JPS5929179B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid

Info

Publication number
JPS5929179B2
JPS5929179B2 JP52145663A JP14566377A JPS5929179B2 JP S5929179 B2 JPS5929179 B2 JP S5929179B2 JP 52145663 A JP52145663 A JP 52145663A JP 14566377 A JP14566377 A JP 14566377A JP S5929179 B2 JPS5929179 B2 JP S5929179B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methacrylic acid
catalysts
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52145663A
Other languages
Japanese (ja)
Other versions
JPS53111009A (en
Inventor
信一 秋山
陽久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP52145663A priority Critical patent/JPS5929179B2/en
Publication of JPS53111009A publication Critical patent/JPS53111009A/en
Publication of JPS5929179B2 publication Critical patent/JPS5929179B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、不飽和アルデヒドのうちでも特にメタクロレ
インを、触媒の存在下で気相接触酸化反応せしめ対応す
るメタクリル酸を製造するに際し、触媒としてメタクリ
ル酸の生成活性に優れ且つ活性寿命の長い触媒を使用す
ることを特徴とするメタクリル酸の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims at producing methacrylic acid by producing the corresponding methacrylic acid by subjecting unsaturated aldehydes, especially methacrolein, to a gas phase catalytic oxidation reaction in the presence of a catalyst. The present invention relates to a method for producing methacrylic acid characterized by using a catalyst having excellent properties and a long active life.

従来、不飽和アルデヒドの気相接触酸化反応用触媒に関
して提案された特許は、主にアクロレインからアクリル
酸を製造する方法を重点とするものであり、メタクロレ
インからメタクリル酸を製造する方法を重点としたもの
は少ない。実際にアクロレイン酸化に良好な成績を示す
触媒をメタクロレイン酸化に適用しても、活性の低いも
のが多く、一方全反応率を高めるために高温で反応せし
めると完全酸化反応(Co、CO2の生成)等の副反応
が著しく生起しメタクリル酸の(一回通過当りの)収率
、選択率は低い。他方、メタクロレインの酸化触媒とし
て提案されているものも、活性が低いか、あるいはとり
うる反応条件、特に反応時間を長くしたり及び/又は供
給原料ガス中のメタクロレイン濃度を小さくしなければ
ならないために生産性(空時収率:STY)が低すぎた
り、もしくは触媒の活性寿命が短い等の理由から工業的
に不適であり必ずしも満足し得るも〜のではない。この
様な事情のため、アクロレインの酸化によるアクリル酸
の製造が工業的に実施されているにも拘らず、メタクロ
レインの酸化によるメタクリル酸の製造を工業的に実施
することはかなり困難であるとされている。従つて、メ
タクロレインの酸化に有効な触媒の探索に当つては、ア
クロレインの酸化触媒とは異なつた視点より研究する必
要がある。本発明者等は、メタクロレインの酸化触媒に
おける従来の欠点を改良し、触媒活性(即ち、目的生成
物の収率、選択率及び生産性)に優れ牽と共に、触媒の
活性寿命の長い新規触媒を探索する目的で鋭意研究を行
なつた結果、下記の触媒が極めて有効であることを見い
出し、本発明を完成するに至つた。
Until now, patents proposed regarding catalysts for gas-phase catalytic oxidation reactions of unsaturated aldehydes have mainly focused on methods for producing acrylic acid from acrolein, and patents have focused on methods for producing methacrylic acid from methacrolein. There are few that did. Even when catalysts that actually show good results in acrolein oxidation are applied to methacrolein oxidation, many of them have low activity.On the other hand, if the reaction is carried out at high temperature to increase the total reaction rate, complete oxidation reaction (co, CO2 production) ) and other side reactions occur significantly, resulting in low yield and selectivity of methacrylic acid (per single pass). On the other hand, proposed oxidation catalysts for methacrolein either have low activity or require lower possible reaction conditions, in particular longer reaction times and/or lower methacrolein concentrations in the feed gas. Therefore, the productivity (space-time yield: STY) is too low or the active life of the catalyst is short, making it industrially unsuitable and not necessarily satisfactory. Due to these circumstances, although the production of acrylic acid by the oxidation of acrolein is carried out industrially, it is quite difficult to produce methacrylic acid by the oxidation of methacrolein. has been done. Therefore, in searching for a catalyst effective for oxidizing methacrolein, it is necessary to conduct research from a different perspective from that for the oxidation catalyst of acrolein. The present inventors have improved the conventional drawbacks of methacrolein oxidation catalysts, and have developed a new catalyst that has excellent catalytic activity (i.e., yield, selectivity, and productivity of the desired product) and has a long active life. As a result of conducting intensive research for the purpose of searching for the following, the following catalyst was found to be extremely effective, leading to the completion of the present invention.

即ち本発明は、メタクロレインと分子状酸素とを含む混
合気体を、式M0aPbVcXdOe で示される触媒の存在下で気相酸化することを特徴とす
るメタクリル酸の製造方法を提供するものである。
That is, the present invention provides a method for producing methacrylic acid, which is characterized in that a gaseous mixture containing methacrolein and molecular oxygen is oxidized in the gas phase in the presence of a catalyst represented by the formula M0aPbVcXdOe.

土式において、XはK.Rb.Cs,.Tlよりなる群
から選ばれる少くとも一種の金属(但し、カリウム単独
の場合を除く)であり、A.b.c、d及びeは、それ
ぞれ各元素の原子数を示し、a=12としたときのa:
b:c:dの値は、12:0.1〜8:0.1〜8:0
.1〜8が好ましく、更に12:0.3〜5:0.3〜
5:0.3〜5が好適であり、eはMO.P.V.Xの
原子価を満足するに足る酸素の原子数である。本発明の
触媒によれば、実用的な反応条件でかつ安定した反応に
よつて、メタクロレインからメタクリル酸が高収率、高
選択率で且つ生産性よく得られ、更に、従来の触媒では
未解決であつた活性寿命の問題が解決され、長期に亘つ
て優れた触媒活性を示すので、長期間の連続反応を行な
うことができる。
In the earth style, X is K. Rb. Cs,. At least one metal selected from the group consisting of Tl (excluding the case of potassium alone); b. c, d and e each indicate the number of atoms of each element, and when a=12, a:
The value of b:c:d is 12:0.1~8:0.1~8:0
.. 1 to 8 are preferred, and more preferably 12:0.3 to 5:0.3
5:0.3-5 is suitable, and e is MO. P. V. This is the number of oxygen atoms sufficient to satisfy the valence of X. According to the catalyst of the present invention, methacrylic acid can be obtained from methacrolein in high yield, high selectivity, and with good productivity through a stable reaction under practical reaction conditions. The problem of active life has been solved, and since the catalyst exhibits excellent catalytic activity over a long period of time, continuous reactions can be carried out for a long period of time.

また、従来の触媒は一般に触媒の調製条件が微妙で且つ
煩雑な操作を必要とし、このため触媒の再現性に難点が
あるが、本発明の触媒は調製条件が簡略であり、常に良
好な活性の触媒が得られる。
In addition, conventional catalysts generally have delicate catalyst preparation conditions and require complicated operations, which makes it difficult to reproduce the catalyst, but the catalyst of the present invention has simple preparation conditions and always has good activity. of catalyst is obtained.

本発明の方法に使用される触媒の調製にあたつては、こ
の分野で公知のいわゆる蒸発乾固法、共沈法等によつて
調製することができる。触媒の調製に用いられる各元素
の原料物質としては、各元素のアンモニウム塩、硝酸塩
、ハロゲン化物等の塩類、遊離酸、酸無水物、縮合酸、
酸化物あるいはリンモリブデン酸等のモリブデンを含む
ヘテロポリ酸、又はそのアンモニウム塩等のヘテロポリ
酸塩等を挙げることができる。好ましい触媒調製法とし
ては、本発明触媒を構成する成分が、ヘテロポリ酸ある
いはその酸性塩もしくはアンモニウム塩の如く、錯化合
物を形成しうるように触媒を調製することが好ましい。
触媒組成物は、使用前に250〜700℃、好ましくは
350〜600℃の温度で、空気中または還元雰囲気中
または原料組成ガス中において、数時間ないしは数十時
間焼成したのち、触媒として使用される。
The catalyst used in the method of the present invention can be prepared by the so-called evaporation to dryness method, coprecipitation method, etc. known in this field. Raw materials for each element used in the preparation of the catalyst include salts such as ammonium salts, nitrates, and halides of each element, free acids, acid anhydrides, condensed acids,
Examples include oxides, heteropolyacids containing molybdenum such as phosphomolybdic acid, and heteropolyacid salts such as ammonium salts thereof. As a preferred method for preparing the catalyst, it is preferable to prepare the catalyst so that the components constituting the catalyst of the present invention can form a complex compound such as a heteropolyacid or its acid salt or ammonium salt.
Before use, the catalyst composition is calcined at a temperature of 250 to 700°C, preferably 350 to 600°C, in air, in a reducing atmosphere, or in a raw material composition gas for several hours to several tens of hours, and then used as a catalyst. Ru.

なお反応中、触媒が触媒作用を呈しつつある状態におけ
る触媒中の酸素をも含めた各元素の存在状態は明らかで
ない。こXで、触媒調製法の一例を示すと、モリブデン
酸アンモニウ煉※ムを含む水溶液にバナジウム化合物を
含む水溶液を加えて混合し、更にリン酸を含む水溶液及
びX元素の水溶性化合物を含む水溶液を加え攪拌しなが
ら蒸発乾固し、これを焼成し、粉砕し、次に適当な形状
に成型して触媒とする。触媒の調製方法は当業者が必要
に応じ選択しうる。触媒はそのままでも使用できるが、
適当な担体上に付着せしめても使用することができる。
Note that during the reaction, the state of existence of each element, including oxygen, in the catalyst in a state in which the catalyst is exhibiting catalytic action is not clear. Here, an example of a catalyst preparation method is shown by adding and mixing an aqueous solution containing a vanadium compound to an aqueous solution containing ammonium molybdate brick*, and then adding an aqueous solution containing phosphoric acid and an aqueous solution containing a water-soluble compound of element X. is added and evaporated to dryness with stirring, then calcined, pulverized, and then molded into a suitable shape to form a catalyst. A method for preparing the catalyst can be selected as necessary by those skilled in the art. Although the catalyst can be used as is,
It can also be used by depositing it on a suitable carrier.

担体としては、例えばシリコーンカーバイト、シリカ、
つ アルフアアルミナ、耐火物、グラフアイト、チタニ
ア等の公知のものが挙げられる。本発明の方法に使用さ
れる分子状酸素源としては、勿論酸素を単独で使用する
ことができるが、工業的には空気が実用的である。
Examples of carriers include silicone carbide, silica,
Known materials such as alpha alumina, refractories, graphite, and titania can be mentioned. As the molecular oxygen source used in the method of the present invention, oxygen can of course be used alone, but air is industrially practical.

また、稀釈剤と5して反応に影響を及ぼさないガス、例
えば水蒸気、窒素、二酸化炭素、ヘリウム、アルゴン、
飽和炭化水素(例えばメタン、エタン、プロパン、ブタ
ン、ペンタン等)等を反応系に導入しても良い。原料ガ
ス中のメタクロレインの濃度は1〜25容フ量%の範囲
が好ましく、またメタクロレインと酸素の比は1:0.
1〜25.01好ましくは1:0.1〜20.0の範囲
が適当である。反応温度は、300〜500℃、好まし
くは330〜450℃であり、また反応の接触時間(0
℃、1気圧基準)τは0.1〜20秒、好ましくは0.
1〜15秒の範囲が好ましい成績を与える。本発明の方
法に於ては、反応圧力は特に重要な因子ではなく、高い
圧力でも操作し得るが、大気圧或いは大気圧よりやや高
い圧力で操作することによつて充分良好な結果を得るこ
とができる。
In addition, gases that do not affect the reaction as diluents, such as water vapor, nitrogen, carbon dioxide, helium, argon,
Saturated hydrocarbons (eg, methane, ethane, propane, butane, pentane, etc.) may be introduced into the reaction system. The concentration of methacrolein in the raw material gas is preferably in the range of 1 to 25% by volume, and the ratio of methacrolein to oxygen is 1:0.
A suitable range is 1 to 25.01, preferably 1:0.1 to 20.0. The reaction temperature is 300-500°C, preferably 330-450°C, and the contact time of the reaction (0
℃, 1 atm) τ is 0.1 to 20 seconds, preferably 0.
A range of 1 to 15 seconds gives favorable results. In the method of the present invention, the reaction pressure is not a particularly important factor, and the reaction can be operated at high pressures, but sufficiently good results can be obtained by operating at atmospheric pressure or a pressure slightly higher than atmospheric pressure. I can do it.

反応装置は、固定床、流動床、移動床等を採用すること
ができる。また反応生成物は、既知の一般的な方法によ
つて採取することができる。例えば、希望する不飽和カ
ルボン酸を分離捕集するためには、凝縮器によつて凝縮
液化して集める方法、溶剤によつて捕集する方法等が用
いられる。以下に実施例によつて本発明を具体的に説明
するが、実施例中のメタクロレインの転化率、メタクリ
ル酸の収率および選択率の定義は、次の通りである。
A fixed bed, fluidized bed, moving bed, etc. can be employed as the reaction apparatus. Moreover, the reaction product can be collected by known general methods. For example, in order to separate and collect the desired unsaturated carboxylic acid, a method of condensing and collecting it in a condenser, a method of collecting it with a solvent, etc. are used. The present invention will be specifically explained below with reference to Examples, and the definitions of the conversion rate of methacrolein, the yield of methacrylic acid, and the selectivity in the Examples are as follows.

なお分析はすべてガスクロマトグラフによつた。実施例
1 モリブデン酸アンモニウム212yを300m1の水に
加温溶解し、これにメタバナジン酸アンモニウム23.
4yを予め35.1yのシユウ酸を溶解した200m1
の温水溶液に溶解して加え攪拌する。
All analyzes were conducted using a gas chromatograph. Example 1 Ammonium molybdate 212y was dissolved in 300 ml of water under heating, and ammonium metavanadate 23.
200ml of 4y dissolved in 35.1y of oxalic acid in advance
Dissolve in a warm aqueous solution and stir.

これに更に、85%リン酸237を50m1の水に溶解
した水溶液と硝酸セシウム39.07を200m1の水
に加熱溶解した水溶液とを加え、撹拌しながら蒸発乾固
する。得られた組成物は430℃に保つたマツフル炉内
で16時間焼成した後粉砕し、4〜8メツシユに篩別し
て触媒とする。かくして得られた触媒組成物中のM。:
P:Cs:Vの原子比は、12:2:2:1である。同
様にして硝酸セシウムに代えて硝酸ルビジウム29.5
7、及び硝酸タリウム53.3yをそれぞれ用いて、第
1表に示す触媒を調製した。
Further, an aqueous solution in which 85% phosphoric acid 237 was dissolved in 50 ml of water and an aqueous solution in which cesium nitrate 39.07 was dissolved in 200 ml of water by heating were added, and the mixture was evaporated to dryness while stirring. The obtained composition is calcined for 16 hours in a Matsufuru furnace kept at 430°C, then pulverized and sieved into 4 to 8 meshes to form a catalyst. M in the catalyst composition thus obtained. :
The atomic ratio of P:Cs:V is 12:2:2:1. Similarly, instead of cesium nitrate, rubidium nitrate 29.5
The catalysts shown in Table 1 were prepared using 53.3y of thallium nitrate and 53.3y of thallium nitrate.

また比※〈較例として、同様にして第1表に示す触媒を
調製した。但し比較触媒の中、V成分を含まない触媒の
焼成温度は450℃とした。さらにリン酸の代りにクロ
ム酸アンモニウム、硝酸第二鉄、硝酸ニツケル、硝酸セ
リウムまたは硝酸ジルコニウムをそれぞれ使用した触媒
を調製し、P成分を含む触媒とP成分を含まない触媒と
の性能の比較を行つた。
In addition, as a comparative example, catalysts shown in Table 1 were prepared in the same manner. However, among the comparative catalysts, the firing temperature of the catalyst containing no V component was 450°C. Furthermore, we prepared catalysts using ammonium chromate, ferric nitrate, nickel nitrate, cerium nitrate, or zirconium nitrate in place of phosphoric acid, and compared the performance of catalysts containing P components and catalysts not containing P components. I went.

次に、触媒100m1を内径2.501rL、長さ60
cTrLのステンレス製反応管に充填し、金属浴で加熱
し、メタクロレイン:02:N2:H2O−1:1.5
:17.5:10(モル比)なる組成の原料ガスを接触
時間1.8秒(0℃、1気圧基準)で通し反応させた。
Next, 100 m1 of the catalyst has an inner diameter of 2.501 rL and a length of 60 m.
Fill a stainless steel reaction tube with cTrL, heat in a metal bath, and mix methacrolein:02:N2:H2O-1:1.5.
:17.5:10 (molar ratio) of raw material gas was passed through the reactor for a contact time of 1.8 seconds (0° C., 1 atm standard) to react.

得られた結果を第1表に示す。反応温度は、良い成績を
示した時の触媒層の最高温度である(以下同じ)。この
結果から、アルカリ金属ではあつてもルビジウムやセシ
ウム成分の代りにナトリウム成分を含む触媒の場合は性
能が著しく劣つており、またカリウム成分を含む場合に
はモリブデン、リン、バナジウムの三元素に比較すると
はるかに優れた性能を示すものの、ルビジウムやセシウ
ム成分を含む触媒には及ばないことがわかる。
The results obtained are shown in Table 1. The reaction temperature is the highest temperature of the catalyst layer when good results were obtained (the same applies hereinafter). These results show that even with alkali metals, catalysts that contain sodium components instead of rubidium or cesium have significantly inferior performance, and catalysts that contain potassium components have significantly lower performance compared to the three elements of molybdenum, phosphorus, and vanadium. The results show that although the catalyst exhibits far superior performance, it is not as good as catalysts containing rubidium and cesium components.

さらにリン成分の代りにクロム、鉄、ニツケル、セリウ
ムまたはジルコニウム成分を含む触媒が従来からアク9
リル酸製造用触媒として知られているが、これらの触媒
も著しく性能が劣り、メタクリル酸製造用の触媒として
は実用に供しえないことがわかる。実施例 2実施例1
と同様にして第2表に示す触媒を調製5し、且実施例1
と同様の条件下で反応を行つた。
Furthermore, catalysts containing chromium, iron, nickel, cerium, or zirconium components instead of phosphorus components have conventionally been used to
Although these catalysts are known as catalysts for producing methacrylic acid, these catalysts also have extremely poor performance and are found to be unsuitable for practical use as catalysts for producing methacrylic acid. Example 2 Example 1
The catalysts shown in Table 2 were prepared in the same manner as in Example 1.
The reaction was carried out under the same conditions.

得られた結果を第2表に示す。実施例 3 実施例1に記載した触媒を使用して長時間連続反応を行
つた例を第3表に示す。
The results obtained are shown in Table 2. Example 3 Table 3 shows an example in which a long-term continuous reaction was carried out using the catalyst described in Example 1.

反応条件は実施例1と同様である。尚、本反応では、浴
温を一定にして行つた。第3表より、本発明触媒は長期
間経過した時点においてもその触媒活性は殆んど低下せ
ず、従つて触媒寿命の長い触媒であることがわかる。
The reaction conditions are the same as in Example 1. In this reaction, the bath temperature was kept constant. From Table 3, it can be seen that the catalytic activity of the catalyst of the present invention hardly decreases even after a long period of time, and therefore it is a catalyst with a long catalyst life.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクロレインと分子状酸素とを含む混合気体を、
(1)モリブデン、(2)リン、(3)バナジウム、(
4)カリウム、ルビジウム、セシウム及びタリウムより
なる群から選ばれる少くとも一種の金属(但し、カリウ
ム単独の場合を除く)、及び(5)酸素から成る触媒の
存在下で気相接触反応せしめることを特徴とするメタク
リル酸の製造方法。
1 A mixed gas containing methacrolein and molecular oxygen,
(1) Molybdenum, (2) Phosphorus, (3) Vanadium, (
4) at least one metal selected from the group consisting of potassium, rubidium, cesium, and thallium (however, excluding the case of potassium alone); and (5) carrying out a gas phase catalytic reaction in the presence of a catalyst consisting of oxygen. Characteristic method for producing methacrylic acid.
JP52145663A 1977-12-06 1977-12-06 Method for producing methacrylic acid Expired JPS5929179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52145663A JPS5929179B2 (en) 1977-12-06 1977-12-06 Method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52145663A JPS5929179B2 (en) 1977-12-06 1977-12-06 Method for producing methacrylic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13132573A Division JPS5523815B2 (en) 1973-11-22 1973-11-22

Publications (2)

Publication Number Publication Date
JPS53111009A JPS53111009A (en) 1978-09-28
JPS5929179B2 true JPS5929179B2 (en) 1984-07-18

Family

ID=15390205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52145663A Expired JPS5929179B2 (en) 1977-12-06 1977-12-06 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JPS5929179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617956U (en) * 1984-06-16 1986-01-18 株式会社 増田製作所 Breeding hydrant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617956U (en) * 1984-06-16 1986-01-18 株式会社 増田製作所 Breeding hydrant

Also Published As

Publication number Publication date
JPS53111009A (en) 1978-09-28

Similar Documents

Publication Publication Date Title
US3976688A (en) Process for preparing unsaturated carboxylic acids
JPS5945415B2 (en) Olefin oxidation catalyst
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JP2934222B2 (en) Method for producing acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in the reaction
US3795703A (en) Process for preparing unsaturated carboxylic acids
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5826329B2 (en) Seizouhou
US4209640A (en) Catalysts for the oxidation of unsaturated aldehydes
US4245118A (en) Oxidation of unsaturated aldehydes
US3845120A (en) Production of acrylic acid by oxidation of acrolein
JPH10237011A (en) Production of acrylic acid from acrolein by redox reaction and use of solid oxide mixture composition as oxidation-reduction system for the reaction
JP2010260793A (en) Catalyst for oxidative dehydrogenation of alkane, method for producing the catalyst, and method for producing unsaturated hydrocarbon compound and/or oxygen-containing hydrocarbon compound with the catalyst, or method for producing unsaturated acid
JPS5929179B2 (en) Method for producing methacrylic acid
JPS582933B2 (en) Methacrylic Sanno Seizouhouhou
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPS584696B2 (en) Method for producing unsaturated carboxylic acid
JPS584697B2 (en) Production method of unsaturated carboxylic acid
JPS6132299B2 (en)
JPS606340B2 (en) Method for producing methacrylic acid
JP3817374B2 (en) Process for producing unsaturated carboxylic acid
JPS581095B2 (en) Fuhouwa Carbon Sanno Seizouhou
JPS5829290B2 (en) Method for producing unsaturated carboxylic acid
JPS6357415B2 (en)
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou