JPS592866B2 - Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi - Google Patents

Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi

Info

Publication number
JPS592866B2
JPS592866B2 JP50083076A JP8307675A JPS592866B2 JP S592866 B2 JPS592866 B2 JP S592866B2 JP 50083076 A JP50083076 A JP 50083076A JP 8307675 A JP8307675 A JP 8307675A JP S592866 B2 JPS592866 B2 JP S592866B2
Authority
JP
Japan
Prior art keywords
voltage
transformer
potential
temperature
winding temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50083076A
Other languages
Japanese (ja)
Other versions
JPS526925A (en
Inventor
進康 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50083076A priority Critical patent/JPS592866B2/en
Publication of JPS526925A publication Critical patent/JPS526925A/en
Publication of JPS592866B2 publication Critical patent/JPS592866B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Protection Of Transformers (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 Y/Y0=e−0.1155(θH− (1)式において(θHo)は変圧器の絶縁種類により
決まる基準巻線温度である。
DETAILED DESCRIPTION OF THE INVENTION Y/Y0=e-0.1155(θH- In equation (1), (θHo) is the reference winding temperature determined by the type of insulation of the transformer.

これは第1図に示す如く、温度により寿命は指数関数的
に減少し、その大きさは6℃上昇毎に寿命半減となる。
As shown in FIG. 1, the life span decreases exponentially depending on the temperature, and the life span is halved for every 6° C. rise.

この巻線温度と負荷との関係は公式の如く(2)(3)
(4)式で与えられる。
The relationship between this winding temperature and load is as shown in the formula (2) (3)
It is given by equation (4).

θH■θa+θo+θg ・・・・・・・・・・・・(
2)本発明は配電所、変電所等に設置される電力用油入
変圧器の過負荷に対する寿命の傾向を予測するための装
置に関する。
θH■θa+θo+θg ・・・・・・・・・・・・(
2) The present invention relates to a device for predicting the tendency of the life of oil-immersed power transformers installed in power distribution stations, substations, etc. against overload.

一般に、変圧器は過負荷になると寿命(耐用年数)は著
しく低下し、又軽負荷になれば運転効率が悪くなること
は周知の通りであるが、電力用変圧器においては投入設
備費用が巨額なため正規寿命を維持させながら変圧器を
効率的に運転させることができれば経済的な効果が大き
い。
In general, it is well known that the lifespan of a transformer will be significantly reduced if it is overloaded, and that its operating efficiency will deteriorate if it is lightly loaded, but power transformers require a huge amount of equipment cost. Therefore, if the transformer can be operated efficiently while maintaining its normal service life, it will have a large economic effect.

本発明はこの点に着眼してなされたものである。変圧器
の寿命は負荷の大小そのものより、負荷による変圧器絶
縁物の劣化がどのように進行するかによつて最も影響を
受けやすい。
The present invention has been made with this point in mind. The lifespan of a transformer is most likely to be affected not by the magnitude of the load itself, but by how the deterioration of the transformer insulation progresses due to the load.

これは主に変圧器の巻線温度と密接に関連する。即ち、
巻線温度(θH)と寿命酌との関係は正規寿命(Yo)
に対しmontsingerの式より次式(1)の如く
表わされる。
This is mainly closely related to the transformer winding temperature. That is,
The relationship between winding temperature (θH) and life allowance is normal life (Yo)
is expressed as the following equation (1) using Montsinger's equation.

Ho)■ 2−(θH−θHo)/ 6 ・・・・・・
・・・・・・・・・・・・(1)θo;周囲温度に対す
る油温の温度上昇分、θ ゜周囲温度に対する巻線温度
の温度上昇分と、g’周囲温度に対する油温の温度上昇
分との差を示し、巻線温度(θH)は絶対値の温度を示
すものであるため周囲温度(θa)を加算する必要があ
る。
Ho)■ 2-(θH-θHo)/6 ・・・・・・
・・・・・・・・・・・・(1) θo: Temperature rise in oil temperature relative to ambient temperature, θ ゜ Temperature rise in winding temperature relative to ambient temperature, and g' Oil temperature relative to ambient temperature. Since the winding temperature (θH) indicates the absolute temperature, it is necessary to add the ambient temperature (θa).

に2R+1mθo■θoN(−)・・・・・・・・・(
3)R+1θ,一θ8N(K)2n・・・・・・・・・
・・・・・・・・・・・・・・・(4)ここで、θ0N
;定格負荷時の周囲温度に対する油温の温度上昇分、θ
GN;定格負荷時の周囲温度に対する巻線温度と油温と
の差、K,実負荷の定格負荷に対する比、R,定格負荷
時の負荷損と無負荷損との比、m及びN,冷却方式によ
り定まる定数。
2R+1mθo■θoN(-)・・・・・・・・・(
3) R+1θ, -θ8N(K)2n・・・・・・・・・
・・・・・・・・・・・・・・・(4) Here, θ0N
; Temperature rise in oil temperature relative to ambient temperature at rated load, θ
GN: difference between winding temperature and oil temperature with respect to ambient temperature at rated load, K, ratio of actual load to rated load, R, ratio of load loss to no-load loss at rated load, m and N, cooling Constant determined by method.

第2図は(2)式の関係を図示したものであり周囲温度
は無視しうるため削除してある。
FIG. 2 illustrates the relationship expressed by equation (2), and the ambient temperature has been omitted since it can be ignored.

さて、変圧器の寿命を予測する従来の方法は変圧器の運
転監視用として装備されている油温(θo)測定用の白
金抵抗温度計及ひ負荷の大小を測定する負荷電流計から
過去の経験により巻線温度(θH)を推定し寿命予測を
していた。
The conventional method for predicting the lifespan of a transformer is to use a platinum resistance thermometer to measure the oil temperature (θo) and a load ammeter to measure the magnitude of the load, which are equipped to monitor the operation of the transformer. The lifespan was predicted by estimating the winding temperature (θH) based on experience.

この方法は変動のない定負荷に対しての予測は容易であ
るが、変動の多い負荷に対しては不正確であることが前
述の説明から明白である。本発明は斯る点に鑑みなされ
たものであり、合理的な寿命予測を可能とするものであ
る。
It is clear from the above description that this method is easy to predict for a constant load that does not fluctuate, but is inaccurate for a load that fluctuates a lot. The present invention has been made in view of this point, and makes it possible to reasonably predict the lifespan.

以下本発明を詳細に説明する。本発明による寿命予測の
方法は正規寿命(変圧器の絶縁種類により定まる基準巻
線温度θHO以内で使用した時の寿命)に到達する時期
をある一定期間(t)Vc短縮換算し、この期間中基準
巻線温度(θHO)で運転した場合を100%と定める
The present invention will be explained in detail below. The life prediction method according to the present invention calculates the time when the normal life (life when used within the reference winding temperature θHO determined by the type of insulation of the transformer) is reached by shortening Vc by a certain period (t), and during this period, The case of operation at the reference winding temperature (θHO) is defined as 100%.

従つて軽負荷の時には巻線温度(θH)は低く100%
に達するまでの時間はtより長くなり、逆に過負荷の時
には(θH)が高くなり100%に達するまでの時間は
短かくなり、この状態で運転を続けた場合には寿命を早
めることを示唆する。本装置においてはこのように変圧
器の寿命に密接に関連する巻線温度を電圧に変換し、こ
の電圧でもつて後述せる電位記憶素子を充電する。即ち
、電位記憶素子に積算される充電々気量は巻線温度に対
応する電圧に比例せる電流と変圧器の運転時間との積と
なる。
Therefore, when the load is light, the winding temperature (θH) is low and 100%.
The time it takes to reach 100% is longer than t, and conversely, when there is an overload, (θH) increases and the time it takes to reach 100% becomes shorter, so if you continue to operate in this condition, the life will be shortened. suggest. In this device, the winding temperature, which is closely related to the life of the transformer, is converted into a voltage, and this voltage is used to charge a potential storage element, which will be described later. That is, the amount of charged air accumulated in the potential storage element is the product of the current proportional to the voltage corresponding to the winding temperature and the operating time of the transformer.

前記電位記憶素子は充電々気量に応じてその電位が略直
線的に変化する特lを有しており、従つて前記基準巻線
温度(θ110)で一定期間(t)運転した時の前記電
位記憶素子の電位により作動する表示回路を設けておけ
ば変圧器の寿命予測という目的がより正確に且つ容易に
達せられるものである。次に本発明装置の一実施例を示
す第6図の具体的な電気回路図より更に詳述する。
The potential storage element has a characteristic that its potential changes approximately linearly depending on the amount of charged air. If a display circuit operated by the potential of the potential storage element is provided, the purpose of predicting the life of the transformer can be achieved more accurately and easily. Next, an embodiment of the apparatus of the present invention will be explained in more detail with reference to a specific electric circuit diagram shown in FIG.

本発明装置は電源Sより変圧器Tを介して負荷Lへ送配
電される回線において、油温(θo)を白金抵抗THに
て検出し、巻線と油温との温度差(θ )は(4)式の
関連から負荷電流測定用変流器GCTlの2次電流から
更に補助変流器CT2にて検出する。
The device of the present invention detects the oil temperature (θo) using a platinum resistor TH in the line where power is transmitted and distributed from the power supply S to the load L via the transformer T, and the temperature difference (θ ) between the winding and the oil temperature is From the relationship of equation (4), the secondary current of the load current measuring current transformer GCTl is further detected by the auxiliary current transformer CT2.

これらを入力信号として変換するための入力変換部A,
Aからの信号を積分に必要なレベルに検出増巾するレベ
ル検出増巾部B、前記(1)式の寿命曲線に従う指数関
数増巾部C、この指数関数増巾部Cからの出力を電位記
憶素子MDにて積分し、この素子MDの電位変化を表示
する積算表示部D、測定期間を定める繰返しタイマーを
備えた測定期間設定部Gより構成される。
Input converter A for converting these as input signals,
A level detection amplification section B detects and amplifies the signal from A to a level required for integration, an exponential function amplification section C follows the life curve of the above equation (1), and the output from this exponential function amplification section C is set to a potential. It is composed of an integration display section D that integrates in the memory element MD and displays potential changes of this element MD, and a measurement period setting section G that includes a repeat timer that determines the measurement period.

尚、前記電位記憶素子MDは銀を主体とする陰極N及び
電位検出用の補助陰極N/と、カルコゲン化銀を主体と
する陽極Pとの間に高イオン伝導性を有する固体電解質
Eを挟持した一種の電池で、陽極Pから陰極N方向へ通
電(これを充電と称す)すれば陽極Pにおけるカルコゲ
ン化銀中の銀がイオンとなつて固体電解質Eを介して陰
極Nに析出し、又逆に陰極Nから陽極Pへ通電(これを
放電と称す)すると析出金属が陽極Pに再析出する。
Note that the potential storage element MD has a solid electrolyte E having high ionic conductivity sandwiched between a cathode N and an auxiliary cathode N/ for potential detection, which are mainly made of silver, and an anode P, which is mainly made of silver chalcogenide. In this type of battery, when electricity is applied from the anode P to the cathode N (this is called charging), the silver in the silver chalcogenide at the anode P becomes ions and is deposited on the cathode N via the solid electrolyte E, and Conversely, when electricity is applied from the cathode N to the anode P (this is called discharge), the deposited metal is redeposited on the anode P.

この素子の電位は陽極Pと補助陰極N′間で検出され、
通電々気量に応じて略直線的に変化する特性を有してい
る。さて、入力変換部Aは電源(E1)より抵抗R1を
介して白金抵抗THに電流を通じ、白金抵抗THの電圧
降下を油温(θo)の信号とし、これに加算されるよう
に補助変流器CT2の出力電圧をダイオードD1〜D4
で整流しコンデンサC1にて平滑して巻線と油温との温
度差(θ )の信号とすgる。
The potential of this element is detected between the anode P and the auxiliary cathode N',
It has a characteristic that changes approximately linearly depending on the amount of current applied. Now, the input converter A passes current from the power supply (E1) through the resistor R1 to the platinum resistor TH, and uses the voltage drop across the platinum resistor TH as a signal of the oil temperature (θo), and adds it to the auxiliary current transformer. The output voltage of the device CT2 is connected to the diodes D1 to D4.
It is rectified by , smoothed by capacitor C1, and is used as a signal of the temperature difference (θ) between the winding and the oil temperature.

但し(θ )は前記(4)式に示す如く係数(代)に0
g対して非直線特性であり、一方補助変流器CT2の出
力は係数(代)に対し比例する。
However, (θ) is a coefficient (substitute) of 0 as shown in equation (4) above.
g, and the output of the auxiliary current transformer CT2 is proportional to the coefficient.

従つてCT2の出力そのものでは誤差が多くなるのでそ
の変換回路が必要となる。この変換回路に指数増巾回路
を使用すればより正確であるが、係数(代)の範囲があ
る程度限定されているため第3図に示す如く理想特性1
に対し必要なKの範囲K1〜K2に近似する直線2で変
換してもそれほど大きな支障を招くことはない。
Therefore, since the output of CT2 itself has many errors, a conversion circuit is required. It would be more accurate if an exponential amplification circuit was used for this conversion circuit, but since the range of coefficients (substitutes) is limited to some extent, the ideal characteristic 1 as shown in Figure 3.
However, even if the conversion is performed using a straight line 2 that approximates the necessary K range K1 to K2, it will not cause much trouble.

本実施例は近似直線による方法であり、直線2で(KO
)のとき(θ,)が零となる様に補助変流器CT2の平
滑出力を(θo)の単位温度当りの出力電圧と一致させ
るため抵抗R2,R3にて調整した後、抵抗R4,R5
と(−E2)電源により減算させている。次にレベル検
出増巾部Bは前記入力変換部Aよりθ。
This example is a method using an approximate straight line, and on straight line 2 (KO
), the smoothed output of the auxiliary current transformer CT2 is adjusted to match the output voltage per unit temperature of (θo) so that (θ, ) becomes zero, and then the resistors R4 and R5 are adjusted.
and (-E2) are subtracted by the power supply. Next, the level detection amplifying section B receives θ from the input converting section A.

+θ8−θHの信号が入力される。この入力は次段の指
数関数増巾部Cに必要な電圧を得るため、基準巻線温度
(θHO)以上に相当する電圧を増巾するために(+E
2)電源を抵抗R7,R8により分割し、抵抗R,l,
R,3を介して増巾器0P1の非反転入力に入れ、又(
θH)の信号を抵抗Rl2を介して反転入力に入れる。
又、基準巻線温度(θHO)以下の温度に対応する電圧
は積分させないため増巾器0P2よりなる比較回路を設
けてあり、抵抗R8の電圧が抵抗R6を介して増巾器0
P2の非反転入力に、巻線温度(θH)に対応する電圧
が抵抗Rl5を介して反転入力に入つているため巻線温
度(θH)に対応する電圧が抵抗R8の電圧(基準巻線
温度に対応する電圧)より少しでも大きくなると増巾器
0P2の出力は正のステツプ電圧が生じ、トランジスタ
Q1を0NにしリレーLAが励磁されその接点a1が閉
じ電位記憶素子MDの充電回路を形成せしめる。
A signal of +θ8−θH is input. This input is used to amplify the voltage corresponding to the reference winding temperature (θHO) or higher (+E
2) The power supply is divided by resistors R7 and R8, and the resistors R, l,
R,3 to the non-inverting input of the amplifier 0P1, and (
A signal of θH) is input to the inverting input via the resistor Rl2.
In addition, since the voltage corresponding to the temperature below the reference winding temperature (θHO) is not integrated, a comparator circuit consisting of an amplifier 0P2 is provided, and the voltage of the resistor R8 is passed through the amplifier 0P2 through the resistor R6.
Since the voltage corresponding to the winding temperature (θH) is input to the non-inverting input of P2 via the resistor Rl5, the voltage corresponding to the winding temperature (θH) is the voltage of the resistor R8 (reference winding temperature (corresponding to the voltage), a positive step voltage is generated at the output of amplifier 0P2, transistor Q1 is turned ON, relay LA is energized, and its contact a1 is closed to form a charging circuit for potential storage element MD.

更に、(1)式に鑑みて電位記憶素子MDに印加する電
圧Mを正規寿命電圧(VO)に対して換算すると次式の
如くなる。
Furthermore, in view of equation (1), when the voltage M applied to the potential storage element MD is converted to the normal lifetime voltage (VO), the following equation is obtained.

v−VO×2(θH−θHO)/6 ・・・・・・(5
)(5)式において、例えば基準巻線温度(θHO)が
95℃で、且巻線温度(θH)が95℃のとき印加電圧
Mを0.1Vとしたとき、(θH)が1′55℃では(
ロ)は102.4V必要となり、増巾器の動作可能電圧
をはるかに越える。
v-VO×2(θH-θHO)/6 ・・・・・・(5
) In equation (5), for example, when the reference winding temperature (θHO) is 95°C, and when the winding temperature (θH) is 95°C and the applied voltage M is 0.1V, (θH) is 1'55 At ℃ (
(b) requires 102.4V, which far exceeds the operating voltage of the amplifier.

そこで増巾器が動作可能電圧の上限に相当する巻線温度
(θH1)にて入力レンジを切換える必要がある。この
様子を第4図に示している。
Therefore, it is necessary to switch the input range at the winding temperature (θH1) corresponding to the upper limit of the voltage at which the amplifier can operate. This situation is shown in FIG.

つまり要求される特性曲線1に対し、増巾器の動作可能
電圧の上限に相当する巻線温度(θH1)までは曲線1
の通りとし、(θH1)以上では再び(VO)からスタ
ートする曲線2になる様にする。この時、電位記憶素子
MDの充電量は減少するので印加電圧(ロ)が低下した
分だけ充電抵抗を切換えて減少させるのは当然である。
In other words, for the required characteristic curve 1, up to the winding temperature (θH1), which corresponds to the upper limit of the amplifier's operable voltage, curve 1
and above (θH1), curve 2 starts again from (VO). At this time, since the amount of charge in the potential storage element MD decreases, it is natural to switch the charging resistance to reduce it by the amount that the applied voltage (b) has decreased.

この充電抵抗の切換えのために増巾器0P3が設けてあ
り、抵抗R,,RlOにより(θH1)に相当する電位
を作り抵抗Rl8を介して増巾器0P3の非反転入力に
入れ、又抵抗R,7を介して(θH)に相当する電位を
反転入力に入れ、(θH)の電位が(θH1)の電位以
上になると、増巾器0P3の出力は正のステツプ電圧を
生じ、次段のトランジスノQ2は0Nとなり、リレーL
Bが励磁される。その結果リレーLBの第1接点b1が
閉じるため、(+E2)電源が抵抗R6を介して抵抗R
llに印加され、増巾器0P1の非反転入力は抵抗R8
の電圧に抵抗Rllの電圧を加えた電圧となり(θH,
)に相当にする電圧以上の増巾に切換えられる。
An amplifier 0P3 is provided to switch the charging resistance, and a potential corresponding to (θH1) is generated by the resistors R, , RlO and input to the non-inverting input of the amplifier 0P3 via the resistor Rl8. A potential corresponding to (θH) is input to the inverting input via R, 7, and when the potential of (θH) exceeds the potential of (θH1), the output of amplifier 0P3 generates a positive step voltage, which is applied to the next stage. transistor Q2 becomes 0N, relay L
B is excited. As a result, the first contact b1 of the relay LB is closed, so that the (+E2) power is supplied to the resistor R via the resistor R6.
ll, and the non-inverting input of amplifier 0P1 is connected to resistor R8.
The voltage is the sum of the voltage of the resistor Rll and the voltage of the resistor Rll (θH,
) can be switched to an amplification level higher than the voltage corresponding to the voltage.

又、これと同時にリレーLBの第2接点B2が閉じ、電
位記憶素子MDの充電抵抗は抵抗R35のみから抵抗R
35とR36の並列となり減少する。
At the same time, the second contact B2 of the relay LB closes, and the charging resistance of the potential storage element MD changes from only the resistor R35 to the resistor R.
35 and R36 are connected in parallel and decrease.

指数関数増巾部Cはレベル検出増巾部Bからの出力を抵
抗R2l,R22、電源(+E2)及び抵抗R23,R
24により必要な入力電圧に調整した後、トランジスタ
Q3のベースに印加される。そしてトランジスタQ3と
増巾器0P4にてトランジスタQ4のベース・エミッタ
間の電圧にレベルシフトさせる。この電圧はトランジス
タQ3のベース電圧により変化するためトランジス汐Q
4のコレクター電流は指数関数的に変わり、その結果増
巾器0P5の出力電圧は抵抗R29に流れるコレクタ電
流により指数関数変化となる。即ちこの指数関数増巾部
Cにより第(1)式に示した巻線温度(θH)と寿命7
との関係を満足させている。尚、増巾器0P5の出力電
圧の極性は正であるため、電位記憶素子MDを充電する
に容易な負極性電圧とするために増巾器0P6にて極性
反転させた後指数関数増巾部Cの出力とする。
Exponential function amplification section C connects the output from level detection amplification section B to resistors R2l, R22, power supply (+E2) and resistors R23, R.
24 to the required input voltage and then applied to the base of transistor Q3. Then, the level is shifted to the voltage between the base and emitter of the transistor Q4 using the transistor Q3 and the amplifier 0P4. Since this voltage changes depending on the base voltage of transistor Q3,
4 changes exponentially, and as a result, the output voltage of amplifier 0P5 changes exponentially due to the collector current flowing through resistor R29. In other words, the winding temperature (θH) and life 7 shown in equation (1) are determined by this exponential function amplification part C.
Satisfied with the relationship. Incidentally, since the polarity of the output voltage of the amplifier 0P5 is positive, the polarity is reversed by the amplifier 0P6 to make it a negative polarity voltage that is easy to charge the potential storage element MD, and then the exponential function amplifier Let it be the output of C.

積算表示部Dにおいては積算レベルにより励磁されるリ
レーLAの接点a1と充電抵抗R35或いは及びR36
を介して電位記憶素子MDを充電し、その充電々気量に
応じて変化する素子MDの出力電圧を増巾器0P7によ
り増巾し、その電位を表示計Mにて連続的に表示すると
共に前述の100%積分量(基準巻線温度で所定時間運
転した時の量)に達すると比較回路を構成する増巾器0
P8はその非反転入力に印加されている電圧、即ち電源
(−E2)を抵抗R43,R44で分割した電圧と反転
入力の電圧とが一致するので正のステツプ電圧を生じ、
トランジスタQ5が0Nとなると共にトランジスタQ,
のコレクノに接続された警報用の発光ダイオードD5が
点灯する。
In the integration display section D, the contact a1 of the relay LA and the charging resistor R35 or R36 are excited depending on the integration level.
The potential storage element MD is charged through the amplifier 0P7, and the output voltage of the element MD, which changes according to the charging capacity, is amplified by the amplifier 0P7, and the potential is continuously displayed on the display meter M. When the aforementioned 100% integral amount (the amount when operating for a predetermined time at the reference winding temperature) is reached, the amplifier 0 that constitutes the comparison circuit is activated.
P8 generates a positive step voltage because the voltage applied to its non-inverting input, that is, the voltage obtained by dividing the power supply (-E2) by resistors R43 and R44, matches the voltage at its inverting input.
As soon as the transistor Q5 becomes 0N, the transistor Q,
The alarm light emitting diode D5 connected to the collector lights up.

繰返しタイマーGは測定期間設定用であり、所定測定期
間経過後、そのタイマー接点gが閉じ電源(−E2)よ
り放電抵抗R37を介して電位記憶素子MDの積算充電
量を強制的に放電させる。
The repeat timer G is used to set a measurement period, and after a predetermined measurement period has elapsed, the timer contact g closes and the integrated charge of the potential storage element MD is forcibly discharged from the power supply (-E2) via the discharge resistor R37.

積算量が零になると増巾器0P7の出力も零となり比較
回路を構成する増巾器0P9はその反転入力が零になる
ため非反転入力の零と一致し、出力は正電圧となりトラ
ンジスタQ6が0Nし、リレーLcも励磁される。その
結果リレーLcの接点C1が開放して電位記憶素子MD
の放電が停止する。この放電終了後、タイマーGの接点
gは測定停止期間経過した後、再び開放され次の測定に
備える所謂自動くり返し測定を行うものである。以上の
動作を第5図の特性図より説明するに、第1回目の測定
イでは巻線温度(θH)は基準巻線温度(θHO)を維
持した場合であり、測定期間(t)(実線にはりセツト
時間t′が含まれるがt》t/に設定してあるため誤差
は無視できる)にて積分量が100%となり、電位記憶
素子MDの電位Eは測定期間(t)の満了時に所定値(
EO)になり、理想的な運転状態を示唆する。ついで放
電時間(tう、即ちりセツト後第2回目の測定に備える
。第2回目の測定岨ま巻線温度(θH)が基準巻線温度
(θHO)より高い場合であり、電位記憶素子MDの電
位が所定値(EO)に達するまでの時間(T2)は第1
回目の時間(t1)より早い。又、第3回目の測定ハは
更に巻線温度(θH)が高い場合を示すものである。上
述した如く、本発明装置は変圧器の寿命に密接に関連す
る巻線温度を、巻線温度が油温及び負荷の変動により関
数的に変化することに着目して巻線温度を電圧変換する
と共に更にこの電圧を巻線温度と変圧器の寿命との指数
的関連に基づき指数換算し、その電圧でもつて電位記憶
素子を充電し素子電位の変化を連続的に表示すると共に
予じめ設定された理想運転時の巻線温度×運転時間量と
を比較して過負荷状態の時に警報を発するようにしたも
のであり、定期的な巡視により積算値を見れば容易に寿
命の予測ができると共に寿命を短縮するような負荷状態
にあれば負荷を他の変圧器に接続して適正負荷に切換、
寿命に影響しない軽負荷であればこの負荷を他へ切換え
て設備を休止させるという様に合理的な運転ができるも
のである。
When the integrated amount becomes zero, the output of the amplifier 0P7 also becomes zero, and the inverting input of the amplifier 0P9 forming the comparison circuit becomes zero, so it matches the zero of the non-inverting input, and the output becomes a positive voltage and the transistor Q6 becomes 0N, and relay Lc is also excited. As a result, contact C1 of relay Lc opens and potential storage element MD
discharge stops. After the end of this discharge, the contact g of the timer G is opened again after the measurement stop period has elapsed to perform so-called automatic repeat measurement in preparation for the next measurement. To explain the above operation using the characteristic diagram in Figure 5, in the first measurement A, the winding temperature (θH) is maintained at the reference winding temperature (θHO), and the measurement period (t) (solid line The integration amount becomes 100% at the end of the measurement period (t), and the potential E of the potential storage element MD becomes 100% at the end of the measurement period (t). Predetermined value (
EO), suggesting ideal operating conditions. Next, prepare for the second measurement after the discharge time (t), that is, the dust is set. This is when the winding temperature (θH) at the end of the second measurement is higher than the reference winding temperature (θHO), and the potential storage element MD The time (T2) until the potential of reaches the predetermined value (EO) is the first
It is earlier than the second time (t1). Moreover, the third measurement C shows a case where the winding temperature (θH) is even higher. As described above, the device of the present invention converts the winding temperature, which is closely related to the life of the transformer, into voltage by focusing on the fact that the winding temperature changes functionally due to changes in oil temperature and load. Furthermore, this voltage is converted into an index based on the exponential relationship between the winding temperature and the life of the transformer, and this voltage is used to charge the potential storage element and continuously display changes in the element potential. The system compares the winding temperature during ideal operation x amount of operating time and issues an alarm when there is an overload condition.By checking the integrated value through regular inspections, it is possible to easily predict the lifespan. If there is a load condition that shortens the life of the transformer, connect the load to another transformer and switch to an appropriate load.
If the load is light and does not affect the service life, rational operation can be carried out by switching the load to another and stopping the equipment.

【図面の簡単な説明】 第1図は巻線温度対寿命を示す特性図、第2図は負荷率
対温度を示す特性図、第3図は巻線と油との温度差対負
荷率を示す特性図、第4図は巻線温度対出力電圧を示す
特性図、第5図は運転時間に対する巻線温度及び電位記
憶素子の電圧変化を夫々示す特性図、第6図は本発明装
置の一実施例の電気回路図である。 T・・・・・・変圧器、A・・・・−・入力変換部、B
・・・・・・レベル検出部、C・・・・・・指数関数変
換部、D・・・・・・表示部、G・・・・・・繰返しノ
イマ一、S・・・・・・電源、L・・・・・・負荷、C
Tl・・・・・・主変流器、CT2・・・・・・補助変
流器、TH・・・・・・白金抵抗、D1〜D4・・・・
・・整流用ダイオード、0P1〜0P9・・・・・・増
巾器、MD・・・・・・電位記憶素子、D5・・・・・
・発光ダイオード、M・・・・・・表示計、LA−LO
・・・・・・リレー、Q1〜Q6・・・・・・トランジ
スタ、C1・・・・・・平滑コンデンサ、R1〜R49
・・・・・・抵抗。
[Brief explanation of the drawings] Fig. 1 is a characteristic diagram showing the winding temperature versus life, Fig. 2 is a characteristic diagram showing load factor versus temperature, and Fig. 3 is a characteristic diagram showing the temperature difference between the winding and oil versus load factor. FIG. 4 is a characteristic diagram showing the winding temperature versus output voltage, FIG. 5 is a characteristic diagram showing the winding temperature and potential storage element voltage change with respect to operating time, and FIG. 6 is a characteristic diagram showing the winding temperature versus output voltage. FIG. 2 is an electrical circuit diagram of one embodiment. T...Transformer, A...--Input converter, B
...Level detection unit, C...Exponential function conversion section, D...Display section, G...Repetition neumar, S... Power supply, L...Load, C
Tl...Main current transformer, CT2...Auxiliary current transformer, TH...Platinum resistor, D1-D4...
... Rectifying diode, 0P1 to 0P9 ... Amplifier, MD ... Potential storage element, D5 ...
・Light-emitting diode, M...Display meter, LA-LO
...Relay, Q1-Q6...Transistor, C1...Smoothing capacitor, R1-R49
······resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 変圧器の油温を検出して電圧変換する第1の検出回
路と、前記変圧器の負荷電流を検出する第2の検出回路
と、該第2の検出電圧を巻線と油との温度差に対応せる
電圧に換算する換算回路と、これら各検出電圧の総和が
所定値以上の時のみ作動するレベル検出回路と、前記総
和電圧を変圧器の寿命に対応せる電圧に変換する指数関
数回路と、繰返しタイマーによりその充放電時間が規制
されると共に前記指数関数回路の出力で充電されその通
電々気量に応じてその電位が略直線的に変化する電位記
憶素子と、該素子の電位変化に応動する表示回路とを備
えた変圧器の運転状態を表示し寿命を予測するための装
置。
1 A first detection circuit that detects the oil temperature of the transformer and converts it into voltage; a second detection circuit that detects the load current of the transformer; A conversion circuit that converts into a voltage corresponding to the difference, a level detection circuit that operates only when the sum of these detected voltages exceeds a predetermined value, and an exponential function circuit that converts the summed voltage into a voltage that corresponds to the life of the transformer. and a potential storage element whose charging/discharging time is regulated by a repeat timer and which is charged by the output of the exponential function circuit and whose potential changes approximately linearly according to the amount of current supplied thereto, and a potential change of the element. A device for displaying the operating status of a transformer and predicting its lifespan, which is equipped with a display circuit that responds to the current state of the transformer.
JP50083076A 1975-07-04 1975-07-04 Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi Expired JPS592866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50083076A JPS592866B2 (en) 1975-07-04 1975-07-04 Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50083076A JPS592866B2 (en) 1975-07-04 1975-07-04 Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi

Publications (2)

Publication Number Publication Date
JPS526925A JPS526925A (en) 1977-01-19
JPS592866B2 true JPS592866B2 (en) 1984-01-20

Family

ID=13792075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50083076A Expired JPS592866B2 (en) 1975-07-04 1975-07-04 Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi

Country Status (1)

Country Link
JP (1) JPS592866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210728B2 (en) * 1982-07-12 1990-03-09 Nitsusan Jidosha Kk

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163054U (en) * 1979-05-14 1980-11-22
JPS55157936A (en) * 1979-05-25 1980-12-09 Tokyo Shibaura Electric Co Transformer operation monitor control device
JPS5748209A (en) * 1980-09-05 1982-03-19 Hitachi Ltd Control method for operation of transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499641A (en) * 1972-05-29 1974-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499641A (en) * 1972-05-29 1974-01-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210728B2 (en) * 1982-07-12 1990-03-09 Nitsusan Jidosha Kk

Also Published As

Publication number Publication date
JPS526925A (en) 1977-01-19

Similar Documents

Publication Publication Date Title
KR102554612B1 (en) Measuring apparatus of battery internal resistance and method of measuring same
US4677363A (en) Method of and apparatus for monitoring the state of charge of a rechargeable battery
US3753094A (en) Ohmmeter for measuring the internal resistance of a battery and directly reading the measured resistance value
KR100849114B1 (en) A method of predicting the state of charge as well as the use time left of a rechargeable battery
JP6564647B2 (en) Battery degradation state estimation device and degradation state estimation method thereof
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
US8198863B1 (en) Model-based battery fuel gauges and methods
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
KR20180122378A (en) Battery monitoring device and method
US4714868A (en) Charging and discharging control circuit for a storage battery
KR20120056200A (en) Battery monitoring apparatus and battery monitoring method
KR20010052705A (en) Method of and device for determining the charge condition of a battery
CN203405512U (en) Lead acid storage battery shorting current and internal resistance level testing device
CN111999608A (en) Monitoring method and monitoring system of distribution transformer and intelligent terminal
JPH08179018A (en) Residual capacity display device for secondary battery
JPS592866B2 (en) Hengatsukinountenjiyoutaiohiyoujishijiyumiyouoyosokusultamenosouchi
JPS59178376A (en) Method and device for measuring state of discharge of battery
JPH09139236A (en) Display device for battery residual capacity and remaining time
JP3075103B2 (en) Battery capacity measuring method and circuit
KR19980079177A (en) Portable computer and remaining power display method with voltage display function of rechargeable battery
JPS61209372A (en) Circuit for confirming residual power quantity in battery
JP3019353B2 (en) Charging device
JPH04208873A (en) Apparatus for detecting life of capacitor
JPS63208773A (en) Monitoring device for remaining capacity of storage battery
JP2014149165A (en) Dc power supply apparatus, degradation determination method of storage battery in dc power supply apparatus, storage battery degradation determination apparatus