JPS5929129B2 - transformer winding - Google Patents
transformer windingInfo
- Publication number
- JPS5929129B2 JPS5929129B2 JP53119386A JP11938678A JPS5929129B2 JP S5929129 B2 JPS5929129 B2 JP S5929129B2 JP 53119386 A JP53119386 A JP 53119386A JP 11938678 A JP11938678 A JP 11938678A JP S5929129 B2 JPS5929129 B2 JP S5929129B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- layer
- tap
- conductors
- outer diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Coils Of Transformers For General Uses (AREA)
Description
【発明の詳細な説明】 本発明は、変圧器巻線の改良に関するものである。[Detailed description of the invention] The present invention relates to improvements in transformer windings.
一般に、中圧の電圧を一定に保ち、高圧の電圧のみ切換
える方式の単巻変圧器の単相結線図は第1図の如く構成
されており、直列巻線21の一端は高圧線路端子Uに接
続され他端はタップ巻線22を経て中圧線路端子u及び
分路巻線23の一端に接続され、分路巻線23の他端は
中性点端子りに接続されている。Generally, the single-phase wiring diagram of an autotransformer that maintains the medium voltage constant and switches only the high voltage is configured as shown in Figure 1, with one end of the series winding 21 connected to the high voltage line terminal U. The other end of the shunt winding 23 is connected to the intermediate voltage line terminal u and one end of the shunt winding 23 via the tap winding 22, and the other end of the shunt winding 23 is connected to the neutral point terminal.
12から18はタップ巻線22に設ける口出し24は三
次巻線でa、bは三J 次端子である。The openings 24 provided in the tap winding 22 are tertiary windings 12 to 18, and a and b are tertiary J-order terminals.
この方式の場合、電圧の切換え範囲が±10%と仮定す
ると、タップ巻線22の切換容量は、単巻変圧器のため
、直列巻線21の約20%となる。In the case of this system, assuming that the voltage switching range is ±10%, the switching capacity of the tap winding 22 is approximately 20% of that of the series winding 21 because it is an autotransformer.
その結果、タップ巻線22を直列巻線21に隣接− し
て配置すると、送電電圧が500kVや400kVの超
高電圧のとき、これに対応する衝撃試験電圧は周知の如
くそれぞれ1550kV、1425kVと設定されてい
るから、高圧線路端子Uより侵入する衝撃試験電圧の3
0%〜40%がタツプ巻線22に移行するため、この移
行電圧に耐えるようにタツプ巻線22やタツプ切換器の
絶縁を強化する必要が生じる。このため欠点を改善する
ため、一般には第2図に示すように、鉄心20側から三
次巻線24、タツプ巻線22、分路巻線23、直列巻回
し、タツプ巻線22への移行電圧を抑制している。一方
、中圧線路端子uの電圧も近年の送電電圧の超高圧化に
伴い、275kVや220kVとなつているため、それ
らの対応する衝撃試験電圧は1050kV1900kと
なつているから、移行電圧を抑制する第2図の構造だけ
では十分とは云えず、上述した絶縁強化も行なわなけれ
ばならなくなつている。As a result, when the tap winding 22 is placed adjacent to the series winding 21, when the transmission voltage is an ultra-high voltage of 500 kV or 400 kV, the corresponding shock test voltages are set to 1550 kV and 1425 kV, respectively, as is well known. 3 of the shock test voltage entering from the high voltage line terminal U.
Since 0% to 40% is transferred to the tap winding 22, it is necessary to strengthen the insulation of the tap winding 22 and the tap changer to withstand this transition voltage. Therefore, in order to improve this drawback, generally, as shown in FIG. is suppressed. On the other hand, as the voltage of medium-voltage line terminal u has become 275 kV and 220 kV due to the ultra-high voltage of power transmission in recent years, the corresponding shock test voltage is 1050 kV and 1900 kV, so it is necessary to suppress the transition voltage. The structure shown in FIG. 2 alone is no longer sufficient, and it is becoming necessary to also strengthen the insulation as described above.
また、第3図に示される如く、タツプ巻線22からは上
部に口出し12,13,14,15,16,17が引き
出され、また下部からは13A,14A,15A,16
7A,17A,18が引き出されるため、それらp出し
リード線の成/形や絶縁に膨大な作き呼朋秀要する欠点
がある〇この?策とtて、第4図、第5図に示す如く、
鉄心iより同心状に内径側より、三次巻線24、夕2ツ
プ巻線22、分路巻線23、直列巻線21の順に巻回し
、タツプ巻線22は上部より内径側層が巻回され、下端
にて折返し更に上部まで外径側層が巻回される構造より
なるが、これを第6図により詳細に説明する。Further, as shown in FIG. 3, openings 12, 13, 14, 15, 16, 17 are pulled out from the upper part of the tap winding 22, and openings 13A, 14A, 15A, 16 are pulled out from the lower part.
Since 7A, 17A, and 18 are drawn out, there is a drawback that a huge amount of manufacturing work is required for forming/forming and insulating the P lead wires. As shown in Figures 4 and 5,
The tertiary winding 24, the double tap winding 22, the shunt winding 23, and the series winding 21 are wound concentrically from the inner diameter side of the iron core i in this order. It has a structure in which the outer layer is turned around, folded back at the lower end, and further wound around the outer diameter side layer to the upper part. This will be explained in detail with reference to FIG. 6.
第6図はタツプ巻線22が26本の導体からなる場合を
示し、巻初め口出し220が上部より入り、軸方向に6
本並べられ内径側層221をらせん状に下端まで巻回さ
れ、下端で6本ー括して外径側に巻上げられ、次に、外
径側層222を内径側層221と同様に上端まで巻回し
巻終り口出し220Aを上部へ引き出している。この場
合、下端部に電界緩和用のシールドリング30を設ける
のが一般的であるが、導体6本を一括して内径側層22
1から外径側層222に渡るため、その渡り部分の−部
分はギヤツプD,が大きくなる。また、第7図は第2図
、第3図の構造のタツプ巻線22の一個の層よりなる場
合の原理説明図で、イは素線導体223とそれらの間の
素線導体間静電容量Ccをつなぎ合せたモデル化図であ
る。FIG. 6 shows a case where the tap winding 22 is made up of 26 conductors, and the winding start lead 220 enters from the top, and the tap winding 22 has 6 conductors in the axial direction.
The lined inner layer 221 is wound spirally to the lower end, and then the six layers are rolled up to the outer diameter side at the lower end, and then the outer layer 222 is rolled up to the upper end in the same way as the inner layer 221. The winding end opening 220A is pulled out to the top. In this case, it is common to provide a shield ring 30 for mitigating the electric field at the lower end, but the six conductors are collectively connected to the inner layer 22.
1 to the outer diameter side layer 222, the gap D becomes large at the - portion of the transition portion. Moreover, FIG. 7 is a principle explanatory diagram when the tap winding 22 of the structure shown in FIGS. 2 and 3 is made up of one layer. It is a modeling diagram in which capacitances Cc are connected.
口はその等価回路図であり、Rは素線導体の抵抗分ノで
、その抵抗と素線導体間静電容量Ccの並列回路が素線
導体本数分、即ち、タツプ巻線22の全巻数分だけ直列
接続されることになる。The opening is the equivalent circuit diagram, R is the resistance of the wire conductor, and the parallel circuit of the resistance and the capacitance Cc between the wire conductors is equivalent to the number of wire conductors, that is, the total number of turns of the tap winding 22. will be connected in series.
次に、第8図は第4図、第5図のタツプ巻線の原理説明
図で、イは素線導体223とそれらの間の素線導体問静
電容量Ccと、対向している内、外径側層間の各素線導
体層間静電容量CLとをつなぎ合わせたモデル化図であ
り、叫まその等価回路図である。このタツプ巻線22の
一端は中圧線路端子uに接続されるため、変圧器の運転
時或いは試験時に強撃電圧が中圧線路端子uに印加され
るときには、タツプ巻線22の一端にも同時に衝撃電圧
が印加されることになる。その場合、衝撃電圧そのもの
が非常に高周波であり、タツプ巻線22内の電位分布は
、抵抗分が周波数に無関係であるので静電容量分できま
る。その結果、タツプ巻線22の両端部、即ち、第7図
、第8図に端子で示される最大タツプ間発生電圧は、第
7図の構造では、次の(1)式で示される。Next, FIG. 8 is an explanatory diagram of the principle of the tap winding shown in FIGS. , is a modeling diagram in which the interlayer capacitances CL of each strand conductor between layers on the outer diameter side are connected together, and is an equivalent circuit diagram. One end of this tap winding 22 is connected to the medium voltage line terminal u, so when a strong voltage is applied to the medium voltage line terminal u during operation or testing of the transformer, one end of the tap winding 22 is also connected to the medium voltage line terminal u. At the same time, an impact voltage will be applied. In this case, the impact voltage itself has a very high frequency, and the potential distribution within the tap winding 22 is determined by the capacitance since the resistance is independent of frequency. As a result, the maximum voltage generated between the taps at both ends of the tap winding 22, that is, the terminals shown in FIGS. 7 and 8, is expressed by the following equation (1) in the structure shown in FIG.
n但し、ω:衝撃電圧周波数
n:タツプコイル全巻回数
また、第8図ではタツプコイルの全巻回数を第7図と同
一とすれば(2)式で表される。n where ω: impulse voltage frequency n: total number of turns of the tap coil Further, in FIG. 8, if the total number of turns of the tap coil is the same as in FIG. 7, it is expressed by equation (2).
V1とV2の大小を比較するとき、(2)式の分母がω
NCL/2だけ大きいことを考慮すれば、1〉2となり
、最大タツプ間発生電圧は、第2図、第3図の構造に比
べ第4図、第5図の構造のものの方が小さく抑えること
ができ、その結果、タツプ巻線やタツプ切換器の絶縁を
低減することができる。When comparing the magnitude of V1 and V2, the denominator of equation (2) is ω
Considering that NCL/2 is larger, 1>2, and the maximum voltage generated between taps can be suppressed to a smaller value with the structures shown in Figures 4 and 5 than with the structures shown in Figures 2 and 3. As a result, the insulation of tap windings and tap changers can be reduced.
しかし、第4図、第5図の巻線においては、第6図に示
す如く、複数本の各導体を内径側層から外径側層へ渡る
ために、その渡り部分はギヤツプd1が大きくなり、電
界集中が起り絶縁の部分破壊を生ずる欠点がある。本発
明の第1の目的は、タツプ巻線を形成する複数本の各導
体の内径側層から外径側層への渡り部分のギヤツプを少
なくし電界集中に基づく絶縁破壊が生ずることを防止し
、また第2の目的は複数本の各導体の巻始め口出し及び
巻終り口出しの接続作業を容易にするとともに絶縁を容
易にし信頼性が向上できる変圧器巻線を提供することに
ある。However, in the windings shown in FIGS. 4 and 5, as shown in FIG. 6, each conductor is passed from the inner layer to the outer layer, so the gap d1 becomes large at the transition portion. However, there is a drawback that electric field concentration occurs and partial breakdown of the insulation occurs. The first object of the present invention is to reduce the gap in the transition portion from the inner layer to the outer layer of each of the plurality of conductors forming the tap winding, thereby preventing dielectric breakdown due to electric field concentration. A second object of the present invention is to provide a transformer winding that facilitates the connection work between the winding start and winding ends of a plurality of conductors, and also facilitates insulation and improves reliability.
本発明は、鉄心の外側に同心状に巻回された複数個の巻
線を備え、これらの巻線のうち少くとも一化がタツプ巻
線で、かつ該タツプ巻線の外側に少なくとも一個以上の
巻線を配設し、上記タツプ巻線は、複数本の導体を軸方
向に並べ円筒状に巻回して形成する内径側層と、端部で
複数本の導体を折り返して内径側層の外径側に円筒状に
巻回して形成する外径側層から形成し、かつこのタツプ
巻線は巻始め口出しと巻終り口出しを同一端側から引き
出すようにする際、このタツプ巻線は内径側層と外径側
層との折り返し部にて、複数本の各二:Z卵′.′;.
:ー[メA:中:=渡らせて形成するようにし、また、各
導体の巻始め口出しと巻終り口出しを同電位どうしを対
向させるように、折り返し部にて、1本ずつ内径側層よ
り外径側層に渡らせて形成するものである。The present invention comprises a plurality of windings concentrically wound on the outside of an iron core, at least one of these windings is a tap winding, and at least one or more windings are wound outside the tap winding. The tap winding has an inner layer formed by arranging multiple conductors in the axial direction and winding them into a cylindrical shape, and an inner layer formed by folding back the multiple conductors at the end. When the tap winding is formed from an outer diameter layer that is wound in a cylindrical shape on the outer diameter side, and the winding start and end windings are pulled out from the same end side, the tap winding is A plurality of Z eggs'. ′;..
:ー[MeA:Medium:= Form the conductor by crossing it, and place the inner diameter side layer one by one at the folded part so that the winding start and winding ends of each conductor have the same potential facing each other. It is formed so as to extend to the layer on the outer diameter side.
以下本発明の変圧器巻線の一実施例を第9図により説明
する。6本の口出しを巻始め口出し220として上部よ
り軸方向に並列に入れ内径側層221を巻回し下端部の
渡り部分で3分割し2本ずつ順次巻線円周方向にずらし
ながら外径側に渡らせ、次に外径側層222として上方
に巻回している。An embodiment of the transformer winding of the present invention will be described below with reference to FIG. The six winding openings are placed in parallel in the axial direction from the upper part as the winding start opening 220, and the inner diameter side layer 221 is wound, divided into three parts at the transition part at the lower end, and the winding is sequentially shifted two by two in the winding circumferential direction. It is then wound upward as the outer diameter side layer 222.
このようにずらすことにより、端部のギヤツプD2は、
従来の第6図の場合のd1に対し1/3に減少すること
ができる。従つて、このギヤツプ部分の電界を緩和し絶
縁破壊を防止することができる。第10図、第11図は
他の実施例を示し、上記実施例と同様に上部より軸方向
に6本並列に巻始め口出し220を入れ、内径側層22
1を巻回し、下端部の渡り部分で、1本ずつ6回に分け
て順次巻線円周方向にずらしながら、外径側層222に
渡らせている。By shifting in this way, the gap D2 at the end is
d1 in the conventional case of FIG. 6 can be reduced to 1/3. Therefore, the electric field in this gap portion can be relaxed and dielectric breakdown can be prevented. FIGS. 10 and 11 show another embodiment, in which six winding start guides 220 are inserted in parallel in the axial direction from the upper part, and the inner diameter side layer 22
1 is wound, and at the transition portion at the lower end, each wire is divided into six turns and is sequentially shifted in the winding circumferential direction, so as to pass over the outer diameter side layer 222.
従つて、端部のギヤツプD3は導体1本分となり上記実
施例の半分となる。そして、外径側層222は、内径側
層221で上から順に位置している口出し12,13,
14,15,16,17を反転し上からの順序が口出し
18,17A〈16A,15A,14A,13Aとなる
ように位置させる。いわゆる巻線軸方向における転位を
行なわせ、その後巻線軸方向に外径側を上端まで巻回さ
れる。上端の口出位置において、巻始め口出し220と
巻終り口出し220Aの両方の口出部分を、巻線円周方
向に導体1本分ずつずらすことにより、タツプ巻線のリ
ード接続が第12図の如く接続されるのに都合がよく、
接続されるべき導体どうしの各口出しを13−13A,
14−14A,15−15A,16−16A,17−1
7Aの如く対向させており、このように対向配置するこ
とにより接続作業を容易にできる。また、対向する口出
し導体が同電位であるため、巻線の絶縁上欠陥となり易
い口出部の信頼性を向上することができる。上記実施例
は単巻変圧器の場合について説明したが、他の一般の変
圧器に適用しても同様の作用効果を得ることができる。Therefore, the gap D3 at the end is equivalent to one conductor, which is half of that in the above embodiment. The outer diameter side layer 222 includes the openings 12, 13, which are located in order from the top in the inner diameter side layer 221.
14, 15, 16, and 17 are inverted and positioned so that the order from the top is 18, 17A<16A, 15A, 14A, 13A. The so-called transposition in the winding axial direction is performed, and then the outer diameter side is wound in the winding axial direction up to the upper end. By shifting both the winding start lead 220 and the winding end lead 220A by one conductor in the winding circumferential direction at the top end lead connection, the lead connection of the tap winding can be made as shown in FIG. It is convenient to connect like
Each lead of the conductors to be connected is 13-13A,
14-14A, 15-15A, 16-16A, 17-1
7A, and by arranging them facing each other in this way, the connection work can be facilitated. Furthermore, since the opposing lead conductors are at the same potential, it is possible to improve the reliability of the lead part, which is likely to cause defects in the insulation of the winding. Although the above embodiment has been described in the case of an autotransformer, similar effects can be obtained even when applied to other general transformers.
以上記述した如く本発明の変圧器巻線は、タツプ巻線を
形成する複数本の各導体の内径側層から外径側層への渡
り部分のギヤツプを少くできるから、電界集中に基づく
絶縁破壊を防止することができる効果を有するものであ
る。As described above, the transformer winding of the present invention can reduce the gap in the transition portion from the inner layer to the outer layer of each of the plurality of conductors forming the tap winding, so that dielectric breakdown due to electric field concentration can be reduced. This has the effect of preventing
また、タツプ巻線の各導体の巻始め口出し及び巻終り口
出し接続作業を容易にするとともに絶縁を容易にし口出
部の信頼性を向上することができる効果を有するもので
ある。Further, it has the effect of facilitating the connection work of the winding start and winding ends of each conductor of the tap winding, as well as facilitating insulation and improving the reliability of the lead portion.
第1図は通常の単巻変圧器の中圧の電圧を一定とし、高
圧の電圧を切換える方式の結線図、第2図は第1図の変
圧器の一部の断面図、第3図は第2図の変圧器の単線結
線図、第4図は従来のタツプ巻線を内径側巻層と外径側
巻層にて形成して口出し部を上部に設けた単線変圧器の
一部の断面図、第5図は第4図の変圧器の単線結線図、
第6図イは第4図のタツプ巻線の巻回説明図、口はイの
一矢視断面図、第7図は第2図のタツプ巻線が一個の層
よりなる場合の原理説明図を示し、イは素線導体とそれ
らの間の素線導体間静電容量をつなぎ合せたモデル化図
、口はイの等価回路図、第8図は第4図のタツプ巻線の
場合の原理説明図を示し、イは素線導体及びそれらの間
の素線導体間靜電容量と、対向している内、外径側層間
の各素線導体層間静電容量とをつなぎ合せたモデル化図
、口はイの等価回路図、第9図イは本発明の変圧器巻線
の一実施例を示すタツプ巻線の巻回説明図、口はイの−
矢視断面図、第10図は本発明の変圧器巻線の他の実施
例を示すタツプ巻線の巻回説明図、第11図は第10図
のM−X矢視断面図、第12図は第9図、第10図のタ
ツプ巻線の結線図である。
12,13,13A,14,14A,15,15A,1
6,16A,17,1TA,18・・・・・・口出し、
20・・・・・・鉄心、21・・・・・・直列巻線、2
2・・・・・・タツプ巻線、23・・・・・・分路巻線
、24・・・・・・三次巻線、220・・・・・・巻始
め口出し、220A・・・・・・巻終り口出し、221
・・・・・・内径側層、222・・・・・・外径側層。Figure 1 is a wiring diagram of a conventional autotransformer that keeps the medium voltage constant and switches the high voltage, Figure 2 is a cross-sectional view of a part of the transformer in Figure 1, and Figure 3 is Figure 2 is a single-line diagram of a transformer, and Figure 4 is a part of a single-wire transformer in which a conventional tap winding is formed with an inner winding layer and an outer winding layer, and an outlet is provided at the top. A cross-sectional view, Figure 5 is a single line diagram of the transformer in Figure 4,
Figure 6A is an explanatory diagram of the winding of the tap winding in Figure 4, the mouth is a sectional view taken in the direction of Figure 7, and Figure 7 is a diagram explaining the principle when the tap winding in Figure 2 is composed of one layer. Figure 8 is the principle for the tap winding shown in Figure 4. A is a modeling diagram that connects the strand conductors and the inter-strand capacitance between them, and the inter-layer capacitance of each strand conductor between the opposing inner and outer diameter layers. Figure 9A is an explanatory diagram of tap winding showing an embodiment of the transformer winding of the present invention.
10 is a winding explanatory diagram of a tap winding showing another embodiment of the transformer winding of the present invention. FIG. 11 is a sectional view taken along the line M-X in FIG. The figure is a wiring diagram of the tap winding shown in FIGS. 9 and 10. 12, 13, 13A, 14, 14A, 15, 15A, 1
6, 16A, 17, 1TA, 18... meddling,
20...Iron core, 21...Series winding, 2
2... Tap winding, 23... Shunt winding, 24... Tertiary winding, 220... Winding start opening, 220A... ...Interference at the end of the volume, 221
...Inner diameter side layer, 222......Outer diameter side layer.
Claims (1)
え、これらの巻線のうち少なくとも一個がタップ巻線で
かつ該タップ巻線の外側に少なくとも一個の巻線を配設
し、前記タップ巻線は、複数本の導体を軸方向に並べ円
筒状に巻回して形成する内径側層と端部で複数本の導体
を折り返して内径側層の外径側に円筒状に巻回して形成
する外径側層から形成し、かつ前記タップ巻線は巻始め
口出しと巻終り口出しを同一端側から引き出すものにお
いて、前記タップ巻線は内径側層と外径側層との折り返
し部にて、前記複数本の各導体を少なくとも2分割し、
このそれぞれを巻線円周方向に順にずらして内径側層よ
り外径側層に渡らせて形成したことを特徴とする変圧器
巻線。 2 鉄心の外側に同心状に巻回された複数個の巻線を備
え、これらの巻線のうち少なくとも一個がタップ巻線で
かつ該タップ巻線の外側に少なくとも一個の巻線を配設
し、前記タップ巻線は、複数本の導体を軸方向に並べ円
筒状に巻回して形成する内径側層と端部で複数本の導体
を折り返して内径側層の外径側に円筒状に巻回して形成
する外径側層から形成し、かつ前記タップ巻線は、巻始
め口出しと巻終り口出しとを同一端側から引き出すもの
において、前記タップ巻線は内径側層と外径側層との折
り返し部にて、前記複数本の各導体を巻線円周方向に1
本ずつ順にずらして内径側層より外径側層に渡らせて形
成され、各導体の巻始め口出しと巻終り口出しは、その
同電位どうしを対向させるように配設したことを特徴と
する変圧器巻線。[Scope of Claims] 1. A device comprising a plurality of windings concentrically wound on the outside of an iron core, at least one of these windings being a tap winding, and at least one winding outside the tap winding. The tap winding is formed by arranging a plurality of conductors in the axial direction and winding them in a cylindrical shape to form an inner diameter side layer, and by folding back the plurality of conductors at the end to form an outer diameter of the inner diameter side layer. The tap winding is formed from an outer diameter layer formed by winding in a cylindrical shape on the side, and the tap winding has a winding start opening and a winding end opening drawn out from the same end side, and the tap winding has an inner diameter side layer and an outer diameter side layer. dividing each of the plurality of conductors into at least two parts at the folded part with the radial side layer;
A transformer winding characterized in that each of these layers is sequentially shifted in the circumferential direction of the winding to extend from the inner layer to the outer layer. 2.Equipped with a plurality of windings concentrically wound on the outside of the iron core, at least one of these windings is a tap winding, and at least one winding is arranged outside the tap winding. , the tap winding is formed by arranging a plurality of conductors in the axial direction and winding them into a cylindrical shape, forming an inner diameter layer, and folding the plurality of conductors at the ends to form a cylindrical outer diameter side of the inner diameter layer. The tap winding is formed from an outer diameter layer formed by turning, and the tap winding has a winding start opening and a winding end opening drawn out from the same end side, and the tap winding has an inner diameter layer and an outer diameter side layer. At the folded part, each of the plurality of conductors is
The transformer is formed by shifting each conductor in order from the inner diameter layer to the outer diameter layer, and the winding start lead and winding end lead of each conductor are arranged so that the same potentials are opposed to each other. device winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53119386A JPS5929129B2 (en) | 1978-09-29 | 1978-09-29 | transformer winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53119386A JPS5929129B2 (en) | 1978-09-29 | 1978-09-29 | transformer winding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5546532A JPS5546532A (en) | 1980-04-01 |
JPS5929129B2 true JPS5929129B2 (en) | 1984-07-18 |
Family
ID=14760206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53119386A Expired JPS5929129B2 (en) | 1978-09-29 | 1978-09-29 | transformer winding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5929129B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61187211A (en) * | 1985-02-14 | 1986-08-20 | Hitachi Ltd | Winding of transformer |
JPS636241A (en) * | 1986-06-25 | 1988-01-12 | ▲き▼堂 寛 | Anti-seismic device |
JPS6366644U (en) * | 1986-10-21 | 1988-05-06 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386426A (en) * | 1977-01-11 | 1978-07-29 | Toshiba Corp | Tap winding of transformer |
-
1978
- 1978-09-29 JP JP53119386A patent/JPS5929129B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386426A (en) * | 1977-01-11 | 1978-07-29 | Toshiba Corp | Tap winding of transformer |
Also Published As
Publication number | Publication date |
---|---|
JPS5546532A (en) | 1980-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5929129B2 (en) | transformer winding | |
JPH023285B2 (en) | ||
US3766504A (en) | Interleaved transformer winding having three parallel connected conductors | |
JPS5821309A (en) | On-load tap-changing transformer | |
US3569883A (en) | Electrical winding | |
JPS5846047B2 (en) | On-load tap switching autotransformer | |
JPH07297052A (en) | Dual rated voltage transformer | |
US2357098A (en) | Transformer | |
JPH0241855Y2 (en) | ||
JPS625325B2 (en) | ||
SU748528A1 (en) | Null-sequence current transformer | |
JPS586290B2 (en) | On-load tap-changing transformer | |
JP3218607B2 (en) | Mold transformer winding | |
JPS59204222A (en) | Tapped auto-transformer | |
JPS6228736Y2 (en) | ||
JPS6115568B2 (en) | ||
JPH043093B2 (en) | ||
JPS6241404B2 (en) | ||
JPH0577166B2 (en) | ||
JPS6159651B2 (en) | ||
JPS6259529B2 (en) | ||
JPH09293620A (en) | Three winding transformer | |
JPS61187211A (en) | Winding of transformer | |
JPH01107507A (en) | Three-phase transformer with tertiary winding | |
JPH0143444B2 (en) |