance due to the cubic boron nitride. They obtained the knowledge that it shows extremely excellent cutting performance when used for.

この発明は、上記知見にもとづいてなされたもので、切
削工具用焼結材料を、 上記立方晶高融点化合物固溶体:lO〜60容量係、 上記焼結助剤金属=0.2〜5容量係、 上記立方晶窒化硼素および不可避不純物:残択 からなる成分組成で構成したことに特徴を有するもので
ある。
This invention was made based on the above knowledge, and the sintered material for cutting tools is made of: the cubic crystal high melting point compound solid solution: 1O to 60 volume ratio, the sintering aid metal = 0.2 to 5 volume ratio. It is characterized by having a component composition consisting of the cubic boron nitride and unavoidable impurities: the remainder.

つぎに、この発明の焼結材料において、成分組成範囲お
よび立方晶高融点化合物固溶体を上述のように限定した
理由を説明する。
Next, in the sintered material of the present invention, the reason why the component composition range and the cubic high melting point compound solid solution are limited as described above will be explained.

■ 立方晶高融点化合物固溶体 (a) 含有量 原材粉末として使用される立方晶高融点化合物固溶体(
(Tim*Tan、Wl−m n)(Cx*Ny m
01x y ) z )粉末は、例えばTiC粉末
、TiN粉末、TiO粉末、TaC粉末、TaN粉末、
およびWC粉末を適宜割合に配合し混合した後、150
0℃以上の高温で固溶化する方法や、他の還元反応を伴
う固溶体合成法などによって調製されるが、その含有量
が10容量係未満では、靭性に富んだスケルトン組織を
十分に形成することができないため、靭性低下および強
度低下をきたすようにな択一方60容量係を越えて含有
させると、硬度低下が著しくなって所望の耐摩耗性を確
保することができなくなることから、その含有量を10
〜60容量係と定めた。
■ Cubic crystal high melting point compound solid solution (a) Content Cubic crystal high melting point compound solid solution used as raw material powder (
(Tim*Tan, Wl-m n) (Cx*Ny m
01x y ) z ) Powders include, for example, TiC powder, TiN powder, TiO powder, TaC powder, TaN powder,
After blending and mixing WC powder in appropriate proportions, 150
It is prepared by a solid solution method at a high temperature of 0°C or higher or a solid solution synthesis method involving other reduction reactions, but if the content is less than 10% by volume, a skeleton structure with high toughness cannot be sufficiently formed. However, if the content exceeds 60% by volume, the hardness decreases significantly and it becomes impossible to secure the desired wear resistance. 10
~60 capacity staff.

(b) mの値 mの値が0.4未満では、Tiの含有量が少な過ぎて所
望の高温硬さおよび化学的安定性を確保することができ
なくなシ、一方0.8を越えた値にすると、Tiの含有
量が多くな多過ぎて、上記立方晶高融点化合物固溶体の
もつすぐれた抗折強度および熱伝導性が低下するように
なることから、その値を0.4〜0,8と定めた。
(b) Value of m If the value of m is less than 0.4, the Ti content is too small to ensure the desired high temperature hardness and chemical stability; If the Ti content is too high, the excellent bending strength and thermal conductivity of the cubic high melting point compound solid solution will decrease. It was set as 0.8.

(c) nの値 nの値が0.1未満では、Ta成分によってもたらされ
る良好な熱伝導率が低下するようになると共に、焼結材
料に形成されるスケルトン組織の抗折強度が低下するよ
うになシ、一方0.5を越えた値にすると、高温硬さが
低下するようになることから、その値を0.1〜0.5
と定めた。
(c) Value of n If the value of n is less than 0.1, the good thermal conductivity provided by the Ta component will decrease, and the flexural strength of the skeleton structure formed in the sintered material will decrease. On the other hand, if the value exceeds 0.5, the high temperature hardness will decrease, so the value should be set to 0.1 to 0.5.
It was determined that

また、Wの含有割合を示す(1−m−n)の値は0.1
〜0.5にするのがよく、その値が0.1未満では、W
含有量が少な過ぎて上記立方晶高融点化合物固溶体のも
つ上記の諸性質が劣化するようになり、一方0.5を越
えた値にするとWの含有量が多くな多過ぎて固溶しない
WClが残存するようになって単一の化合物固溶体を形
成するととができなくなるからである。
In addition, the value of (1-m-n) indicating the content ratio of W is 0.1
It is best to set the value to ~0.5, and if the value is less than 0.1, W
If the content is too small, the above-mentioned properties of the cubic high melting point compound solid solution will deteriorate, while if the value exceeds 0.5, the W content will be too large and WCl will not dissolve in the solid solution. This is because if the compound remains and forms a single compound solid solution, it will not be possible to remove the compound.

(C)・Xの値 Xの値が0.1未満では、Cの含有量が少なくな多過ぎ
て高温硬さが低下するようになる一方、Xの値を0.9
を越えて大きくすると、Cの含有量が多くなり過ぎて熱
伝導率が低下するようになることから、Xの値を0.1
〜0.9と定めた。
(C)・X value When the value of X is less than 0.1, the C content is too low and high temperature hardness decreases,
If the value of
~0.9.

(a) yの値 yの値が0.1未満では、相対的にCの含有量が多くな
り過ぎて熱伝導率が低下するようになシ、一方0.9を
越えて多くすると、相対的にCの含有量が少なくな〃過
ぎて高温硬さが低下するようになることから、yの値を
0.1〜0.9と定めた。
(a) Value of y If the value of y is less than 0.1, the C content becomes relatively too large and the thermal conductivity decreases; on the other hand, if it increases beyond 0.9, the relative The value of y was determined to be 0.1 to 0.9, since high-temperature hardness decreases if the C content is too low.

またO(結合酸素)の値1−x−yに関しては、0.0
1〜0.5の範囲内にあるのが望ましく、これは、この
値が0.01未満では耐酸化性が低下して摩耗進行が早
くな択一方、0.5を越えた値にするとOに対するCお
よびNの含有量が相対的に少なくなって高温硬さが低下
するようになるという理由からである。
Also, regarding the value of O (combined oxygen) 1-x-y, 0.0
It is desirable that the value is within the range of 1 to 0.5, because if this value is less than 0.01, oxidation resistance will decrease and wear will progress quickly, while if it exceeds 0.5, O This is because the content of C and N becomes relatively small compared to the amount of steel, and the high-temperature hardness decreases.

(e)zの値 2の値が0.8未満では(C十N十〇)の含有量に対す
る( T i + Ta +W )の含有量が相対的に
多くなって高温硬さが低下するようになシ、一方1.0
を越えた値にすると逆に(Tj+Ta+W)の含有量が
少なくなって単一な化合物固溶体を形成するのが困難と
なシ、遊離炭素が存在するようになることから、2の値
を0.8〜1.0と定めた。
(e) When the value of z value 2 is less than 0.8, the content of (T i + Ta + W) relative to the content of (C0N10) becomes relatively large, and the high temperature hardness decreases. Nashi, on the other hand 1.0
Conversely, if the value exceeds 2, the content of (Tj+Ta+W) decreases, making it difficult to form a single compound solid solution, and free carbon becomes present, so the value of 2 is set to 0. It was set as 8 to 1.0.

(2)焼結助剤金属の含有量 焼結助剤金属としては、立方晶窒化硼素と立方晶高融点
化合物固溶体とからなる3次元スケルトン組織の形成を
促進ムかつ前記両成分とのぬれ性がよく、しかも前記両
成分と強固に結合する作用のあるA I # N 1
g CO# F e m Mn sおよびSiのうちの
1種または2種以上が用いられるが、その含有量が0.
2容量係未満では、前記作用に所望の効果が得られず、
しかも焼結時に著しく高い温度と圧力を必要とするよう
になり、一方5容量係を越えて含有させると、高温硬さ
が低下するようになることから、その含有量を0.2〜
5容量係と定めた。
(2) Content of sintering aid metal The sintering aid metal promotes the formation of a three-dimensional skeleton structure consisting of cubic boron nitride and cubic high melting point compound solid solution, and has wettability with both of the above components. A I # N 1 which has good properties and has the effect of strongly binding with both of the above components.
g CO# Fe m Mn One or more of two or more of s and Si is used, but if the content is 0.
If the amount is less than 2 volumes, the desired effect cannot be obtained,
Moreover, extremely high temperatures and pressures are required during sintering, and on the other hand, if the content exceeds 5 volume, the high temperature hardness will decrease, so the content should be reduced from 0.2 to
5 capacity staff.

さらに、この発明の焼結材料は公知の超高圧超高温発生
装置を使用して製造される。
Further, the sintered material of the present invention is manufactured using a known ultra-high pressure and ultra-high temperature generator.

すなわち、立方晶高融点化合物固溶体粉末、立方晶窒化
硼素粉末、および焼結助剤金属粉末を所定割合に配合し
、鉄製ボールミル中で乾式あるいは湿式混合法により混
合して均質な混合粉末とした後、前記混合粉末を鋼製あ
るいは高融点金属製の容器に封入し、ついで例えば特公
昭38−14号公報に記載されるような超高圧超高温発
生装置に装入−圧力および温度を上げて最終的に圧力4
0〜60Kb、温度1200〜1800℃と1この最高
圧力および温度に数分〜数10分保持し、冷却後、圧力
を開放することによって製造される。
That is, a cubic high melting point compound solid solution powder, a cubic boron nitride powder, and a sintering aid metal powder are blended in a predetermined ratio and mixed in an iron ball mill using a dry or wet mixing method to form a homogeneous mixed powder. , the mixed powder is sealed in a container made of steel or high-melting point metal, and then charged into an ultra-high pressure and ultra-high temperature generator as described in Japanese Patent Publication No. 38-14-1980, and the pressure and temperature are raised to produce the final product. pressure 4
0 to 60 Kb and a temperature of 1,200 to 1,800°C.1 It is manufactured by maintaining this maximum pressure and temperature for several minutes to several tens of minutes, and then releasing the pressure after cooling.

つぎに、この発明の焼結材料を実施例によシ説明する。Next, the sintered material of the present invention will be explained using examples.

実施例 1 原料粉末として、予め高温合成法で調製した、(Tio
、6 TaO,I W□、3 ) (Co、72
No、2300.05)。
Example 1 As a raw material powder, (Tio
, 6 TaO, I W□, 3 ) (Co, 72
No, 2300.05).

、9.の組成を有する平均粒径0.8μmの立方晶高融
点化合物固溶体粉末=20容量係と、同1.0μmの立
方晶窒化硼素粉末ニア9容量係と、同1.0μmのNi
粉末=1容量係とを配合しこの配合粉末を超硬ボールミ
ル中でアセトンを溶媒として使用し、24時間混合−乾
燥した。
,9. A cubic high melting point compound solid solution powder with an average particle size of 0.8 μm having the composition = 20 volume, a cubic boron nitride powder with a volume of 9 volume of the same 1.0 μm, and a Ni powder with the same 1.0 μm
The mixed powder was mixed and dried for 24 hours in a cemented carbide ball mill using acetone as a solvent.

ついで、この結果得られた混合粉末を、直径10mmφ
×高さlOmrnの寸法をもったステンレス鋼(SUS
304)製管内に詰め、真空引きしながら同材質の蓋を
溶接して密封した。
Next, the resulting mixed powder was made into a powder having a diameter of 10 mmφ.
Stainless steel (SUS) with dimensions of x height lOmrn
304) It was packed into a tube and sealed by welding a lid made of the same material while drawing a vacuum.

このように上記混合粉末を充填密封した上記管を公知の
超高圧超高温発生装置に装入し、最高付加圧力60Kb
、最高加熱温度1400℃の条件で、10分間保持し、
圧力解放と冷却を行なうことによって本発明焼結材料を
製造した。
The tube filled with the mixed powder and sealed was placed in a known ultra-high pressure and ultra-high temperature generator, and the maximum applied pressure was 60 Kb.
, held for 10 minutes at a maximum heating temperature of 1400°C,
The sintered material of the present invention was produced by releasing pressure and cooling.

この結果得られた本発明焼結材料は、原料粉末と実質的
に同一の組成(T ig、6 T’a0.1 wo、3
)(C0,72NO,2300,05)0.95を有す
る立方晶高融点化合物固溶粒子と立方晶窒化硼素子とが
緻密に結合したスケルトン組織を有するものであった。
The resulting sintered material of the present invention has substantially the same composition as the raw material powder (T ig, 6 T'a0.1 wo, 3
) (C0,72NO,2300,05)0.95, and had a skeleton structure in which the cubic crystal high melting point compound solid solution particles and the cubic boron nitride element were tightly bonded.

つぎに、上記本発明焼結材料、および比較の目的で、上
記の従来公知の立方晶窒化硼素基焼結材料、すなわちC
o:6容量係を含有し残シが実質的に立方晶窒化硼素か
らなる組成を有する立方晶窒化硼素基焼結材料より、切
断および研磨により切削用切刃を形成L WCC超超硬
合金製チップ銀ろうにてろう付けすることによって本発
明焼結材料製切削工具および従来焼結材料製切削工具を
製造した。
Next, the above-mentioned sintered material of the present invention and the above-mentioned conventionally known cubic boron nitride-based sintered material, namely C
A cutting edge is formed by cutting and polishing from a cubic boron nitride-based sintered material having a composition containing o: 6 volume fraction and the remainder substantially consisting of cubic boron nitride L. Made of WCC cemented carbide. A cutting tool made of a sintered material of the present invention and a cutting tool made of a conventional sintered material were manufactured by brazing with chip silver solder.

上記両切削工具について、 被削材:JIS、SNCM−8(HRC: 52)、切
削速度:120rn/rrIin、 送多:0,1朋/ revs 切込み: 0. I I& の条件で乾式切削試験を行ない、逃げ面摩耗が0、2
mmに至るまでの切削時間を測定したところ、本発明焼
結材料製切削工具は58分を要したのに対して、従来焼
結材料製切削工具は4分で前記摩耗量に達ムこの結果か
ら本発明焼結材製切削工具はすぐれた切削性能を示すこ
とが明らかである。
Regarding both of the above cutting tools, Work material: JIS, SNCM-8 (HRC: 52), Cutting speed: 120rn/rrIin, Feed rate: 0.1 ho/revs, Depth of cut: 0. A dry cutting test was conducted under the conditions of I I&, and the flank wear was 0 and 2.
When we measured the cutting time to reach 1 mm, the cutting tool made of the sintered material of the present invention required 58 minutes, whereas the cutting tool made of the conventional sintered material reached the above wear amount in 4 minutes. It is clear from these results that the cutting tool made of the sintered material of the present invention exhibits excellent cutting performance.

実施例 2 第1表に示される成分組成をもつように、予め公知の高
温合成法で調製した各種速成の平均粒径1.2μmを有
する立方晶高融点化合物固溶体粉末と、同1μmの立方
晶窒化硼素粉末と、同1.0μmの焼結助剤金属粉末と
を配合しこれらの配合粉末よシ実施例1におけると同一
の条件で焼結して本発明焼結材料1〜10および比較焼
結材料1〜3をそれぞれ製造した。
Example 2 A solid solution powder of a cubic high-melting point compound having an average particle size of 1.2 μm prepared in advance by a known high-temperature synthesis method so as to have the component composition shown in Table 1, and a cubic crystal high melting point compound solid solution powder having an average particle size of 1 μm Boron nitride powder and sintering aid metal powder of the same 1.0 μm were mixed, and these mixed powders were sintered under the same conditions as in Example 1 to obtain sintered materials 1 to 10 of the present invention and comparative sintered materials. Binder materials 1 to 3 were each produced.

なお、比較焼結材料1〜3は、この発明の範囲から外れ
た成分組成をもつものである。
Note that Comparative Sintered Materials 1 to 3 have compositions that are outside the scope of the present invention.

また、比較の目的で、この発明にかかる立方晶高融点化
合物固溶体粉末とは異った組成(第1表参照)を有する
が、平均粒径は同一にして、同じく高温合成法で調製さ
れた高融点化合物固溶体粉末、TiC粉末、およびTi
N粉末を使用しこれに第1表に示される成分組成をもつ
ように、それぞれ同一平均粒径の立方晶窒化硼素粉末と
必要に応じて焼結助剤金属粉末とを被合−さらに立方晶
窒化硼素粉末を主成分とする配合粉末を用意し、同様に
これらの配合粉末よシ実施例1におけると同一の条件で
焼結して比較焼結材料4〜8をそれぞれ製造した。
For the purpose of comparison, a powder having a different composition (see Table 1) from the cubic high melting point compound solid solution powder according to the present invention but having the same average particle size and prepared by the same high-temperature synthesis method was also prepared. High melting point compound solid solution powder, TiC powder, and Ti
N powder is used, and cubic boron nitride powder of the same average particle size and sintering aid metal powder are added to it so that it has the composition shown in Table 1. Comparative sintered materials 4 to 8 were prepared by preparing blended powders containing boron nitride powder as a main component, and sintering these blended powders under the same conditions as in Example 1, respectively.

この結果得られた本発明焼結材料1〜lOおよび比較焼
結材料1〜8より、実施例1におけると同様に切削工具
を製造し、 被削材:JIS、SNCM−8(HRC:50)、切削
速度:100rrL/min、 送り:0.15朋/ revs 切込み:Q、2mm。
A cutting tool was manufactured in the same manner as in Example 1 from the resulting sintered materials 1 to 1O of the present invention and comparative sintered materials 1 to 8, and the following was carried out: Work material: JIS, SNCM-8 (HRC: 50) , Cutting speed: 100rrL/min, Feed: 0.15mm/revs, Depth of cut: Q, 2mm.

の条件で乾式切削試験を行ない、逃げ面摩耗が0.2朋
に至るまでの切削時間を測定した。
A dry cutting test was conducted under the following conditions, and the cutting time until the flank wear reached 0.2 mm was measured.

この測定結果を第1表に合せて示した。The measurement results are also shown in Table 1.

第1表に示される結果から明らかなように、上記所定の
組成を有する立方晶高融点化合物固溶体を含有するこの
発明の焼結材料は、これを鋼、特に高硬度鋼の切削に使
用した場合にすぐれた切削性能を示すのである。
As is clear from the results shown in Table 1, the sintered material of the present invention containing a solid solution of a cubic high melting point compound having the above-mentioned predetermined composition can be used for cutting steel, especially high-hardness steel. It shows excellent cutting performance.

上述のように、この発明の焼結材料は、鋼、特に高硬度
鋼や、Ni基耐熱合金の切削に要求されるすぐれた靭性
および耐摩耗性を有するのである。
As mentioned above, the sintered material of the present invention has excellent toughness and wear resistance required for cutting steel, especially high-hardness steel, and Ni-based heat-resistant alloy.

Claims (1)

【特許請求の範囲】 1 組成式: (Tim*TansW1−m−n)(C
x#Ny * 01 X ’/ ) Z sただし
m : O−4〜0.8 In : 0.1〜0.5
a x : 0.1〜0.9 、 y : 0.1〜0
.9 、1−x−y : 0.01〜0.5 # Z
: 0.8〜1.0で現わされる立方晶高融点化合物固
溶体=lO〜60容量係、 Al*N15co*FemMn5およびSiのうちの1
種または2種以上からなる焼結助剤金属=0.2〜5容
量係、 立方晶窒化硼素および不可避不純物:残シ、からなるこ
とを特徴とする靭性および耐摩耗性にすぐれた切削工具
用焼結材料。
[Claims] 1 Compositional formula: (Tim*TansW1-m-n) (C
x#Ny*01X'/)ZsHowever, m: O-4~0.8 In: 0.1~0.5
ax: 0.1-0.9, y: 0.1-0
.. 9, 1-x-y: 0.01-0.5 #Z
: Cubic crystal high melting point compound solid solution expressed by 0.8-1.0=lO-60 volume ratio, 1 of Al*N15co*FemMn5 and Si
A sintering aid for cutting tools with excellent toughness and wear resistance, characterized by comprising a sintering aid metal of 0.2 to 5 volumes, cubic boron nitride, and unavoidable impurities: residue. Sintered material.
JP9038178A 1978-07-26 1978-07-26 Sintered material for cutting tools with excellent toughness and wear resistance Expired JPS5929667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038178A JPS5929667B2 (en) 1978-07-26 1978-07-26 Sintered material for cutting tools with excellent toughness and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038178A JPS5929667B2 (en) 1978-07-26 1978-07-26 Sintered material for cutting tools with excellent toughness and wear resistance

Publications (2)

Publication Number Publication Date
JPS5518549A JPS5518549A (en) 1980-02-08
JPS5929667B2 true JPS5929667B2 (en) 1984-07-21

Family

ID=13996983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038178A Expired JPS5929667B2 (en) 1978-07-26 1978-07-26 Sintered material for cutting tools with excellent toughness and wear resistance

Country Status (1)

Country Link
JP (1) JPS5929667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164558U (en) * 1986-03-27 1987-10-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164558U (en) * 1986-03-27 1987-10-19

Also Published As

Publication number Publication date
JPS5518549A (en) 1980-02-08

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
GB2048956A (en) Sintered compact for a machining tool
JP2006315898A (en) Cubic boron nitride sintered compact
JPS627149B2 (en)
JP5045953B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
WO2021079561A1 (en) Cemented carbide and cutting tool comprising same as base material
JPS6132275B2 (en)
JPS5927303B2 (en) Sintered material for cutting tools with toughness and wear resistance
JPS5929667B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JP2502364B2 (en) High hardness sintered body for tools
JPS5929666B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JPS6141873B2 (en)
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS6143312B2 (en)
JPS6137221B2 (en)
JPH0742170B2 (en) Cubic boron nitride based sintered body
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS5843463B2 (en) High hardness sintered body for cutting tools
JPH075384B2 (en) Cubic boron nitride based sintered body
JP2748514B2 (en) High hardness sintered body for tools
JPS60145351A (en) Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production
JPS62877B2 (en)
JPS6160851A (en) High-hardness sintered body for tool and its production
JPS6114110B2 (en)
JPS60131867A (en) High abrasion resistance superhard material