JPS5928745Y2 - Rotating vacuum chuck device - Google Patents

Rotating vacuum chuck device

Info

Publication number
JPS5928745Y2
JPS5928745Y2 JP17469281U JP17469281U JPS5928745Y2 JP S5928745 Y2 JPS5928745 Y2 JP S5928745Y2 JP 17469281 U JP17469281 U JP 17469281U JP 17469281 U JP17469281 U JP 17469281U JP S5928745 Y2 JPS5928745 Y2 JP S5928745Y2
Authority
JP
Japan
Prior art keywords
pressure reduction
shaft
base body
labyrinth
side pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17469281U
Other languages
Japanese (ja)
Other versions
JPS5880138U (en
Inventor
圭一 柴田
哲男 相川
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP17469281U priority Critical patent/JPS5928745Y2/en
Publication of JPS5880138U publication Critical patent/JPS5880138U/en
Application granted granted Critical
Publication of JPS5928745Y2 publication Critical patent/JPS5928745Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)

Description

【考案の詳細な説明】 考案の技術分野 本考案は減圧により板状部材を吸着して高速回転させる
回転真空チャック装置の改良に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to an improvement in a rotary vacuum chuck device that adsorbs a plate-like member using reduced pressure and rotates it at high speed.

考案の技術的背景 従来板状部材を減圧により吸着して、回転させ種々な加
工を施すことは一般に広く行なわれている。
TECHNICAL BACKGROUND OF THE INVENTION Conventionally, it has been widely practiced to adsorb plate-shaped members under reduced pressure and rotate them to perform various processing.

半導体ウェハの表面処理を例にその装置を略述すると、
一端面に吸着面を設けた回転軸を基体に設けた軸受体で
回転自在に支持し、吸着面に減圧によりウェハを吸着保
持した状態で回転軸を回転させウェハの処理をするよう
に構成されている。
The equipment will be briefly explained using the surface treatment of semiconductor wafers as an example.
A rotating shaft having a suction surface on one end surface is rotatably supported by a bearing body provided on a base, and the rotary shaft is rotated to process the wafer while the wafer is suctioned and held on the suction surface by reduced pressure. ing.

そして回転軸と基体との間の減圧路の連通部はその両側
に設けたラビリンス軸封体で気密が保たれるようになっ
ている。
The communication portion of the decompression path between the rotating shaft and the base body is kept airtight by labyrinth shaft seals provided on both sides thereof.

背景技術の問題点 上述の装置は一般に高速回転、例えば5000rpm位
で使用されるので軸封体は非接触な構成のものが好まし
いことは当然である。
Problems with the Background Art Since the above-mentioned device is generally used at high speed rotation, for example around 5000 rpm, it is natural that the shaft seal preferably has a non-contact configuration.

しかるに最近は加工の高精度化、高能率化が要求されて
いるため、回転軸の回転速度を上げることが要求されて
いる。
However, recently there has been a demand for higher accuracy and higher efficiency in machining, so there is a demand for increasing the rotational speed of the rotating shaft.

このため加工物である板状のウェハは従来より犬なる遠
心力を受けるためより大きな吸着力が要求されている。
For this reason, a plate-shaped wafer, which is a workpiece, is subjected to a stronger centrifugal force than in the past, so a larger suction force is required.

しかし上述したように非接触な軸封体を使用するため気
密性が劣り、より犬なる遠心力に耐える吸着力が得られ
ず、これが精度向上、生産能率の向上に大きな障害とな
っている。
However, as mentioned above, since a non-contact shaft seal is used, the airtightness is poor, and the suction force that can withstand even stronger centrifugal force cannot be obtained, which is a major obstacle to improving accuracy and production efficiency.

これの対策として軸と貫通孔との間隙をさらに小さくす
ることも試みられているが、高精度な加工が要求される
ため非常に高価になり、また微小なごみの付着とか、回
転軸の変形などのため損傷を生じやすく、稼動率が低下
するという不都合があった。
As a countermeasure to this, attempts have been made to further reduce the gap between the shaft and the through hole, but this requires high-precision machining, making it very expensive, and also causing problems such as the adhesion of minute dust and deformation of the rotating shaft. Therefore, there was a problem that damage easily occurred and the operating rate decreased.

考案の目的 本考案はラビリンス軸封体の精度をあげることなく気密
性を向上させて加工精度の向上、生産性の向上をした回
転真空チャック装置を提供することを目的とする。
Purpose of the invention The object of the invention is to provide a rotary vacuum chuck device that improves the airtightness of the labyrinth shaft seal without increasing the accuracy, thereby improving machining accuracy and productivity.

考案の概要 本考案は基体に設けられた一対の軸受体と基体に設けら
れた第1減圧路としての基体側減圧路の両側との間に第
2減圧路をそれぞれ設けて構成したもので、両側の軸受
体を通って第1減圧路に流入する漏洩空気を第2減圧路
で吸収することにより第1減圧路の真空度の低下を防止
して真空チャックの保持力を向上させるとともに、ごみ
などの付着を防止したことを特徴とする回転真空チャッ
クである。
Summary of the invention The present invention is constructed by providing a second pressure reducing path between a pair of bearing bodies provided on a base and both sides of a base side pressure reducing path as a first pressure reducing path provided on the base, By absorbing the leaked air flowing into the first pressure reducing path through the bearing bodies on both sides in the second pressure reducing path, a decrease in the degree of vacuum in the first pressure reducing path is prevented and the holding power of the vacuum chuck is improved. This rotary vacuum chuck is characterized by preventing the adhesion of such substances.

考案の実施例 本実施例は従来例と同様に半導体ウェハの表面処理を行
なうための回転真空チャックであって、第1図を参照し
て説明する。
Embodiment of the Invention This embodiment is a rotary vacuum chuck for surface treatment of semiconductor wafers, similar to the conventional example, and will be described with reference to FIG.

基体1には貫通孔2が設けられていて、その両端部には
ボールベアリングからなる軸受体3,3が取付けられて
いる。
A through hole 2 is provided in the base body 1, and bearing bodies 3, 3 made of ball bearings are attached to both ends of the through hole 2.

これら軸受体3,3により回転軸5が回転自在に軸支さ
れている。
A rotating shaft 5 is rotatably supported by these bearing bodies 3, 3.

この回転軸5は、一端面が径太に形成されていて、中心
部に凹所6が設けられ、その周縁は平坦面7となってい
てウェハ8が吸着される吸着面9を形成している。
The rotating shaft 5 has one end face formed with a large diameter, a recess 6 in the center, and a flat surface 7 around the periphery forming a suction surface 9 on which the wafer 8 is attracted. There is.

また他端部は軸継手10を介して駆動体11に接続され
ていて、これにより回転駆動される。
The other end is connected to a drive body 11 via a shaft coupling 10, and is rotationally driven by this.

さらにまた中間部にはラビリンス軸封体12が設けられ
ている。
Furthermore, a labyrinth shaft sealing body 12 is provided in the intermediate portion.

これは5個の環状溝13.・・・とそれらの間に形成さ
れる環状帯14.・・・からなっていて、貫通孔2と環
状帯14との間隙を適切に保つことにより漏洩防止の効
果を非接触で奏するもので、一般公知のものと同様なの
で、詳細な説明は省略する。
This consists of five annular grooves 13. ... and an annular band 14 formed between them. . . . By maintaining an appropriate gap between the through hole 2 and the annular band 14, the leakage prevention effect is achieved without contact, and since it is similar to the generally known one, a detailed explanation will be omitted. .

さらにまた、この回転軸5には一端が凹所6に開口し他
端が中心部の環状溝13に開口した軸側減圧路16が設
けられている。
Furthermore, this rotary shaft 5 is provided with a shaft-side pressure reducing passage 16 whose one end opens into the recess 6 and the other end opens into the annular groove 13 in the center.

基体1には一端が上記の中心部の環状溝13に臨み他端
が図示しない減圧源に連通した基体側減圧路17が設け
られていて、上述の軸側減圧路16と基体側減圧路17
とで第1減圧路18が構成されてる。
The base body 1 is provided with a base body side pressure reduction passage 17 whose one end faces the annular groove 13 in the center and whose other end communicates with a depressurization source (not shown).
The first decompression path 18 is constituted by the above.

そして調節弁19の操作により適切に減圧されて吸着力
が得られる。
Then, by operating the control valve 19, the pressure is appropriately reduced and suction power is obtained.

さらにまた基体1には軸受体3,3と基体側減圧路17
との間に最外側の環状溝13.13に臨・む外側減圧路
20.20がそれぞれ設けられていて、これらも調節弁
21゜21を介して減圧源(図示しない)に連通し、そ
れらの真空度は調節弁21.21により適宜に調節され
る。
Furthermore, the base body 1 includes bearing bodies 3, 3 and a base side pressure reducing passage 17.
Outer pressure reducing passages 20, 20 facing the outermost annular groove 13, 13 are provided between the The degree of vacuum is appropriately adjusted by control valves 21.21.

これら外側減圧器20.20で第2減圧路23が構成さ
れている。
These outer pressure reducers 20 and 20 constitute a second pressure reduction path 23.

次に作動につき述べると、第1減圧路18を真空源と連
通させて減圧(真空)し、ウェハ8を吸着面9に当てて
吸着保持させる。
Next, the operation will be described. The first pressure reduction path 18 is communicated with a vacuum source to reduce the pressure (vacuum), and the wafer 8 is brought into contact with the suction surface 9 and held by suction.

この状態では第1減圧路18中には軸受体3,3からの
漏洩空気が流入し、十分な真空度には達していない。
In this state, leakage air from the bearing bodies 3, 3 flows into the first pressure reducing path 18, and a sufficient degree of vacuum is not reached.

次に調節弁21.21を開くと漏洩空気の大部分は第2
減圧路20に流れ、第1減圧路18中の真空度は非常に
高くなり、吸引力が犬となる。
Next, when the control valves 21 and 21 are opened, most of the leaked air is
It flows into the pressure reduction path 20, and the degree of vacuum in the first pressure reduction path 18 becomes extremely high, and the suction force becomes strong.

回転の遠心力に十分耐える吸引力が得られたら(例えば
第1減圧路18の圧力を測定する)駆動体11により回
転軸5を回転させ所定の処理、例えばウェハ表面の清浄
や、感光剤の塗布および現像等を行ない完了したら回転
を止め、第1減圧路18を大気に開放してウェハ8を取
外し、作業を終る。
When a suction force sufficient to withstand the centrifugal force of rotation is obtained (for example, by measuring the pressure in the first decompression path 18), the rotary shaft 5 is rotated by the driver 11 to carry out a predetermined process, such as cleaning the wafer surface or removing a photosensitive agent. After coating, developing, etc. are completed, the rotation is stopped, the first decompression path 18 is opened to the atmosphere, and the wafer 8 is removed to complete the work.

なお本実施例においてはラビリンス軸封体の環状帯14
.・・・を回転軸5側に設けたが、基体1側に設けても
よく、その数も必要に応じて増減してもよい。
In this embodiment, the annular band 14 of the labyrinth shaft enclosure is
.. ... were provided on the rotating shaft 5 side, but they may be provided on the base body 1 side, and the number thereof may be increased or decreased as necessary.

本実施例のように回転軸5側に環状14゜・・・を設け
たものは工作が容易であるという利点がある。
An annular 14° . . . provided on the rotating shaft 5 side as in this embodiment has the advantage that machining is easy.

そして非接触軸封体としてはラビリンス軸封体12に限
定されない。
The non-contact shaft seal is not limited to the labyrinth shaft seal 12.

さらにまた第2減圧路23の数も適宜増加してもよい。Furthermore, the number of second pressure reducing passages 23 may be increased as appropriate.

考案の効果 以上詳述したように本考案においては第1減圧路の両側
に第2減圧路を設けたので、第1減圧路の真空度は例え
ば基体側減圧路に150 aHgの真空系を接続した場
合、従来のもの(第2減圧路なし)においては基体側減
圧路の出口圧力が24071mHgであったものが、本
実施例のものにおいては16071aHgの真空度が得
られた。
Effects of the invention As detailed above, in the present invention, the second pressure reduction path is provided on both sides of the first pressure reduction path, so the vacuum level of the first pressure reduction path is, for example, 150 aHg vacuum system connected to the base side pressure reduction path. In this case, in the conventional case (without the second pressure reducing path), the outlet pressure of the base side pressure reducing path was 24,071 mHg, but in the case of this example, a degree of vacuum of 16,071 aHg was obtained.

このように真空度が向上したので加工精度が向上し、ま
たラビリンス軸封体の間隙も従来と同じでもよいので、
安価で、しかもごみの付着などによる事故もなく生産能
率の向上に益するところ極めて犬である。
Since the degree of vacuum has been improved in this way, machining accuracy has improved, and the gap between the labyrinth shaft seals can be the same as before.
It is extremely useful because it is inexpensive, and there are no accidents caused by adhesion of dust, and it helps improve production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例の要部断面正面図である。 1・・・・・・基体、2・・・・・・貫通孔、3・・・
・・・軸受体(ボールベアリング)、5・・・・・・回
転軸、9・・・・・・吸着面、11・・・・・・駆動体
、12・・・・・・ラビリンス軸封体、13・・・・・
・環状溝、16・・・・・・軸側減圧路、17・・・・
・・基体側減圧路、18・・・・・・第1減圧路、20
・・・・・・第2減圧路。
The figure is a sectional front view of essential parts of an embodiment of the present invention. 1...Base body, 2...Through hole, 3...
... Bearing body (ball bearing), 5 ... Rotating shaft, 9 ... Adsorption surface, 11 ... Drive body, 12 ... Labyrinth shaft seal Body, 13...
・Annular groove, 16... Shaft side pressure reducing path, 17...
...Base side pressure reduction path, 18...First pressure reduction path, 20
...Second pressure reduction path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 貫通孔をもった基体と、この基体に上記貫通孔と同軸に
設けられた一対の軸受体と、これら軸受体により回転自
在に支持されかつ一端面を吸着面とした回転軸と、この
回転軸を回転駆動する駆動体と、上記軸受体の間に設け
られて上記回転軸の外周面または上記貫通孔の内周面に
形成された複数個の環状溝をもったラビリンス軸封体と
、上記回転軸に設けられ一端が上記吸着面に開口し他端
が上記ラビリンス軸封体に開口した軸側減圧路および上
記基体に設けられ一端が減圧源に連通し他端が上記ラビ
リンス軸封体に開口して上記軸側減圧路に上記ラビリン
ス軸封体を介して連通ずる基体側減圧路からなる第1減
圧路と、上記基体側減圧路および上記一対の軸受体の間
にそれぞれ設けられて各一端部が上記ラビリンス軸封体
に開口し各他端部が上記減圧源に連通した第2減圧路と
を具備したことを特徴とする回転真空チャック装置。
A base body having a through hole, a pair of bearing bodies provided in the base body coaxially with the through hole, a rotating shaft rotatably supported by these bearing bodies and having one end surface as a suction surface, and this rotating shaft. a labyrinth shaft sealing body provided between the bearing body and having a plurality of annular grooves formed on the outer peripheral surface of the rotating shaft or the inner peripheral surface of the through hole; A shaft-side pressure reduction path provided on the rotating shaft and having one end opened to the suction surface and the other end opened to the labyrinth shaft seal; and a shaft side pressure reduction path provided in the base body, one end communicating with the decompression source and the other end opening to the labyrinth shaft seal. a first pressure reduction path consisting of a base body side pressure reduction passage that opens and communicates with the shaft side pressure reduction passage via the labyrinth shaft seal; and a first pressure reduction passage provided between the base body side pressure reduction passage and the pair of bearing bodies, respectively; A rotary vacuum chuck device comprising: a second pressure reduction path having one end open to the labyrinth shaft seal and each other end communicating with the pressure reduction source.
JP17469281U 1981-11-26 1981-11-26 Rotating vacuum chuck device Expired JPS5928745Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17469281U JPS5928745Y2 (en) 1981-11-26 1981-11-26 Rotating vacuum chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17469281U JPS5928745Y2 (en) 1981-11-26 1981-11-26 Rotating vacuum chuck device

Publications (2)

Publication Number Publication Date
JPS5880138U JPS5880138U (en) 1983-05-31
JPS5928745Y2 true JPS5928745Y2 (en) 1984-08-18

Family

ID=29966759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17469281U Expired JPS5928745Y2 (en) 1981-11-26 1981-11-26 Rotating vacuum chuck device

Country Status (1)

Country Link
JP (1) JPS5928745Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238634A (en) * 1986-04-10 1987-10-19 Hitachi Electronics Eng Co Ltd Surface inspecting apparatus

Also Published As

Publication number Publication date
JPS5880138U (en) 1983-05-31

Similar Documents

Publication Publication Date Title
JP3312164B2 (en) Vacuum suction device
TW202145434A (en) Rotary platform for ion beam etching
JPS5928745Y2 (en) Rotating vacuum chuck device
JPH0994791A (en) Robot for corrosive atmosphere
JPH03256677A (en) Thin piece suction holding device
CN111911519A (en) Sucking disc device capable of continuously rotating
JP4357481B2 (en) Vacuum supply fitting
TWM608263U (en) Substrate processing device
CN207701771U (en) A kind of heavy load vacuum mechanical-arm spinning transmission device for sealing magnetic fluid
JP2601086Y2 (en) Vacuum chuck device for wafer grinder
JPS59187432A (en) Turn table
JPH06153489A (en) Spindle drive equipment
CN217376422U (en) Rotary adsorption device
JPS5953137A (en) Apparatus for connecting passage to rotating shaft in precision machine
JPH04264748A (en) Wafer transfer robot
JPS59154028A (en) Wafer cleaning apparatus
JPH0582907B2 (en)
JP2552306B2 (en) Single side polishing machine
JPS59202812A (en) Vacuum adsorption fixing type turntable device
CN117103105A (en) Chemical mechanical polishing equipment and method for processing miniature bearing baffle plates in large scale
JPH0251621A (en) Gas bearing spindle equipped with gas supply/exhaust mechanism
JP4203913B2 (en) Vacuum device
JP2924565B2 (en) Magnetic particle type electromagnetic coupling device
JP2003287173A (en) Rotary joint
JPS62130144A (en) Pneumatic absorbing device for intermittent rotary plate