JPS5929654B2 - Strip temperature control method in continuous heat treatment furnace - Google Patents

Strip temperature control method in continuous heat treatment furnace

Info

Publication number
JPS5929654B2
JPS5929654B2 JP3765777A JP3765777A JPS5929654B2 JP S5929654 B2 JPS5929654 B2 JP S5929654B2 JP 3765777 A JP3765777 A JP 3765777A JP 3765777 A JP3765777 A JP 3765777A JP S5929654 B2 JPS5929654 B2 JP S5929654B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
steel plate
value
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3765777A
Other languages
Japanese (ja)
Other versions
JPS53123317A (en
Inventor
倫久 山本
正誠 鎌田
達夫 倉石
直哉 伏見
嘉和 福岡
正治 実川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3765777A priority Critical patent/JPS5929654B2/en
Publication of JPS53123317A publication Critical patent/JPS53123317A/en
Publication of JPS5929654B2 publication Critical patent/JPS5929654B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 この発明&’!、、鋼板ストリップ等の条帯を連続して
処理する連続熱処理炉における条帯温度の制御方法に関
するものである。
[Detailed Description of the Invention] This invention &'! This invention relates to a method for controlling the temperature of a strip in a continuous heat treatment furnace that continuously processes strips such as steel plate strips.

鋼板ストリップを連続して処理する熱処理炉としては、
炉を複数の制御帯に分割し、前記各制御帯毎にその温度
を制御することによって間接的に炉出側の鋼板温度を制
御する方法が一般に知られている。
As a heat treatment furnace that continuously processes steel plate strips,
A generally known method is to divide the furnace into a plurality of control zones and to control the temperature of each of the control zones, thereby indirectly controlling the temperature of the steel sheet at the exit side of the furnace.

そして前記鋼板温度の監視は操作員が行ない、各制御帯
毎の炉温の設定値を必要に応じて変更しており、この作
業は操作員の勘と経験に頼ることが多かった。
The steel plate temperature is monitored by the operator, who changes the furnace temperature set value for each control zone as necessary, and this work often relies on the operator's intuition and experience.

このような作業の自動化、正確化を目指して第1図に連
続熱処理炉における鋼板温度の匍脚装置のブロック図で
示されるように、炉1の出側の鋼板温度の実績値を鋼板
温度計2によって測定し、前記温度計2からの鋼板温度
実績値と鋼板温度目標値との偏差を、比例、積分、微分
動作を組合わせた制御動作をするPID式鋼板温度制御
装置3を介し、さらに、その出力を、制御帯ごとに設け
られた炉温制御装置4へ、カスケード設定する方法が試
みられた。
In order to automate and increase the accuracy of such work, as shown in Fig. 1, which is a block diagram of a steel plate temperature measuring device in a continuous heat treatment furnace, the actual value of the steel plate temperature at the exit side of the furnace 1 is measured using a steel plate thermometer. 2, and the deviation between the actual steel plate temperature value and the target steel plate temperature value from the thermometer 2 is measured via a PID type steel plate temperature control device 3 that performs a control operation that combines proportional, integral, and differential operations, and further , a method of cascading the output to the furnace temperature control device 4 provided for each control zone was attempted.

しかしながら、炉の入側(又は各制御帯の入側)から炉
の出側までの鋼板ストリップのパス長が非常に長く、し
たがって炉温設定値に基づいて各制御帯の炉温か制御さ
れて、これが炉出側の鋼板温度実績値として現われるま
でにかなり大きなむだ時間が生じる結果、鋼板温度を所
定温度(目標温度)に制御することは困難であった。
However, the path length of the steel strip from the inlet side of the furnace (or the inlet side of each control zone) to the outlet side of the furnace is very long, and therefore the furnace temperature of each control zone is controlled based on the furnace temperature set value. As a result, a considerable amount of dead time occurs before this appears as the actual steel plate temperature value on the furnace exit side, making it difficult to control the steel plate temperature to a predetermined temperature (target temperature).

そこで本発明者等は、以上のような問題を解消すべ(研
究を行なった結果、鋼板ストリップのラインスピード、
厚、巾のほか各制御帯においてそれぞれ固有な炉内温度
等に基づいて炉出側の鋼板温度を推定するための熱伝達
モデルがあらかじめ推定できることから、この熱伝達モ
デルと、各制御帯からの炉温実績値及び炉出側の鋼板温
度実績値とに基づいて、前記各制御帯毎の炉温設定値を
修正すれば、前記むだ時間による制御上の困難を克服す
ることができ、したがって常に鋼板温度を目標の所定温
度に制御することができるという知見を得たのである。
Therefore, the inventors of the present invention aimed to solve the above-mentioned problems (as a result of research, the line speed of the steel plate strip,
Since a heat transfer model can be estimated in advance to estimate the temperature of the steel plate on the exit side of the furnace based on the thickness, width, and temperature inside the furnace unique to each control zone, this heat transfer model and the By correcting the furnace temperature set value for each control zone based on the actual value of the furnace temperature and the actual value of the steel plate temperature on the exit side of the furnace, it is possible to overcome the control difficulties caused by the aforementioned dead time. They obtained the knowledge that the steel plate temperature can be controlled to a target predetermined temperature.

この発明は上記知見に基きなされたもので、炉出側の条
帯温度の実績値と目標値との偏差を炉温制御装置に炉温
設定値としてフィードバックする条帯温度制御方法にお
いて、 所定周期毎に、前記炉温及び炉出側の条帯温度の実績値
をサンプルし、 前記炉の熱伝達モデルと、前記サンプル値とに基いて、
前記炉温制御装置の設定値を修正することに特徴を有す
る。
This invention has been made based on the above knowledge, and provides a strip temperature control method in which the deviation between the actual value and the target value of the strip temperature on the furnace exit side is fed back to the furnace temperature control device as the furnace temperature set value. For each time, sample the actual values of the furnace temperature and the strip temperature on the exit side of the furnace, and based on the heat transfer model of the furnace and the sample values,
The present invention is characterized in that a setting value of the furnace temperature control device is corrected.

以下この発明を、実施例により図面を参照しながら説明
する。
The present invention will be explained below by way of examples with reference to the drawings.

第2図はこの発明を適用した連続熱処理炉における鋼板
温度の制御装置のブロック図である。
FIG. 2 is a block diagram of a steel plate temperature control device in a continuous heat treatment furnace to which the present invention is applied.

図示されるように、5は炉、6は前記炉5の出側の鋼板
温度を測定する鋼板温度計、7は前記炉5を複数に分割
して構成した制御帯毎の炉温制御装置であり、前記鋼板
温度計6からの鋼板温度実績値と前記炉温制御装置7か
らの各制御帯の炉温実績値とは、サンプリング装置8に
よって所定時間間隔毎にサンプルされて前記炉温制御装
置1の炉温設定値を設定するための鋼板温度制御装置9
に入力されるようになっている一方、前記鋼板温度制御
装置9には、後述する熱伝達モデルを推定するための鋼
板ストリップの前記炉内ラインスピード、前記ストリッ
プの厚さ、巾等の外部情報10が入力されるようになっ
ている。
As shown in the figure, 5 is a furnace, 6 is a steel plate thermometer that measures the steel plate temperature on the outlet side of the furnace 5, and 7 is a furnace temperature control device for each control zone, which is configured by dividing the furnace 5 into a plurality of parts. The actual steel plate temperature value from the steel plate thermometer 6 and the actual furnace temperature value of each control zone from the furnace temperature control device 7 are sampled at predetermined time intervals by a sampling device 8 and are measured by the furnace temperature control device. Steel plate temperature control device 9 for setting the furnace temperature set value of 1
On the other hand, the steel plate temperature control device 9 receives external information such as the line speed of the steel plate strip in the furnace, the thickness and width of the strip, etc., for estimating a heat transfer model to be described later. 10 is entered.

そして、前記鋼板温度制御装置9において、前記外部情
報10から熱伝達モデルが推定され、この熱伝達モデル
と前記サンプリング装置8からのサンプル値とに基づい
て、前記炉温制御装置7への炉温設定値が炉出側の鋼板
温度の実績値と目標値との偏差が最小になるように修正
されるようになっている。
Then, in the steel plate temperature control device 9, a heat transfer model is estimated from the external information 10, and based on this heat transfer model and the sample value from the sampling device 8, the furnace temperature is sent to the furnace temperature control device 7. The set value is corrected so that the deviation between the actual value and the target value of the temperature of the steel plate on the exit side of the furnace is minimized.

ついで、前記熱伝達モデル、制御帯毎の炉温設定値の修
正方式およびサンプル時間間隔△Tについて説明する。
Next, the heat transfer model, the method of correcting the furnace temperature set value for each control zone, and the sample time interval ΔT will be explained.

■ 熱伝達モデル 熱伝達モデルは、炉の出側の鋼板温度T。■ Heat transfer model The heat transfer model is based on the steel plate temperature T on the exit side of the furnace.

を推定するためのもので、具体的には、 2h(Tz−T)+26a(Tz’−T’)T =ρ・Cp−t−V・−・・・・・・(1)X 〔ただし、ρ:鋼板密度 Cp:鋼板比熱 t:鋼板厚 Vニラインスピード ε:炉と鋼板との間の放射率 り二炉と鋼板との間の対流伝熱係数 σ:ステファンボルツマン定数 Tz:制御帯毎の炉内温度 X:炉内ストリップの炉入側からの 任意の距離(位置)、以下同じ T:炉内のXの位置の鋼板温度〕 で表わされる微分方程式を、炉の入側の鋼板温度Tiを
与えて、ストリップパスの方向に沿って、炉の入側から
炉の出側まで数値的に積分することによって炉の出側の
鋼板温度T。
This is for estimating, specifically, 2h(Tz-T)+26a(Tz'-T')T =ρ・Cp-t-V・−・・・・・・(1)X [However, , ρ: steel plate density Cp: steel plate specific heat t: steel plate thickness V Ni line speed ε: emissivity between the furnace and the steel plate σ: convective heat transfer coefficient between the furnace and the steel plate σ: Stefan Boltzmann constant Tz: control band Temperature inside the furnace at each time Given the temperature Ti, the steel plate temperature T at the exit side of the furnace is determined by numerically integrating it from the entrance side of the furnace to the exit side of the furnace along the direction of the strip path.

が求まる。ただしCpはTに応じて変化させるものとす
る。
is found. However, Cp shall be changed according to T.

ここでεまたはhをパラメータとして変化させることに
よって熱伝達モデルを実際の炉に適応させる条件につい
て説明する。
Here, the conditions for adapting the heat transfer model to an actual furnace by changing ε or h as a parameter will be explained.

すなわち、第1に熱伝達モデル調整用のパラメータの選
択方法について述べると、炉と鋼板との間の熱伝達が主
に放射によるものか対流によるものかを判断して、主要
な一方のみを選択すると共に他方をOとして定める。
In other words, first, the method for selecting parameters for adjusting the heat transfer model is to determine whether the heat transfer between the furnace and the steel plate is mainly due to radiation or convection, and select only one of the major ones. and the other is set as O.

具体的には、ラジアントチューブ方式の加熱炉のように
放射伝熱が主要と考えられる場合にはεをパラメータと
して選択し、またガスW方式の冷却炉のように対流伝熱
が主要と考えられる場合にはhをパラメータとして選択
する。
Specifically, ε is selected as a parameter when radiation heat transfer is considered to be the main factor, such as in a radiant tube heating furnace, and when convective heat transfer is considered to be the main factor, such as in a gas W cooling furnace. In this case, h is selected as a parameter.

さらに、選択した主要なパラメータについては、各変数
の多数組の実績に基づいて最も妥当な値を(1)式から
逆算して予め定めておく。
Furthermore, for the selected main parameters, the most appropriate values are determined in advance by back calculation from equation (1) based on the results of many sets of each variable.

@ 制御帯毎の炉温制御値の修正方式 制御帯毎の炉温制御値の修正は、前記熱伝達モデルをも
とにして行なわれる。
@ Modification method of furnace temperature control value for each control zone Modification of furnace temperature control value for each control zone is performed based on the heat transfer model.

この修正方式を、第3図に示される炉温と鋼板温度との
関係を表わした図で説明する。
This correction method will be explained with reference to a diagram showing the relationship between furnace temperature and steel plate temperature shown in FIG.

図示されるように、横軸は炉の出側鋼板温度を、縦軸は
炉温を表わしており、2本の曲線A、Bは、それぞれ実
績(推定)および熱伝達モデルにおける前記2変数の間
の関係を示しているものである。
As shown in the figure, the horizontal axis represents the steel plate temperature at the exit side of the furnace, and the vertical axis represents the furnace temperature, and the two curves A and B represent the actual (estimated) and two variables in the heat transfer model, respectively. It shows the relationship between

ここで鋼板温度の目標値TRにおける曲線A上の戊すな
わち炉温TzRを求めることが最終目的となるが、曲線
Aは予め未知であるから、熱伝達モデルによる曲線Bか
ら前記炉温TzRを推定する。
Here, the final objective is to find the point on curve A at the target value TR of the steel plate temperature, that is, the furnace temperature TzR, but since curve A is unknown in advance, the furnace temperature TzR is estimated from curve B based on the heat transfer model. do.

まず、現在の炉温(炉温実績値)Tzにおける曲線B上
の点すなわち鋼板温度T1 を求め、ついで、前記鋼板
温度T1 と鋼板温度実績値Tsとの差を、前記鋼板温
度目標値TRに加えて推定鋼板温度T2を求める。
First, find the point on curve B at the current furnace temperature (furnace temperature actual value) Tz, that is, the steel plate temperature T1, and then calculate the difference between the steel plate temperature T1 and the steel plate temperature actual value Ts to the steel plate temperature target value TR. In addition, the estimated steel plate temperature T2 is determined.

そして前記温度T2における曲線B上の点、すなわち推
定炉温設定値T/ZRを求めれば、この設定値T′zR
が熱伝達モデルによる前記炉温T z Hの推定値とな
る。
Then, if the point on the curve B at the temperature T2, that is, the estimated furnace temperature set value T/ZR, is found, this set value T'zR
is the estimated value of the furnace temperature T z H based on the heat transfer model.

このようにしてPID式鋼板温度制御装置等による積分
動作を用いずに炉温制御装置のリセット(修正)を行な
うことができ、したがって炉出側の鋼板温度の実績値と
目標値との偏差に適合した炉温設定値が設定される。
In this way, it is possible to reset (correct) the furnace temperature control device without using the integral operation of a PID type steel plate temperature control device, etc., and therefore the deviation between the actual value and target value of the steel plate temperature on the exit side of the furnace can be adjusted. A suitable furnace temperature setpoint is set.

なお、以上の説明においては、制御帯毎の炉温を、1つ
の変数として扱ったが、実際には制御帯の数の変数とな
る。
In the above explanation, the furnace temperature for each control zone was treated as one variable, but in reality, it is a variable equal to the number of control zones.

したがって、前記推定鋼板温度T2における曲線B上の
点に該当する推定炉温設定値T′zRを求める際には、
(制御帯の数−1)の自由度があるわけであるが、この
ときの制御帯毎の炉温の決め方については、各制御帯ご
との炉温制御装置の設定値の比率を一定にするとか、そ
の炉温パターンを予め定める方法が考えられ、たとえば
、 材料寸法、材料特性、炉入側鋼板温度、炉出側鋼板目標
温度、ライン速度、および各制御帯炉温設定値の比率を
与えて、前記各制御帯炉温の絶対値を計算し、該計算値
で前記各制御帯炉温を設定すればよい。
Therefore, when calculating the estimated furnace temperature setting value T'zR corresponding to the point on the curve B at the estimated steel plate temperature T2,
There is a degree of freedom (number of control zones - 1), but in determining the furnace temperature for each control zone, the ratio of the set values of the furnace temperature control device for each control zone should be kept constant. For example, a method can be considered to predetermine the furnace temperature pattern, for example, by giving the material dimensions, material properties, steel plate temperature on the entrance side, target temperature of the steel plate on the exit side, line speed, and the ratio of the furnace temperature setting values for each control zone. Then, the absolute value of each control zone furnace temperature may be calculated, and each control zone furnace temperature may be set using the calculated value.

○ サンプル時間間隔△T サンプル時間間隔△T&ζ制御帯毎の炉温設定値に基づ
いて炉温か制御されてからこれが炉出側の鋼板温度実績
値として現われるまでの制御上のむだ時間とほぼ等しく
すればよい。
○ Sample time interval △T Sample time interval △T & ζ Almost equal to the control dead time from when the furnace temperature is controlled based on the furnace temperature set value for each control band until this appears as the actual steel plate temperature value on the furnace exit side. Bye.

ここで△Tの算定方式は、たとえば次の式による。Here, the method for calculating ΔT is, for example, based on the following formula.

すなわち、〔ただし、C:調整係数 L:炉内ストリップパス長 Vニライン速度〕 なお、調整係数Cは操業データから実験的に求めること
が可能である。
That is, [where C: adjustment coefficient L: in-furnace strip path length V second line speed] Note that the adjustment coefficient C can be determined experimentally from operational data.

ついで実施例について説明する。Next, examples will be explained.

第4図は本発明による制御量としての炉温実績値を縦軸
に、時間を横軸にとった鋼板温度制御結果の→Uを表わ
す図であり、第5図は同様に比較の目的で従来例として
PID式鋼板温度制御装置による(第1図参照)鋼板温
度制御結果の一例を表わす図である。
FIG. 4 is a diagram showing →U of the steel plate temperature control results with the vertical axis representing the furnace temperature actual value as a control variable according to the present invention and time along the horizontal axis, and FIG. FIG. 2 is a diagram showing an example of a steel plate temperature control result by a PID type steel plate temperature control device (see FIG. 1) as a conventional example.

なお、制御を行なわない場合の、外乱による制御量、す
なわち炉温実績値の変化は、ともに等しく両図中点線に
て示した。
Note that the control amount due to disturbance, that is, the change in the actual furnace temperature value when no control is performed, is shown equally by the dotted line in both figures.

PID式鋼板温度制御装置において、制御量の変化に対
するリセットは、積分動作の機能であるから、ここでは
簡単に積分動作のみの場合を考えた。
In the PID type steel plate temperature control device, resetting in response to changes in the control amount is a function of integral operation, so here we simply considered the case of only integral operation.

第5図において制御量の適度の減衰を考えて、積分時間
Rは R=1.2X△T 〔ただし△T:前記θのサンプル時間間隔(制御上のむ
だ時間)〕 により定めた。
In FIG. 5, in consideration of appropriate attenuation of the controlled variable, the integration time R was determined as follows: R=1.2XΔT [where ΔT: sample time interval of the above-mentioned θ (dead time in control)].

ここでむだ時間△Tのプロセスに、積分調節計を加えた
制御ループの固有周期は、一般に4×△Tとなるから、
制御量の変化はおよそ第5図に示す通りとなる。
Here, the natural period of the control loop that adds the integral controller to the process with dead time △T is generally 4 x △T, so
Changes in the control amount are approximately as shown in FIG.

このように、第4図に示される本発明方法は、第5図の
従来方法に比べて、次の点において優れている。
As described above, the method of the present invention shown in FIG. 4 is superior to the conventional method shown in FIG. 5 in the following points.

すなわち、■ 制御量が目標値に静定するのに要する時
間が短い(外乱による変化の終了から2X△T以内)。
That is, (1) the time required for the controlled variable to settle to the target value is short (within 2XΔT from the end of the change due to disturbance);

■ 制御量の目標値に対する行き過ぎがない。■ The controlled variable does not exceed the target value.

なお、以上の説明は、鋼板ストリップについて行なった
が、本発明は、金属ストリップ、線材、その他の条帯の
連続熱処理炉において適用可能であることは勿論である
Although the above explanation has been made regarding a steel plate strip, it goes without saying that the present invention can be applied to a continuous heat treatment furnace for metal strips, wire rods, and other strips.

以上説明したように、この発明においては、炉出側の条
帯温度の実績値と目標値との偏差が、時間遅れなく解消
でき、高精度の条帯温度制御が行なえる。
As explained above, in the present invention, the deviation between the actual value and the target value of the strip temperature on the furnace exit side can be eliminated without any time delay, and highly accurate strip temperature control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の鋼板温度制御装置のブロック図、第2図
はこの発明を適用した連続熱処理炉における鋼板温度の
制御装置のブロック図、第3図は炉温と炉の出側鋼板温
度との関係を表わした図、第4図は本発明による、およ
び第5図は従来例による制御結果の一例をそれぞれ表わ
す図である。 1.5・・・炉、2,6・・・鋼板温度計、3.・、P
ID式鋼板温度制御装置、4,7・・・炉温制御装置、
8・・・サンプリング装置、9・・・鋼板温度制御装置
、10・・・外部情報。
Fig. 1 is a block diagram of a conventional steel plate temperature control device, Fig. 2 is a block diagram of a steel plate temperature control device in a continuous heat treatment furnace to which the present invention is applied, and Fig. 3 shows the relationship between the furnace temperature and the steel plate temperature at the exit side of the furnace. FIG. 4 is a diagram showing an example of control results according to the present invention, and FIG. 5 is a diagram showing an example of control results according to a conventional example. 1.5...furnace, 2,6...steel plate thermometer, 3.・、P
ID type steel plate temperature control device, 4, 7...Furnace temperature control device,
8... Sampling device, 9... Steel plate temperature control device, 10... External information.

Claims (1)

【特許請求の範囲】 1 炉出側の条帯温度の実績値と目標値との偏差を、炉
温制御装置に炉温設定値としてフィードバックする条帯
温度制御方法において、 所定周期毎に、前記炉温及び炉出側の条帯温度の実績値
をサンプルし、 前記炉の熱伝達モデルと、前記サンプル値とに基いて、
前記炉温設定値を修正することを特徴とする連続熱処理
炉における条帯温度制御方法。
[Scope of Claims] 1. A strip temperature control method in which the deviation between the actual value and the target value of the strip temperature on the furnace exit side is fed back to the furnace temperature control device as a furnace temperature set value, comprising: Sample the actual values of the furnace temperature and the strip temperature on the exit side of the furnace, and based on the heat transfer model of the furnace and the sample values,
A method for controlling a strip temperature in a continuous heat treatment furnace, the method comprising: modifying the furnace temperature setting value.
JP3765777A 1977-04-04 1977-04-04 Strip temperature control method in continuous heat treatment furnace Expired JPS5929654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3765777A JPS5929654B2 (en) 1977-04-04 1977-04-04 Strip temperature control method in continuous heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3765777A JPS5929654B2 (en) 1977-04-04 1977-04-04 Strip temperature control method in continuous heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS53123317A JPS53123317A (en) 1978-10-27
JPS5929654B2 true JPS5929654B2 (en) 1984-07-21

Family

ID=12503703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3765777A Expired JPS5929654B2 (en) 1977-04-04 1977-04-04 Strip temperature control method in continuous heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS5929654B2 (en)

Also Published As

Publication number Publication date
JPS53123317A (en) 1978-10-27

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
EP1681526A2 (en) Temperature control method, temperature control apparatus, heat treatment apparatus and program
JPS5848011B2 (en) Furnace combustion control method
JP2961464B2 (en) Water cooling control method for steel bars and wires
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPS5929654B2 (en) Strip temperature control method in continuous heat treatment furnace
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JPH0525567B2 (en)
JP3046467B2 (en) Heating furnace heating control method
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JPH04168232A (en) Method for controlling temperature of steel strip
JPS6411691B2 (en)
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JPS59288B2 (en) Water cooling control method and device in steel rolling
JPS63171215A (en) Method for controlling rolled stock with water cooling
JPH04193913A (en) Method for controlling heating in continuous heating furnace
JP2005076935A (en) Billet heating furnace and operation method thereof
JP2833461B2 (en) Metal strip temperature control method
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JP2759342B2 (en) Coke oven firing time variation reduction method
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JP2021109990A (en) Plate temperature control method, heating control device and method for producing metal plate
JPH0525555A (en) Method for controlling sheet temperature in heating zone and device therefor of continuous heat-treating line
JPH04246130A (en) Method for controlling flow rate of combustion gas in continuous annealing furnace
JPH03165911A (en) Sheet width controlling method for rolled stock