JPS5929570B2 - Production method of unsaturated carboxylic acid - Google Patents

Production method of unsaturated carboxylic acid

Info

Publication number
JPS5929570B2
JPS5929570B2 JP50031055A JP3105575A JPS5929570B2 JP S5929570 B2 JPS5929570 B2 JP S5929570B2 JP 50031055 A JP50031055 A JP 50031055A JP 3105575 A JP3105575 A JP 3105575A JP S5929570 B2 JPS5929570 B2 JP S5929570B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrolein
gas
reaction
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50031055A
Other languages
Japanese (ja)
Other versions
JPS51108016A (en
Inventor
啓道 石井
英雄 松沢
雅夫 小林
一裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50031055A priority Critical patent/JPS5929570B2/en
Priority to GB7266/76A priority patent/GB1513335A/en
Priority to DE2610249A priority patent/DE2610249C2/en
Priority to NLAANVRAGE7602710,A priority patent/NL186223B/en
Priority to FR7607676A priority patent/FR2304597A1/en
Publication of JPS51108016A publication Critical patent/JPS51108016A/en
Priority to US05/952,111 priority patent/US4985592A/en
Publication of JPS5929570B2 publication Critical patent/JPS5929570B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はアクロレイン又はメタクロレインと酸素を含む
混合ガスを高温の気相で触媒と接触させてアクリル酸又
はメタクリル酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acrylic acid or methacrylic acid by contacting a mixed gas containing acrolein or methacrolein and oxygen with a catalyst in a high temperature gas phase.

アクロレインからアクリル酸を製造する方法に関しては
、P、Mo及びAsから成る触媒を用いる方法(特公昭
38−19260号公報)、Mo、り、W及びシリカか
ら成る触媒を用いる方法(特公昭44−12129号公
報)その他数多く提案されて(・る。
Regarding the method of producing acrylic acid from acrolein, there is a method using a catalyst consisting of P, Mo, and As (Japanese Patent Publication No. 19260/1983), a method using a catalyst consisting of Mo, Ri, W, and silica (Japanese Patent Publication No. 1973-19260), 12129) and many others have been proposed.

またメタクロレインからメタクリル酸を製造する方法に
関してもMo、、Ni及びTiから成る触媒を用いる方
法(特公昭47−6605号公報)その他数多く提案さ
れて〜・る。しかし工業化の見地から選択性、寿命等の
点でいずれも欠点があり、このため工業化が妨げられて
いるのが現状である。本発明者らは、(メタ)アクロレ
インから(メタ)アクリル酸を製造するために用いる触
媒について種々研究した結果、活性、選択性及び寿命の
点で実用性がきわめて高い新規な触媒を見出して本発明
に到達した。
Furthermore, many other methods have been proposed for producing methacrylic acid from methacrolein, including a method using a catalyst consisting of Mo, Ni, and Ti (Japanese Patent Publication No. 47-6605). However, from the standpoint of industrialization, they all have drawbacks in terms of selectivity, lifespan, etc., which currently hinders industrialization. As a result of various studies on catalysts used to produce (meth)acrylic acid from (meth)acrolein, the present inventors discovered a new catalyst that is extremely practical in terms of activity, selectivity, and life. invention has been achieved.

本発明は、アクロレイン又はメタクロレインと分子状酸
素を含む混合ガスを、一般式PaM0bXCYd0e 〔式中Pはリン、Moはモリブデン、oは酸素、Xはカ
リウム、ルビジウム及びセシウムの1種又は2種以上、
Yはロジウム、セリウム及びジルコニウムの1種又は2
種以上(ただし、セリウム又はジルコニウムを含有する
ときは2種以上)、a、b、c、d、eは各成分の原子
比を表わし、a■0.5〜6、b=12、c=0.2〜
6、d ■0.001〜6、eは触媒の酸化状態で定ま
る値である〕で表わされる触媒と高温の気相で接触させ
ることを特徴とする、アクリル酸又はメタクリル酸の製
造法である。
The present invention provides a mixed gas containing acrolein or methacrolein and molecular oxygen according to the general formula PaM0bXCYd0e [where P is phosphorus, Mo is molybdenum, o is oxygen, and X is one or more of potassium, rubidium, and cesium. ,
Y is one or two of rhodium, cerium, and zirconium
species or more (however, two or more species when containing cerium or zirconium), a, b, c, d, e represent the atomic ratio of each component, a■0.5-6, b=12, c= 0.2~
6, d ■ 0.001 to 6, e is a value determined by the oxidation state of the catalyst] is a method for producing acrylic acid or methacrylic acid, which is characterized by bringing it into contact in a high temperature gas phase. .

本発明に用いられる触媒においてリン、モリブデン及び
添加金属の存在状態は複雑であつて厳密には明らかでな
いが、おそらくどの成分も単独の酸化物としては存在せ
ず均密に結合していると思われる。
The state of existence of phosphorus, molybdenum, and additional metals in the catalyst used in the present invention is complex and not strictly clear, but it is likely that none of the components exists as a single oxide but is tightly bound together. It will be done.

本発明に用いられる触媒のリン及び金属元素の原子比は
モリブデンを12としたときリンが0.5〜6、カリウ
ム、ルビジウム及びセシウムの合計が0.2〜6、並び
にロジウム、セリウム及びジルコニウムの合計が0.0
01〜6の範囲である。
The atomic ratio of phosphorus and metal elements in the catalyst used in the present invention is 0.5 to 6 for phosphorus when molybdenum is 12, 0.2 to 6 for potassium, rubidium, and cesium in total, and 0.2 to 6 for phosphorus in total, and 0.2 to 6 in total for potassium, rubidium, and cesium, and 12 for molybdenum. Total is 0.0
The range is from 01 to 6.

本触媒はそのほかタリウムなどの金属元素を含有してい
てもよい。リン及びモリブデンを含む触媒が、アクロレ
イン又はメタクロレインの気相酸化に有効であることは
よく知られているが、リンとモリブデンの混合割合、熱
処理の温度と雰囲気によつて複雑で活性の高い物質を生
成する。
The present catalyst may also contain other metal elements such as thallium. It is well known that catalysts containing phosphorus and molybdenum are effective for gas-phase oxidation of acrolein or methacrolein, but complex and highly active substances may vary depending on the mixing ratio of phosphorus and molybdenum, heat treatment temperature and atmosphere. generate.

本触媒は通常行われる空気中での熱処理によつても優れ
た活性及び選択性が得られる。しかし熱処理の際の雰囲
気が触媒活性に与える影響は大きく、たとえば窒素ガス
、アンモニアガス等の実質的に酸素を含まないガス雰囲
気下で熱処理を施すと驚くべきことに触媒活性が一段と
向上し、しかもその高活性が長時間持続される。熱処理
の際の好ましい雰囲気としてはこの他CO.CO2、炭
化水素類、He.Ar等のガスも用いられる。この活性
向上の原因についての詳細は明らかでないが、リンとモ
リブデンを含む本触媒は空気中で熱処理すると黄緑色を
呈し、本発明方法に使用したのちは濃青色に変色し、リ
ンモリブデン酸塩が若干還元される。
Excellent activity and selectivity can be obtained from this catalyst even by heat treatment in air, which is commonly carried out. However, the atmosphere during heat treatment has a large effect on catalytic activity. For example, when heat treatment is performed in a substantially oxygen-free gas atmosphere such as nitrogen gas or ammonia gas, the catalytic activity is surprisingly improved. Its high activity is maintained for a long time. Other preferred atmospheres for heat treatment include CO. CO2, hydrocarbons, He. Gases such as Ar may also be used. Although the details of the cause of this improvement in activity are not clear, this catalyst containing phosphorus and molybdenum exhibits a yellow-green color when heat-treated in air, and turns dark blue after being used in the method of the present invention, indicating that phosphomolybdate is It will be slightly refunded.

一方空気の代りに窒素ガス中で熱処理すると触媒の色は
一段と還元が進んだ黒縁色を呈し、本発明方法に使用し
たのちは混合ガス中の酸素により若干酸化され濃青色に
戻る。この事実から、リンとモリブデンを含む本発明の
触媒ではリンモリブデン酸塩の半還元型が触媒活性を有
しており、しかも酸化型触媒から半還元型触媒に変性す
るよりも、一段と進んだ還元型触媒から半還元型触媒に
変性する方が触媒活性が大きくなるものと考えられる。
リンとモリブデンを含む触媒を気相酸化に用いると経時
的に触媒構造が変化し、活性及び選択性が低下すること
が多く、反応温度が高いほどこれらの現象が起こりやす
い。
On the other hand, if the catalyst is heat-treated in nitrogen gas instead of air, the color of the catalyst exhibits a black edge color due to further reduction, and after being used in the method of the present invention, it is slightly oxidized by the oxygen in the mixed gas and returns to a deep blue color. From this fact, in the catalyst of the present invention containing phosphorus and molybdenum, the semi-reduced form of phosphomolybdate has catalytic activity, and moreover, the reduction is more advanced than changing from an oxidized catalyst to a semi-reduced catalyst. It is thought that the catalytic activity increases when a type catalyst is modified to a semi-reduced type catalyst.
When a catalyst containing phosphorus and molybdenum is used for gas phase oxidation, the catalyst structure often changes over time, resulting in a decrease in activity and selectivity, and these phenomena are more likely to occur as the reaction temperature is higher.

したがつてたとえば窒素雰囲気下で触媒を熱処理するこ
とにより活性が著しく増加することは、その結果反応温
度を低くでき、触媒寿命を延長することができるので、
実用上意義あることである。本発明に用いられる触媒の
製造方法としては、たとえば蒸発乾固法、沈殿法、酸化
物混合法等を用いることができる。
Therefore, for example, by heat-treating the catalyst under a nitrogen atmosphere, the activity can be significantly increased, as a result of which the reaction temperature can be lowered and the catalyst life can be extended.
This is of practical significance. As a method for producing the catalyst used in the present invention, for example, an evaporation to dryness method, a precipitation method, an oxide mixing method, etc. can be used.

触媒の熱処理温度は300〜600℃が好ましい。熱処
理時間は温度によつて異なるが1時間ないし数十時間が
好ましい。触媒成分はシリカ、アルミナ、シリカアルミ
ナ、シリコンカーバイド等の公知の不活性担体に担持さ
せるか、又はこれで希釈して用いてもよい。本発明を実
施するに際しては、アクロレイン又はメタクロレインと
分子状酸素とを含む混合ガスを、触媒と高温の気相で接
触させる。原料の不飽和アルデヒドは水、低級飽和アル
デヒド等の不純物を少量含んでいてもよい。原料ガス中
の不飽和アルデヒド濃度は広い範囲で変えられるが、1
〜20容量%の範囲が好ましい。原料ガス中の酸素濃度
は不飽和アルデヒドに対するモル比で規定され、このモ
ル比は0.3〜4の範囲が好ましい。原料ガスを窒素、
水蒸気、炭酸ガス等の不活性ガスで希釈してもよい。反
応温度は250〜450℃が好ましく、250〜400
℃が特に有利である。本発明方法によれば、選択性、寿
命等の点で従来法のような欠点がなく、(メタ)アクロ
レインから(メタ)アクリル酸を高い反応率及び選択率
で製造することができる。下記実施例中の部は重量部を
意味する。
The heat treatment temperature of the catalyst is preferably 300 to 600°C. The heat treatment time varies depending on the temperature, but is preferably from one hour to several tens of hours. The catalyst component may be supported on a known inert carrier such as silica, alumina, silica alumina, or silicon carbide, or may be diluted with the carrier. In carrying out the present invention, a mixed gas containing acrolein or methacrolein and molecular oxygen is brought into contact with a catalyst in a high temperature gas phase. The raw material unsaturated aldehyde may contain a small amount of impurities such as water and lower saturated aldehyde. Although the unsaturated aldehyde concentration in the feed gas can be varied within a wide range,
A range of 20% by volume is preferred. The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this molar ratio is preferably in the range of 0.3 to 4. The raw material gas is nitrogen,
It may be diluted with an inert gas such as water vapor or carbon dioxide. The reaction temperature is preferably 250 to 450°C, and 250 to 400°C.
C. is particularly advantageous. According to the method of the present invention, there are no drawbacks of conventional methods in terms of selectivity, lifespan, etc., and (meth)acrylic acid can be produced from (meth)acrolein with high reaction rate and selectivity. Parts in the following examples mean parts by weight.

不飽和カルボン酸選択率は反応した不飽和アルデヒド(
モル)に対する生成した不飽和カルボン酸(モル)の割
合(%)で表わす。実施例 1 パラモリブデン酸アンモニウム42.4部を水85部に
溶解し、これに硝酸セシウム9.75部を水50部に溶
解したものを加え、さらに塩化ロジウム0.56部を固
体のまま加えて溶解したのち85%リン酸4.61部を
加え、混合液を加熱攪拌しながら蒸発乾固した。
The unsaturated carboxylic acid selectivity is the unsaturated aldehyde (
It is expressed as the ratio (%) of the unsaturated carboxylic acid (mol) produced to the unsaturated carboxylic acid (mol). Example 1 42.4 parts of ammonium paramolybdate was dissolved in 85 parts of water, to which was added 9.75 parts of cesium nitrate dissolved in 50 parts of water, and further 0.56 parts of rhodium chloride was added as a solid. After dissolving the mixture, 4.61 parts of 85% phosphoric acid was added, and the mixture was evaporated to dryness while heating and stirring.

残査を130℃で16時間乾燥したのち加圧成形し、破
砕して10〜20メッシュに篩別し、空気流通下に50
0℃で2時間熱処理したものを触媒とした。この触媒の
組成は原子比でP2MOl2CS2.5RhO.lであ
つた。この触媒を反応器に充填し、容量でメタクロレイ
ン5%、酸素10%、水蒸気30%及び窒素55%から
成る混合ガスを、反応温度325℃、接触時間3.6秒
で触媒層に導入した。生成物を捕集しガスクロマトグラ
フイ一により分析したところ、メタクロレイン反応率8
3.4%、メタクリル酸選択率82.4%であつた。ほ
かに酢酸、アセトン、炭酸ガス、一酸化炭素などが生成
した。同一条件で約1600時間反応を継続したところ
メタクロレイン反応率83.0%、メタクリル酸選択率
82.2%であつた。実施例 2 実施例1の触媒製造工程において10〜20メツシユに
篩別したものを、窒素ガス流通下に500℃で2時間熱
処理ム、これを触媒として用いた。
The residue was dried at 130°C for 16 hours, then pressure-molded, crushed, sieved to 10 to 20 mesh, and placed under air circulation to
The catalyst was heat treated at 0°C for 2 hours. The composition of this catalyst is P2MOl2CS2.5RhO. It was l. This catalyst was packed into a reactor, and a mixed gas consisting of 5% methacrolein, 10% oxygen, 30% water vapor, and 55% nitrogen by volume was introduced into the catalyst bed at a reaction temperature of 325°C and a contact time of 3.6 seconds. . When the product was collected and analyzed by gas chromatography, the methacrolein reaction rate was 8.
The selectivity for methacrylic acid was 3.4% and 82.4%. Other substances produced include acetic acid, acetone, carbon dioxide gas, and carbon monoxide. When the reaction was continued for about 1600 hours under the same conditions, the methacrolein reaction rate was 83.0% and the methacrylic acid selectivity was 82.2%. Example 2 The 10 to 20 meshes sieved in the catalyst manufacturing process of Example 1 were heat treated at 500° C. for 2 hours under nitrogen gas flow, and used as a catalyst.

反応温度を295℃としその他は実施例1と同様にして
反応を行つたところ、メタクロレイン反応率82.1%
、メタクリル酸選択率83.1%であつた。
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 295°C, and the methacrolein reaction rate was 82.1%.
, the methacrylic acid selectivity was 83.1%.

同一条件で約1600時間反応を継続したところメタク
ロレイン反応率82.3%、メタクリル酸選択率83.
0%であつた。実施例 3 実施例1の触媒製造工程において10〜20メツシユに
篩別したものを、アンモニアガス流通下に500℃で2
時間熱処理し、これを触媒として用いた。
When the reaction was continued for about 1600 hours under the same conditions, the methacrolein reaction rate was 82.3% and the methacrylic acid selectivity was 83.
It was 0%. Example 3 The material sieved into 10 to 20 meshes in the catalyst manufacturing process of Example 1 was sieved at 500°C under ammonia gas flow for 2 hours.
This was heat treated for a period of time and used as a catalyst.

反応温度を300℃としその他は実施例1と同9様にし
て反応を行つたところ、メタクロレイン反応率82.0
%、メタクリル酸選択率82.5%であつた。
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 300°C, and the methacrolein reaction rate was 82.0.
%, and the methacrylic acid selectivity was 82.5%.

同一条件で約1600時間反応を継続したところメタク
ロレイン反応率82.1%、メタクリル酸選択率83.
0%であつた。5実施例 4〜5 実施例1の硝酸セシウムの代わりにそれぞれ硝酸カリウ
ム5.05部又は硝酸ルビジウム7.38部を用い、そ
の他は実施例1と同様に処理して得られた各触媒を用い
て、第1表に示す反応温度で実つ 施例1と同様にして
反応を行つた。
When the reaction was continued for about 1600 hours under the same conditions, the methacrolein reaction rate was 82.1% and the methacrylic acid selectivity was 83.
It was 0%. 5 Examples 4 to 5 Using each catalyst obtained by using 5.05 parts of potassium nitrate or 7.38 parts of rubidium nitrate in place of cesium nitrate in Example 1, and otherwise treating in the same manner as in Example 1. The reaction was carried out in the same manner as in Example 1 at the reaction temperatures shown in Table 1.

その結果を第1表に示す。実施例 6〜13 実施例1と同様にして得られた第2表に示す各触媒を用
いて、第2表に示す反応温度で実施例1と同様にして反
応を行つた。
The results are shown in Table 1. Examples 6 to 13 Using each catalyst shown in Table 2 obtained in the same manner as in Example 1, a reaction was carried out in the same manner as in Example 1 at the reaction temperature shown in Table 2.

その結果を第2表に示す。実施例 14 実施例1と同じ触媒を用い、容量でアクロレイン5%、
酸素10%、水蒸気30%及び窒素55%から成る混合
ガスを、反応温度335℃、接触時間3.6秒で触媒層
に導入した。
The results are shown in Table 2. Example 14 Using the same catalyst as in Example 1, 5% acrolein by volume,
A mixed gas consisting of 10% oxygen, 30% water vapor and 55% nitrogen was introduced into the catalyst bed at a reaction temperature of 335° C. and a contact time of 3.6 seconds.

生成物を捕集しガスクロマトグラフイ一により分析した
ところアクロレイン反応率90.1%、アクリル酸選択
率91.0%であつた。実施例 15 実施例2と同じ触媒を用いて反応温度を315℃とし、
その他は実施例14と同様に処理したところ、アクロレ
イン反応率91,0%、アクリル酸選択率90.8%で
あつた。
The product was collected and analyzed by gas chromatography, and the acrolein reaction rate was 90.1% and the acrylic acid selectivity was 91.0%. Example 15 Using the same catalyst as in Example 2, the reaction temperature was 315°C,
The rest was treated in the same manner as in Example 14, and the acrolein reaction rate was 91.0% and the acrylic acid selectivity was 90.8%.

Claims (1)

【特許請求の範囲】 1 アクロレイン又はメタクロレインと分子状酸素を含
む混合ガスを、一般式P_aMo_bX_cY_dO_
e 〔式中Pはリン、Moはモリブデン、Oは酸素、Xはカ
リウム、ルビジウム及びセシウムの1種又は2種以上、
Yはロジウム、セリウム及びジルコニウムの1種又は2
種以上(ただし、セリウム又はジルコニウムを含有する
ときは2種以上)、a、b、c、d、eは各成分の原子
比を表わし、a=0.5〜6、b=12、c=0.2〜
6、d=0.001〜6、eは触媒の酸化状態で定まる
値である〕で表わされる触媒と高温の気相で接触させる
ことを特徴とする、アクリル酸又はメタクリル酸の製造
法。
[Claims] 1 A mixed gas containing acrolein or methacrolein and molecular oxygen is expressed by the general formula P_aMo_bX_cY_dO_
e [In the formula, P is phosphorus, Mo is molybdenum, O is oxygen, and X is one or more of potassium, rubidium, and cesium,
Y is one or two of rhodium, cerium, and zirconium
species or more (however, two or more species when containing cerium or zirconium), a, b, c, d, e represent the atomic ratio of each component, a = 0.5 to 6, b = 12, c = 0.2~
6, d=0.001 to 6, e is a value determined by the oxidation state of the catalyst] A method for producing acrylic acid or methacrylic acid, which is characterized by contacting the acrylic acid or methacrylic acid in a high temperature gas phase.
JP50031055A 1975-03-17 1975-03-17 Production method of unsaturated carboxylic acid Expired JPS5929570B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP50031055A JPS5929570B2 (en) 1975-03-17 1975-03-17 Production method of unsaturated carboxylic acid
GB7266/76A GB1513335A (en) 1975-03-17 1976-02-24 Process and a catalyst for the preparation of unsaturated carboxylic acid
DE2610249A DE2610249C2 (en) 1975-03-17 1976-03-11 Process for the production of acrylic acid or methacrylic acid
NLAANVRAGE7602710,A NL186223B (en) 1975-03-17 1976-03-16 METHOD FOR PREPARING UNSATURATED CARBONIC ACIDS AND THE CATALYST PARTICLES TO BE USED THEREIN
FR7607676A FR2304597A1 (en) 1975-03-17 1976-03-17 PROCESS FOR THE PREPARATION OF UNSATURATED CARBOXYLIC ACIDS
US05/952,111 US4985592A (en) 1975-03-17 1978-10-17 Process for the preparation of unsaturated carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50031055A JPS5929570B2 (en) 1975-03-17 1975-03-17 Production method of unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPS51108016A JPS51108016A (en) 1976-09-25
JPS5929570B2 true JPS5929570B2 (en) 1984-07-21

Family

ID=12320787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50031055A Expired JPS5929570B2 (en) 1975-03-17 1975-03-17 Production method of unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPS5929570B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257117A (en) * 1975-11-07 1977-05-11 Asahi Glass Co Ltd Process for methacrylic acid
TW349033B (en) * 1994-05-31 1999-01-01 Nippon Catalytic Chem Ind Catalyst for production of methacrylic acid and method for production of methacrylic acid by the use of the catalysta catalyst for the production of methacrylic acid by the vapor-phase catalytic oxidation and/or oxidative dehydrogenation of at least one compound

Also Published As

Publication number Publication date
JPS51108016A (en) 1976-09-25

Similar Documents

Publication Publication Date Title
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPH11319562A (en) Method for regenerating molybdenum-containing oxide fluidizerd bed catalyst
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP3101821B2 (en) Preparation of catalyst for methacrylic acid production
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
EP0454376A1 (en) Process for preparing catalysts for producing methacrylic acid
JPH10237011A (en) Production of acrylic acid from acrolein by redox reaction and use of solid oxide mixture composition as oxidation-reduction system for the reaction
JPH0791212B2 (en) Method for producing methacrylic acid
JPS5929570B2 (en) Production method of unsaturated carboxylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3186243B2 (en) Preparation of catalyst for methacrylic acid production
EP0543019A1 (en) Process for preparing catalyst for producing methacrylic acid
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP2614089B2 (en) Acrolein production method
JPH0538433A (en) Preparation of catalyst for producing acrylic acid
KR100995258B1 (en) Method for reactivating catalyst for methacrylic acid preparation
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH03167152A (en) Production of methacrylic acid
JPH11226412A (en) Production of catalyst for production of methacrylic acid and production of methacrylic acid
JPH064559B2 (en) Method for producing methacrylic acid
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid
US3670017A (en) Production of unsaturated aliphatic acids
JPS5839138B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
JP2899634B2 (en) Method for producing ethylene