JP3075103B2 - Battery capacity measuring method and circuit - Google Patents
Battery capacity measuring method and circuitInfo
- Publication number
- JP3075103B2 JP3075103B2 JP06262361A JP26236194A JP3075103B2 JP 3075103 B2 JP3075103 B2 JP 3075103B2 JP 06262361 A JP06262361 A JP 06262361A JP 26236194 A JP26236194 A JP 26236194A JP 3075103 B2 JP3075103 B2 JP 3075103B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- storage battery
- discharge
- time
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Stand-By Power Supply Arrangements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、交流または直流を入力
とする電力変換装置とバックアップ用蓄電池で構成され
る無停電給電システムにおいて、使用中の蓄電池容量を
測定するための、容量測定方法とその実現回路構成に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity measuring method for measuring the capacity of a storage battery in use in an uninterruptible power supply system comprising a power conversion device having AC or DC input and a backup storage battery. This is related to the circuit configuration for realizing it.
【0002】[0002]
【従来の技術】従来の容量試験方法を図9に示す。図9
において、1は交流または直流電源、2は電力変換装
置、3は蓄電池、4は負荷装置、5は切替スイッチ、6
は放電用定電流負荷である。本方法では、通常電力変換
装置2の出力端子に並列に接続されている蓄電池3を切
り離し、放電用定電流負荷6に接続することにより所定
の電流で放電させ、蓄電池3の端子電圧が放電終止電圧
に達するまでの時間を測定し、放電電流値Iと放電時間
tの積It(Ah)を求める。簡易的に行うには放電用
定電流負荷6は単なる抵抗を用いる場合もある。本方法
は蓄電池3の容量は正確に把握できるが、測定時間が長
くかかる上、測定中は蓄電池3が給電系から切り離され
るためこの時に停電が発生すると負荷装置4へ給電が継
続できないという欠点がある。負荷装置4が交換機や伝
送装置等の通信装置である場合は、本停電の影響は非常
に大きくなる。2. Description of the Related Art FIG. 9 shows a conventional capacity test method. FIG.
, 1 is an AC or DC power supply, 2 is a power conversion device, 3 is a storage battery, 4 is a load device, 5 is a changeover switch, 6
Is a constant current load for discharging. In this method, the storage battery 3 connected in parallel to the output terminal of the normal power converter 2 is disconnected and connected to the constant current load 6 for discharging to discharge at a predetermined current, and the terminal voltage of the storage battery 3 is terminated. The time until the voltage is reached is measured, and the product It (Ah) of the discharge current value I and the discharge time t is obtained. For simple operation, the discharge constant current load 6 may use a simple resistor. Although this method can accurately grasp the capacity of the storage battery 3, the measurement time is long and the storage battery 3 is disconnected from the power supply system during the measurement. Therefore, if a power failure occurs at this time, the power supply to the load device 4 cannot be continued. is there. When the load device 4 is a communication device such as an exchange or a transmission device, the effect of the power outage becomes very large.
【0003】測定中に蓄電池が給電系から切り離される
という欠点を解決するため、従来、図10のような方法
も行われていた。図10において1〜4は図9と同様で
あり、7は最低電圧の電池セル、8は切替スイッチ、9
は放電用定電流負荷、10は放電した電池セルを再充電
する充電器、11は交流または直流電源である。図10
の方法では、蓄電池3の全てのセル電圧を予め測定して
おき、その中でも最も低い電圧のセルについて上記の様
な放電試験を行い、その放電電流値Iと放電時間tの積
It(Ah)を求めていた。本方法によると、複数のセ
ルで構成される蓄電池3の1セルのみの放電であるた
め、例え試験中に停電が発生したとしても、蓄電池3の
電圧は最大でセル1個分の電圧が低下するだけであり、
負荷装置4への給電を継続できる。In order to solve the disadvantage that the storage battery is disconnected from the power supply system during the measurement, a method as shown in FIG. 10 has been conventionally used. In FIG. 10, 1-4 are the same as in FIG. 9, 7 is the battery cell of the lowest voltage, 8 is a changeover switch, 9
Is a constant current load for discharging, 10 is a charger for recharging the discharged battery cells, and 11 is an AC or DC power supply. FIG.
In the method (1), all cell voltages of the storage battery 3 are measured in advance, and a discharge test as described above is performed on the cell having the lowest voltage, and the product It (Ah) of the discharge current value I and the discharge time t is performed. I was seeking. According to this method, since only one cell of the storage battery 3 composed of a plurality of cells is discharged, even if a power failure occurs during the test, the voltage of the storage battery 3 is reduced by a maximum of one cell. Just do
Power supply to the load device 4 can be continued.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、本方法
によっても測定時間の短縮は図れず、さらに予め全ての
セル電圧を計っておかなければならないという不便さが
ある。さらに本方法を繰り返し行うと、容量試験を実施
するセルが常に同じとなる傾向があり、容量が少なく劣
化し始めているセルの劣化をさらに早めるという欠点が
新たに発生する。However, even with this method, the measurement time cannot be shortened, and further, there is the inconvenience that all cell voltages must be measured in advance. Further, when this method is repeatedly performed, the cell on which the capacity test is performed tends to be always the same, and a new defect that the deterioration of the cell whose capacity is beginning to deteriorate is further accelerated is newly generated.
【0005】本発明は上記の事情に鑑みてなされたもの
で、比較的短時間で測定でき、測定中に停電が発生して
も給電を継続でき、さらに特定の電池セルの劣化を早め
ることのない蓄電池容量測定方法及び回路を提供するこ
とを目的とする。[0005] The present invention has been made in view of the above circumstances, and can measure in a relatively short time, can continue power supply even if a power failure occurs during measurement, and can further accelerate the deterioration of a specific battery cell. It is an object of the present invention to provide a storage battery capacity measurement method and circuit.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明の蓄電池容量測定方法は、交流電源または直流
電源を入力として負荷装置に必要な直流電圧を出力する
電力変換装置、及び電力変換装置出力端子に並列に接続
され電力変換装置動作時は浮動充電され電力変換装置停
止時は負荷に電力を供給する蓄電池によって構成される
無停電給電システムにおいて、電力変換装置の出力設定
電圧を蓄電池の放電終止電圧より高い負荷装置が正常動
作を維持できる電圧まで低下させ、蓄電池を放電状態に
して放電電圧特性がほぼ直線的に低下する放電開始後ほ
ぼ30秒〜5分の第1の実放電時間および蓄電池全放電
量のほぼ30%以下の第2の実放電時間、もしくは前記
第1の実放電時間および前記第2の実放電時間および前
記第1の実放電時間と前記第2の実放電時間間の1以上
の実放電時間において蓄電池の端子電圧を測定し、その
端子電圧の低下速度により放電終止電圧に至る時間を推
定する。In order to achieve the above object, a storage battery capacity measuring method according to the present invention provides a power converter for outputting a DC voltage required for a load device with an AC power supply or a DC power supply as an input, and a power converter. In an uninterruptible power supply system connected in parallel to the device output terminal and configured by a storage battery that is floatingly charged during operation of the power converter and supplies power to the load when the power converter is stopped, the output set voltage of the power converter is stored in the storage battery. The load is lowered to a voltage at which the load device higher than the discharge end voltage can maintain normal operation, the storage battery is discharged, and the discharge voltage characteristic decreases almost linearly.
First actual discharge time of about 30 seconds to 5 minutes and full discharge of storage battery
A second actual discharge time less than or equal to about 30% of the
A first actual discharge time and the second actual discharge time and
At least one between the first actual discharge time and the second actual discharge time;
During the actual discharge time, the terminal voltage of the storage battery is measured, and the time required to reach the discharge termination voltage is estimated based on the rate of decrease in the terminal voltage.
【0007】又、本発明の蓄電池容量測定方法は、前記
蓄電池容量測定方法において、蓄電池放電状態における
端子電圧を、測定時の電池温度から基準温度における電
圧に、測定時の電池放電電流から基準放電電流における
電圧に、それぞれ補正した後、その補正後の端子電圧の
低下速度により放電終止電圧に至る時間を推定する。Further, in the battery capacity measuring method according to the present invention, in the battery capacity measuring method, the terminal voltage in the battery discharged state is changed from the battery temperature at the time of measurement to the voltage at the reference temperature, and the terminal discharge voltage is measured from the battery discharge current at the time of the reference discharge. After correcting the voltage in the current, respectively, the time until the discharge end voltage is estimated from the rate of decrease of the terminal voltage after the correction.
【0008】又、本発明の蓄電池容量測定回路は、交流
電源または直流電源を入力として負荷装置に必要な直流
電圧を出力する電力変換装置、及び電力変換装置出力端
子に並列に接続され電力変換装置動作時は浮動充電され
電力変換装置停止時は負荷に電力を供給する蓄電池によ
って構成される無停電給電システムにおいて、電力変換
装置の出力電圧を低下させる手段と、蓄電池端子電圧を
測定する手段と、外部信号をトリガとして電力変換装置
の出力電圧を蓄電池の放電終止電圧より高い負荷装置が
正常動作を維持できる電圧まで低下させる信号と出力電
圧低下信号発生期間中に放電電圧特性がほぼ直線的に低
下する放電開始後ほぼ30秒〜5分の第1の実放電時間
および蓄電池全放電量のほぼ30%以下の第2の実放電
時間、もしくは前記第1の実放電時間および前記第2の
実放電時間および前記第1の実放電時間と前記第2の実
放電時間間の1以上の実放電時間にタイミング信号を発
生するタイミング信号発生回路と、前記タイミング信号
によって蓄電池端子電圧信号を通過させるゲート回路
と、ゲート回路出力信号を記憶するメモリ回路と、メモ
リ回路のデータを基に残放電時間を求める演算回路とを
具備することを特徴とするものである。[0008] A storage battery capacity measuring circuit according to the present invention comprises: a power converter for inputting an AC power supply or a DC power supply and outputting a DC voltage required for a load device; and a power converter connected in parallel to a power converter output terminal. In an uninterruptible power supply system configured by a storage battery that is floatingly charged during operation and supplies power to a load when the power conversion device is stopped, a unit that reduces an output voltage of the power conversion device, a unit that measures a storage battery terminal voltage, A load device whose output voltage is higher than the discharge end voltage of the storage battery using an external signal as a trigger
The discharge voltage characteristics are almost linearly low during the period during which the signal that reduces the voltage to maintain normal operation and the output voltage drop signal is generated.
First actual discharge time of about 30 seconds to 5 minutes after the start of discharge
And the second actual discharge of approximately 30% or less of the total discharge amount of the storage battery
Time, or the first actual discharge time and the second
The actual discharge time, the first actual discharge time, and the second actual discharge time
A timing signal generation circuit for generating a timing signal at one or more actual discharge times between discharge times , a gate circuit for passing a battery terminal voltage signal by the timing signal, a memory circuit for storing a gate circuit output signal, and a memory circuit And an arithmetic circuit for calculating the remaining discharge time based on the data of (1).
【0009】又、本発明の蓄電池容量測定回路は、交流
電源または直流電源を入力として負荷装置に必要な直流
電圧を出力する電力変換装置、及び電力変換装置出力端
子に並列に接続され電力変換装置動作時は浮動充電され
電力変換装置停止時は負荷に電力を供給する蓄電池によ
って構成される無停電給電システムにおいて、電力変換
装置の出力電圧を低下させる手段と、蓄電池端子電圧、
蓄電池放電電流、蓄電池温度をそれぞれ測定する手段
と、外部信号をトリガとして電力変換装置の出力電圧を
蓄電池の放電終止電圧より高い負荷装置が正常動作を維
持できる電圧まで低下させる信号と出力電圧低下信号発
生期間中に放電電圧特性がほぼ直線的に低下する放電開
始後ほぼ30秒〜5分の第1の実放電時間および蓄電池
全放電量のほぼ30%以下の第2の実放電時間、もしく
は前記第1の実放電時間および前記第2の実放電時間お
よび前記第1の実放電時間と前記第2の実放電時間間の
1以上の実放電時間にタイミング信号を発生するタイミ
ング信号発生回路と、前記タイミング信号によって蓄電
池端子電圧、蓄電池放電電流、蓄電池温度信号を通過さ
せるゲート回路と、ゲート回路出力信号を記憶するメモ
リ回路と、メモリ回路のデータを基に残放電時間を求め
る演算回路とを具備することを特徴とするものである。Further, a storage battery capacity measuring circuit according to the present invention is a power converter for receiving an AC power supply or a DC power supply and outputting a DC voltage required for a load device, and a power converter connected in parallel to a power converter output terminal. In an uninterruptible power supply system configured by a storage battery that is floatingly charged during operation and supplies power to a load when the power conversion device is stopped, means for lowering an output voltage of the power conversion device, a storage battery terminal voltage,
Means for measuring the storage battery discharge current and the storage battery temperature, respectively, and the output voltage of the power conversion device triggered by an external signal.
Load devices that are higher than the storage battery discharge end voltage maintain normal operation.
Discharge during which the voltage drop to a level that can be maintained and the discharge voltage characteristics drop almost linearly during the output voltage drop signal generation period.
First actual discharge time and storage battery of approximately 30 seconds to 5 minutes after start
A second actual discharge time of approximately 30% or less of the total discharge amount, or
Are the first actual discharge time and the second actual discharge time
And between the first actual discharge time and the second actual discharge time
A timing signal generation circuit for generating a timing signal during one or more actual discharge times , a gate circuit for passing a storage battery terminal voltage, a storage battery discharge current, and a storage battery temperature signal by the timing signal; and a memory circuit for storing a gate circuit output signal. And an arithmetic circuit for calculating the remaining discharge time based on the data of the memory circuit.
【0010】[0010]
【作用】上記手段により本発明は、無停電電源システム
に組み込まれた蓄電池を切り離すことなく、電力変換装
置の出力電圧を負荷装置が許容する範囲で低下させ、実
際の負荷装置を用いて蓄電池を短時間放電させ、その低
下速度から蓄電池容量を求めることを主要な特徴とす
る。従来の技術において、別の放電用負荷を用い、放電
終止電圧まで放電試験していた所が異なっている。According to the above-mentioned means, the present invention reduces the output voltage of the power conversion device within the range permitted by the load device without disconnecting the storage battery incorporated in the uninterruptible power supply system, and stores the storage battery using the actual load device. The main feature is that the battery is discharged for a short time and the storage battery capacity is determined from the rate of decrease. This is different from the conventional technique in that a discharge test is performed up to the discharge end voltage using another discharge load.
【0011】[0011]
【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。 [実施例1]図1、図2は請求項1に対応する実施例で
あって、図1は構成説明図、図2は動作を説明すると特
性図である。図1において、1は交流または直流電源、
2は電力変換装置、3は蓄電池、4は負荷装置であり、
図2において、VF は浮動充電電圧(電力変換装置定常
時出力設定電圧)、VE は放電終止電圧(負荷装置許容
最低入力電圧)、t1 ,t2 は実放電時間、V1 ,V2
は実放電時間における蓄電池端子電圧、VA は電力変換
装置出力低下時設定電圧である。Embodiments of the present invention will be described below in detail with reference to the drawings. [Embodiment 1] FIGS. 1 and 2 show an embodiment corresponding to claim 1. FIG. 1 is an explanatory diagram of the configuration, and FIG. 2 is a characteristic diagram for explaining the operation. In FIG. 1, 1 is an AC or DC power supply,
2 is a power converter, 3 is a storage battery, 4 is a load device,
In FIG. 2, V F is floating charge voltage (power converter steady output setting voltage), V E is the discharge end voltage (load device allowable minimum input voltage), t 1, t 2 is the real discharging time, V 1, V Two
Is the storage battery terminal voltage during the actual discharge time, and VA is the set voltage when the output of the power converter drops.
【0012】本実施例における動作を説明する。まず定
常動作時は図1(a)に示すように、交流または直流電
源1を入力として電力変換装置2が出力電圧VF (図2
における浮動充電電圧)を出力し、蓄電池3を浮動充電
しながら、負荷装置4に電力を供給している。電力変換
装置2の出力電圧は、入力交流または直流電源1の電圧
が変動したり出力電流が変動した場合でも常に一定電圧
VF を出力できるような安定化機能を有している。この
ような構成で交流または直流電源1からの給電が一定時
間以上(通常24時間以上)継続している場合は、蓄電
池3は満充電状態であるため、蓄電池3の充電電流(浮
動充電電流)は僅かであり、電力変換装置2の出力する
電流の大部分は負荷電流として負荷装置4に供給されて
いる。The operation of this embodiment will be described. First, at the time of steady operation, as shown in FIG. 1A, an AC or DC power supply 1 is input and the power converter 2 outputs an output voltage V F (FIG.
At the same time, and supplies the power to the load device 4 while floating charging the storage battery 3. The output voltage of the power converter 2 has always stabilizing function that can output a constant voltage V F even when the voltage of the input AC or DC power source 1 varies or the output current fluctuates. In such a configuration, when power supply from the AC or DC power supply 1 has continued for a certain period of time or more (usually for 24 hours or more), the storage battery 3 is in a fully charged state, and the charging current of the storage battery 3 (floating charging current) Is small, and most of the current output from the power conversion device 2 is supplied to the load device 4 as a load current.
【0013】次に、図1(b)のように電力変換装置2
の出力設定電圧をVA (図2における出力低下時設定電
圧)に低下する。ただしVA は蓄電池3の放電終止電圧
すなわち負荷装置許容最低入力電圧VE より高い値とす
る。電力変換装置2は一定電圧VA を出力するため、蓄
電池3の端子電圧の方が高くなり、負荷装置4へは蓄電
池3から電力を供給する。この状態で蓄電池3の端子電
圧を測定すると、電力変換装置2からは給電されないた
め、蓄電池3の放電特性(図2)がそのまま表れる。こ
こで時間t1 と時間t2 において蓄電池電圧V1 とV2
を測定すると、放電終止電圧VE に至る時間tE は、放
電電圧特性がほぼ直線的に低下するとして以下の式で求
められる。Next, as shown in FIG.
Is reduced to V A (the set voltage at the time of output decrease in FIG. 2). However V A is higher than the discharge end voltage or load apparatus allowable minimum input voltage V E of the battery 3. Since the power converter 2 outputs the constant voltage VA , the terminal voltage of the storage battery 3 becomes higher, and power is supplied from the storage battery 3 to the load device 4. When the terminal voltage of the storage battery 3 is measured in this state, power is not supplied from the power conversion device 2, so that the discharge characteristics of the storage battery 3 (FIG. 2) appear as they are. Here, at time t 1 and time t 2 , the storage battery voltages V 1 and V 2
Is measured, the time t E required to reach the discharge end voltage V E can be obtained by the following equation, assuming that the discharge voltage characteristics decrease almost linearly.
【0014】tE =t1 +{(VE −V1 )/(V2 −
V1 )}(t2 −t1 ) 時間t1 としては放電開始後30秒〜5分程度、t2 と
しては蓄電池全放電量の30%程度以下の放電時間(例
えば10時間率の放電であれば3時間以内)を用いる。[0014] t E = t 1 + {( V E -V 1) / (V 2 -
V 1 )} (t 2 −t 1 ) The time t 1 is about 30 seconds to 5 minutes after the start of discharge, and the time t 2 is a discharge time of about 30% or less of the total discharge amount of the storage battery (for example, a discharge at a rate of 10 hours). If there is, use within 3 hours).
【0015】また蓄電池容量Qは、負荷電流の平均値I
を用いて、 Q=I・tE で求められる。なおここで測定時刻は2ポイントで例示
したが、t1 〜t2 の間を分割して3ポイント以上測定
して、放電電圧特性カーブをより正確に推定することも
可能である。The storage battery capacity Q is an average value I of load current.
And Q = I · t E. Note here measurement time has been illustrated in two points, as measured over 3 points is divided between t 1 ~t 2, it is also possible to estimate the discharge voltage characteristics curves more precisely.
【0016】以上のように動作することによって、蓄電
池3の容量を比較的短時間で推定することができる。蓄
電池3は測定中も給電系から切り離されていないため、
測定中に停電が発生したとしても負荷装置4への給電を
継続できる特徴がある。また万一蓄電池3の容量が劣化
等によって著しく低下していた場合にも、停電状態でな
い限り電力変換装置2が負荷装置4の許容最低入力電圧
以上の電圧を出力し、負荷装置4への給電を継続するの
で、給電を停止することはない。従って本実施例による
と、従来例と比べて、給電系の高信頼度を維持しながら
蓄電池の容量測定ができるという特徴がある。また別の
従来例で示したような、個々の電池セルの電圧を予め測
定しておく煩雑さや、特定の電池セルの劣化を早めるこ
ともない。 [実施例2]図3、図4は請求項2の動作を説明する図
である。本実施例における動作は、実施例1と同様に、
まず定常動作時は図1(a)に示すように、交流または
直流電源1を入力として電力変換装置2が一定の出力電
圧VF (図2における浮動充電電圧)を出力し、蓄電池
3を浮動充電しながら、負荷装置4に電力を供給してい
る。次に、図1(b)のように電力変換装置2の出力設
定電圧をVA (図2における出力低下時設定電圧)に低
下する。電力変換装置2は一定電圧VA を出力するた
め、蓄電池3の端子電圧の方が高くなり、負荷装置4へ
は蓄電池3から電力を供給する。この状態で蓄電池3の
端子電圧を測定すると、電力変換装置2からは給電され
ないため、蓄電池3の放電特性(図2)がそのまま表れ
る。ここで時間t1 と時間t2 において蓄電池電圧V1
とV2 、放電電流I1 とI2 、電池温度T1 とT2 を測
定する。蓄電池電圧は温度や放電電流によってそれぞれ
図3、図4のように変化するため、検出した蓄電池電圧
V1 ,V2 を以下の式で基準温度と基準放電電流におけ
る値V10,V20に補正する。以下の式は蓄電池電圧が温
度や放電電流に対してリニアに変化した場合を想定して
いる。By operating as described above, the capacity of the storage battery 3 can be estimated in a relatively short time. Since the storage battery 3 is not disconnected from the power supply system during the measurement,
There is a feature that the power supply to the load device 4 can be continued even if a power failure occurs during the measurement. Also, in the event that the capacity of the storage battery 3 is significantly reduced due to deterioration or the like, the power conversion device 2 outputs a voltage equal to or higher than the minimum allowable input voltage of the load device 4 and supplies power to the load device 4 unless a power failure occurs. Therefore, the power supply is not stopped. Therefore, the present embodiment is characterized in that the capacity of the storage battery can be measured while maintaining high reliability of the power supply system as compared with the conventional example. Further, as described in another conventional example, it is not necessary to measure the voltage of each battery cell in advance, nor to accelerate the deterioration of a specific battery cell. [Embodiment 2] FIGS. 3 and 4 are diagrams for explaining the operation of claim 2. FIG. The operation in this embodiment is the same as in the first embodiment.
First, during a steady operation, as shown in FIG. 1A, an AC or DC power supply 1 is input, the power converter 2 outputs a constant output voltage V F (floating charging voltage in FIG. 2), and the storage battery 3 floats. Power is supplied to the load device 4 while charging. Next, as shown in FIG. 1B, the output set voltage of the power converter 2 is reduced to V A (the output drop set voltage in FIG. 2). Since the power converter 2 outputs the constant voltage VA , the terminal voltage of the storage battery 3 becomes higher, and power is supplied from the storage battery 3 to the load device 4. When the terminal voltage of the storage battery 3 is measured in this state, power is not supplied from the power conversion device 2, so that the discharge characteristics of the storage battery 3 (FIG. 2) appear as they are. Here, at time t 1 and time t 2 , the storage battery voltage V 1
And V 2 , discharge currents I 1 and I 2 , and battery temperatures T 1 and T 2 . Since the storage battery voltage changes as shown in FIGS. 3 and 4 depending on the temperature and the discharge current, the detected storage battery voltages V 1 and V 2 are corrected to values V 10 and V 20 at the reference temperature and the reference discharge current by the following equations. I do. The following equation assumes that the storage battery voltage changes linearly with temperature and discharge current.
【0017】V10=V1 /{1+α(T1 −T0 )−β
(I1 −I0 )} V20=V2 /{1+α(T2 −T0 )−β(I2 −I
0 )} ここで、α,βはそれぞれ温度、放電電流に対する電圧
変化の比例定数であり、例えば1000Ahのシール鉛
蓄電池で10時間率〜5時間率の放電条件においてα=
0.5mV/deg、β=1mV/A程度である。V 10 = V 1 / {1 + α (T 1 −T 0 ) −β
(I 1 −I 0 )} V 20 = V 2 / {1 + α (T 2 −T 0 ) −β (I 2 −I
0 )} Here, α and β are proportional constants of voltage change with respect to temperature and discharge current, respectively. For example, in a 1000 Ah sealed lead-acid battery, α = β under a discharge condition of 10 hours to 5 hours.
0.5 mV / deg and β = 1 mV / A.
【0018】次に、放電終止電圧VE に至る時間tE は
以下の式で求められる。 tE =t1 +{(VE −V10)/(V20−V10)}(t
2 −t1 ) t1 ,t2 の値は実施例1と同様である。Next, the time t E to reach the discharge end voltage V E is obtained by the following expression. t E = t 1 + {(V E −V 10 ) / (V 20 −V 10 )} (t
2- t 1 ) The values of t 1 and t 2 are the same as in the first embodiment.
【0019】また蓄電池容量Qは、負荷電流の平均値I
を用いて、 Q=I・tE で求められる。なお測定点(時刻)を増加して放電カー
ブをより正確に表現することや、温度と放電電流に対す
る電圧の補正について他の方法を用いることも可能であ
る。The storage battery capacity Q is the average value I of the load current.
Using, obtained by Q = I · t E. It is also possible to increase the number of measurement points (time) to express the discharge curve more accurately, or to use other methods for correcting the voltage with respect to the temperature and the discharge current.
【0020】以上のように動作することによって、温度
や負荷電流が変化した場合においても、蓄電池の容量を
比較的短時間で推定することができる。また本実施例に
よると、実施例1と同様に、従来例と比べて、給電系の
高信頼度を維持しながら蓄電池の容量測定ができ、また
個々の電池セルの電圧を予め測定しておく煩雑さや、特
定の電池セルの劣化を早めることもないという特徴があ
る。 [実施例3]図5は請求項3に対応した実施例の構成説
明図、図7は図5の各部の動作波形図を示している。図
5において、1は交流または直流電源、2は電力変換装
置、3は蓄電池、4は負荷装置、12は電力変換装置入
力端子、13は整流・平滑部、14はインバータ部、1
5はトランス、16は整流・平滑部、17は電力変換装
置出力端子、18は比較器、19は誤差増幅器、20は
発振器、21は基準電圧、22,23は抵抗、24は容
量試験回路、25は測定開始トリガ信号入力端子、26
は放電時間出力端子、27は測定トリガを入力として基
準電圧を変化させる信号bとメモリへのデータ取込みタ
イミングを指定する信号cを出力するタイミング信号発
生回路、28はタイミング信号発生回路出力信号cで指
定された時刻に蓄電池電圧データを取り込むためのゲー
ト回路、29はタイミング信号発生回路出力信号cで指
定された時刻とその蓄電池電圧データを記憶するメモリ
回路、30はメモリ回路に記憶された時刻および電圧デ
ータをもとに放電残時間を算出する演算回路である。By operating as described above, the capacity of the storage battery can be estimated in a relatively short time even when the temperature or the load current changes. Further, according to the present embodiment, similarly to the first embodiment, the capacity of the storage battery can be measured while maintaining high reliability of the power supply system as compared with the conventional example, and the voltage of each battery cell is measured in advance. There is a feature that it does not complicate or accelerate the deterioration of a specific battery cell. [Embodiment 3] FIG. 5 is an explanatory view of the structure of an embodiment according to claim 3, and FIG. 7 is an operation waveform diagram of each part of FIG. In FIG. 5, 1 is an AC or DC power supply, 2 is a power converter, 3 is a storage battery, 4 is a load device, 12 is an input terminal of a power converter, 13 is a rectifying / smoothing unit, 14 is an inverter unit,
5 is a transformer, 16 is a rectifying / smoothing unit, 17 is a power converter output terminal, 18 is a comparator, 19 is an error amplifier, 20 is an oscillator, 21 is a reference voltage, 22 and 23 are resistors, 24 is a capacitance test circuit, 25 is a measurement start trigger signal input terminal, 26
Is a discharge time output terminal, 27 is a timing signal generating circuit which outputs a signal b for changing a reference voltage and a signal c for designating a data fetch timing to a memory by using a measurement trigger as an input, and 28 is a timing signal generating circuit output signal c. A gate circuit for taking in the battery voltage data at a designated time; 29, a memory circuit for storing the battery voltage data at the time designated by the timing signal generating circuit output signal c; This is an arithmetic circuit for calculating the remaining discharge time based on the voltage data.
【0021】図5の動作を説明する。電力変換装置2の
内部では、交流または直流電源1の入力を整流・平滑部
13で直流電圧に変換後、インバータ部14で高周波交
流電圧に変換してトランス15で昇降圧し、整流・平滑
部16で直流電圧に変換して出力される。出力電圧は抵
抗22,23で分圧した後、誤差増幅器19で基準電圧
21と比較される。誤差増幅器19の出力は発振器20
の鋸歯状波等と比較器18で比較され、パルス信号とな
ってインバータ部14の内部スイッチ素子を駆動する。
入力電圧や出力電流が変動しても、電力変換装置出力電
圧VOUT は、基準電圧Vr と抵抗R1 ,R2 で決ま
る VOUT =(R1 +R2 )Vr /R2 の値で一定に保たれる。浮動充電時においてはこのV
OUT がVF (図2に示す浮動充電電圧)である。The operation of FIG. 5 will be described. Inside the power converter 2, the input of the AC or DC power supply 1 is converted into a DC voltage by the rectifying / smoothing unit 13, then converted into a high-frequency AC voltage by the inverter unit 14, stepped up and down by the transformer 15, and converted into a rectifying / smoothing unit 16. Is converted to a DC voltage and output. After the output voltage is divided by the resistors 22 and 23, the output voltage is compared with the reference voltage 21 by the error amplifier 19. The output of the error amplifier 19 is an oscillator 20
Is compared with the saw-tooth wave of the comparator 14 by a comparator 18 and becomes a pulse signal to drive the internal switch element of the inverter unit 14.
Even when the input voltage or the output current is varied, the power converter output voltage VOU T is determined by the reference voltage V r resistors R 1, R 2 V OUT = (R 1 + R 2) with a value of V r / R 2 Be kept constant. During floating charging, this V
OUT is V F (the floating charging voltage shown in FIG. 2).
【0022】一方容量試験回路では、図7で示すよう
に、外部からの入力トリガ信号aにより、タイミング信
号発生回路27が基準電圧21を低下させる信号bを発
生し、基準電圧を出力電圧VOUT が図2に示すVA にな
るよう変化させる。なお出力電圧VOUT を低下させる手
段は、基準電圧を変化させるだけでなく、出力電圧検出
側の抵抗R1 ,R2 を変化させることによっても実現で
きる。これにより電力変換装置2の出力電圧より蓄電池
3の電圧の方が高くなり、蓄電池3より負荷装置4へ電
力が供給され、蓄電池3は放電を開始する。タイミング
信号発生回路27は、端子25の外部トリガ信号入力か
らt1 およびt2 経過後にゲート回路28を動作させ、
メモリ回路29に蓄電池電圧V1 ,V2 と時間t1 ,t
2 が取り込まれる。演算回路30はV1 ,V2 ,t1 ,
t2 の値より、実施例1で示した方法によって、放電終
止電圧VE に至る時間tE を求める。なお測定時刻につ
いては2ポイントで示したが、より多くの測定時刻を設
定しても、本構成によって実現可能である。On the other hand, in the capacitance test circuit, as shown in FIG. 7, a timing signal generation circuit 27 generates a signal b for lowering the reference voltage 21 in response to an external input trigger signal a, and outputs the reference voltage to the output voltage V OUT. Is changed to VA shown in FIG. The means for lowering the output voltage V OUT can be realized not only by changing the reference voltage but also by changing the resistors R 1 and R 2 on the output voltage detection side. As a result, the voltage of the storage battery 3 becomes higher than the output voltage of the power converter 2, power is supplied from the storage battery 3 to the load device 4, and the storage battery 3 starts discharging. The timing signal generation circuit 27 operates the gate circuit 28 after elapse of t 1 and t 2 from the input of the external trigger signal at the terminal 25,
The storage battery voltages V 1 and V 2 and the times t 1 and t are stored in the memory circuit 29.
2 is taken. The operation circuit 30 calculates V 1 , V 2 , t 1 ,
than the value of t 2, by the method described in Example 1, determining the time t E reaches the discharge end voltage V E. Although the measurement time is shown by two points, the present configuration can be realized even if more measurement times are set.
【0023】以上のように動作することによって、蓄電
池の容量を比較的短時間で推定することができる。また
本実施例によると、従来例と比べて、給電系の高信頼度
を維持しながら蓄電池の容量測定ができ、また個々の電
池セルの電圧を予め測定しておく煩雑さや、特定の電池
セルの劣化を早めることもないという特徴がある。 [実施例4]図6は請求項4に対応した実施例の構成説
明図、図8は図6の各部の動作波形図を示している。図
6において1〜25および27は図5と同様であり、3
1は放電時間および蓄電池容量出力端子、32は蓄電池
電流検出回路、33は蓄電池温度検出回路、34はタイ
ミング信号発生回路出力信号cで指定された時刻に蓄電
池電圧、蓄電池放電電流、蓄電池温度データを取り込む
ためのゲート回路、35はタイミング信号発生回路出力
信号cで指定された時刻とその蓄電池電圧、蓄電池放電
電流、蓄電池温度データを記憶するメモリ回路、36は
メモリ回路に記憶された時刻、電圧、電流、温度データ
をもとに放電残時間や容量を算出する演算回路である。
ここで蓄電池電流検出回路32は蓄電池電流を直接測定
するよう記載したが、負荷電流と電力変換回路出力電流
を測定してその差分を求めること、あるいは電力変換回
路出力電流がほぼ0として、測定した負荷電流をそのま
ま用いることによっても実現できることは言うまでもな
い。By operating as described above, the capacity of the storage battery can be estimated in a relatively short time. Further, according to the present embodiment, compared to the conventional example, the capacity of the storage battery can be measured while maintaining high reliability of the power supply system, and the complexity of measuring the voltage of each battery cell in advance and the specific battery cell Has the characteristic that it does not accelerate the deterioration of [Embodiment 4] FIG. 6 is an explanatory view of the structure of an embodiment according to claim 4, and FIG. 8 is an operation waveform diagram of each part of FIG. In FIG. 6, 1 to 25 and 27 are the same as in FIG.
1 is a discharge time and storage battery capacity output terminal, 32 is a storage battery current detection circuit, 33 is a storage battery temperature detection circuit, and 34 is a storage battery voltage, storage battery discharge current, and storage battery temperature data at a time designated by the output signal c of the timing signal generation circuit. A gate circuit for taking in, a memory circuit 35 for storing the time designated by the timing signal generation circuit output signal c and its storage battery voltage, storage battery discharge current, and storage battery temperature data, and 36 a time, voltage, This is an arithmetic circuit that calculates the remaining discharge time and capacity based on current and temperature data.
Here, the storage battery current detection circuit 32 is described as directly measuring the storage battery current. However, the measurement was performed by measuring the load current and the output current of the power conversion circuit and calculating the difference between them, or assuming that the output current of the power conversion circuit was almost zero. Needless to say, this can be realized by using the load current as it is.
【0024】図6の動作のうち電力変換装置2の内部の
動作は図5と同様であり、容量試験回路24では、図8
で示すように、外部からの入力トリガ信号aにより、タ
イミング信号発生回路27が基準電圧21を低下させる
信号bを発生し、基準電圧を出力電圧VOUT が図2に示
すVA になるよう変化させる。なお出力電圧VOUT を低
下させる手段は、実施例3でも述べたように、基準電圧
を変化させるだけでなく、出力電圧検出側の抵抗R1 ,
R2 を変化させることによっても実現できる。これによ
り電力変換装置出力電圧より蓄電池電圧の方が高くな
り、蓄電池3より負荷装置4へ電力が供給され、蓄電池
3は放電を開始する。タイミング信号発生回路27は、
端子25の外部トリガ信号入力からt1 およびt2 経過
後にゲート回路34を動作させ、メモリ回路35に蓄電
池電圧V1 ,V2 、蓄電池放電電流I1 ,I2 、蓄電池
温度T1 ,T2 と時間t1 ,t2 が取り込まれる。演算
回路36はV1 ,V2 ,I1 ,I2 ,T1 ,T2 ,t
1 ,t2 の値より、実施例2で示した方法によって、放
電終止電圧VE に至る時間tE を求める。なお測定時刻
については2ポイントで示したが、より多くの測定時刻
を設定しても、本構成によって実現可能である。The internal operation of the power converter 2 in the operation of FIG. 6 is the same as that of FIG.
As shown by, the timing signal generation circuit 27 generates a signal b for decreasing the reference voltage 21 in response to an external input trigger signal a, and changes the reference voltage so that the output voltage V OUT becomes VA shown in FIG. Let it. As described in the third embodiment, the means for lowering the output voltage V OUT not only changes the reference voltage but also reduces the resistance R 1 ,
It can also be realized by changing R 2 . As a result, the storage battery voltage becomes higher than the power conversion device output voltage, and power is supplied from the storage battery 3 to the load device 4, and the storage battery 3 starts discharging. The timing signal generation circuit 27
The gate circuit 34 is operated after the lapse of t 1 and t 2 from the input of the external trigger signal at the terminal 25, and the storage battery voltage V 1 , V 2 , the storage battery discharge currents I 1 , I 2 , and the storage battery temperatures T 1 , T 2 And times t 1 and t 2 . The arithmetic circuit 36 calculates V 1 , V 2 , I 1 , I 2 , T 1 , T 2 , t
Than 1, t 2 value, by the method shown in Example 2, determining the time t E reaches the discharge end voltage V E. Although the measurement time is shown by two points, the present configuration can be realized even if more measurement times are set.
【0025】以上のように動作することによって、温度
や負荷電流が変化した場合においても、蓄電池の容量を
比較的短時間で推定することができる。また本実施例に
よると、実施例3と同様に、従来例と比べて、給電系の
高信頼度を維持しながら蓄電池の容量測定ができ、また
個々の電池セルの電圧を予め測定しておく煩雑さや、特
定の電池セルの劣化を早めることもないという特徴があ
る。By operating as described above, the capacity of the storage battery can be estimated in a relatively short time even when the temperature or the load current changes. Further, according to the present embodiment, similarly to the third embodiment, the capacity of the storage battery can be measured while maintaining high reliability of the power supply system, and the voltage of each battery cell is measured in advance, as compared with the conventional example. There is a feature that it does not complicate or accelerate the deterioration of a specific battery cell.
【0026】[0026]
【発明の効果】以上述べたように本発明によれば、蓄電
池の容量を比較的短時間で推定することができると共
に、蓄電池は測定中も給電系から切り離されていないた
め、測定中に停電が発生したとしても負荷装置への給電
を継続できる特徴がある。また万一蓄電池の容量が劣化
等によって著しく低下していた場合にも、停電状態でな
い限り電力変換装置が負荷の許容入力電圧以上の電圧を
出力し、負荷への給電を継続するので、給電を停止する
ことはない。さらに本発明は別の従来例で示したよう
な、個々の電池セルの電圧を予め測定しておく煩雑さ
や、特定の電池セルの劣化を早めることもない。従って
本発明によると、高信頼な給電システムを、メンテナン
スに多くの稼働をかけることなく、経済的に構成できる
という特徴がある。As described above, according to the present invention, the capacity of the storage battery can be estimated in a relatively short time, and since the storage battery is not disconnected from the power supply system during the measurement, a power failure occurs during the measurement. It is a feature that the power supply to the load device can be continued even if the occurrence of the error occurs. Also, in the event that the capacity of the storage battery is significantly reduced due to deterioration or the like, the power converter outputs a voltage higher than the allowable input voltage of the load and continues to supply power to the load unless a power failure occurs. It will not stop. Further, the present invention does not complicate the measurement of the voltage of each battery cell in advance or accelerate the deterioration of a specific battery cell as shown in another conventional example. Therefore, according to the present invention, there is a feature that a highly reliable power supply system can be economically configured without performing much operation for maintenance.
【図1】本発明の実施例1を示す構成説明図である。FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.
【図2】本発明の実施例1の動作を説明する特性図であ
る。FIG. 2 is a characteristic diagram illustrating the operation of the first embodiment of the present invention.
【図3】本発明の実施例2の動作を説明する特性図であ
る。FIG. 3 is a characteristic diagram illustrating the operation of the second embodiment of the present invention.
【図4】本発明の実施例2の動作を説明する特性図であ
る。FIG. 4 is a characteristic diagram illustrating the operation of the second embodiment of the present invention.
【図5】本発明の実施例3を示す構成説明図である。FIG. 5 is a configuration explanatory view showing a third embodiment of the present invention.
【図6】本発明の実施例4を示す構成説明図である。FIG. 6 is a configuration explanatory view showing a fourth embodiment of the present invention.
【図7】本発明の実施例3の動作波形を示す波形図であ
る。FIG. 7 is a waveform chart showing operation waveforms according to the third embodiment of the present invention.
【図8】本発明の実施例4の動作波形を示す波形図であ
る。FIG. 8 is a waveform chart showing operation waveforms according to the fourth embodiment of the present invention.
【図9】従来の容量試験方法の一例を示す構成説明図で
ある。FIG. 9 is a configuration explanatory view showing an example of a conventional capacity test method.
【図10】従来の容量試験方法の他の例を示す構成説明
図である。FIG. 10 is a configuration explanatory view showing another example of a conventional capacity test method.
1…交流または直流電源、2…電力変換装置、3…蓄電
池、4…負荷装置、5…切替スイッチ、6…放電用定電
流負荷、7…最低電圧の電池セル、8…切替スイッチ、
9…放電用定電流負荷、10…放電した電池セルを再充
電する充電器、11…交流または直流電源、12…電力
変換装置入力端子、13…整流・平滑部、14…インバ
ータ部、15…トランス、16…整流・平滑部、17…
電力変換装置出力端子、18…比較器、19…誤差増幅
器、20…発振器、21…基準電圧、22〜23…抵
抗、24…容量試験回路、25…測定開始トリガ信号入
力端子、26…放電時間出力端子、27…測定トリガを
入力として基準電圧を変化させる信号とメモリへのデー
タ取込みタイミングを指定する信号を出力するタイミン
グ信号発生回路、28…タイミング信号発生回路出力で
指定された時刻に蓄電池電圧データを取り込むためのゲ
ート回路、29…タイミング信号発生回路出力で指定さ
れた時刻とその蓄電池電圧データを記憶するメモリ回
路、30…メモリ回路に記憶された時刻および電圧デー
タをもとに放電時間を算出する演算回路、31…放電時
間および蓄電池容量出力端子、32…蓄電池電流検出回
路、33…蓄電池温度検出回路、34…タイミング信号
発生回路出力で指定された時刻に蓄電池電圧、蓄電池放
電電流、蓄電池温度データを取り込むためのゲート回
路、35…タイミング信号発生回路出力で指定された時
刻とその蓄電池電圧、蓄電池放電電流、蓄電池温度デー
タを記憶するメモリ回路、36…メモリ回路に記憶され
た時刻、電圧、電流、温度データをもとに放電時間や容
量を算出する演算回路。DESCRIPTION OF SYMBOLS 1 ... AC or DC power supply, 2 ... Power conversion device, 3 ... Storage battery, 4 ... Load device, 5 ... Switch, 6 ... Discharge constant current load, 7 ... Lowest voltage battery cell, 8 ... Switch
9: constant current load for discharging, 10: charger for recharging discharged battery cells, 11: AC or DC power supply, 12: input terminal of power converter, 13: rectifying / smoothing unit, 14: inverter unit, 15 ... Transformer, 16 ... Rectifying / smoothing unit, 17 ...
Power converter output terminal, 18 comparator, 19 error amplifier, 20 oscillator, 21 reference voltage, 22-23 resistance, 24 capacitance test circuit, 25 measurement start trigger signal input terminal, 26 discharge time Output terminals, 27: A timing signal generating circuit for outputting a signal for changing a reference voltage and a signal for designating data fetch timing to a memory by using a measurement trigger as an input, 28 ... Battery voltage at a time specified by the output of the timing signal generating circuit A gate circuit for taking in data, 29 a memory circuit for storing the time specified by the output of the timing signal generating circuit and the storage battery voltage data, 30 a discharge time based on the time and voltage data stored in the memory circuit Calculation circuit for calculation, 31: discharge time and battery capacity output terminal, 32: battery current detection circuit, 33: battery temperature A gate circuit for taking in the storage battery voltage, storage battery discharge current, and storage battery temperature data at the time specified by the output of the timing signal generation circuit; 35: the time and the storage battery voltage specified by the output of the timing signal generation circuit; A memory circuit for storing storage battery discharge current and storage battery temperature data; 36 an arithmetic circuit for calculating a discharge time and a capacity based on time, voltage, current and temperature data stored in the memory circuit;
フロントページの続き (72)発明者 佐藤 恒博 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 高野 和夫 東京都港区六本木一丁目4番33号 株式 会社エヌ・ティ・ティファシリティーズ 内 (56)参考文献 特開 昭61−109264(JP,A) 特開 平3−143231(JP,A) 実開 平3−94044(JP,U) 実公 平4−41736(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 9/06 G01R 31/36 Continuing from the front page (72) Inventor Tsunehiro Sato 1-6-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Kazuo Takano 1-43-33, Roppongi, Minato-ku, Tokyo (56) References JP-A-61-109264 (JP, A) JP-A-3-143231 (JP, A) JP-A-3-94044 (JP, U) JP-A-4-41736 (JP JP, Y2) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 7/ 00-9/06 G01R 31/36
Claims (4)
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力設定電圧を蓄電池の放電終止電圧よ
り高い負荷装置が正常動作を維持できる電圧まで低下さ
せ、蓄電池を放電状態にして放電電圧特性がほぼ直線的
に低下する放電開始後ほぼ30秒〜5分の第1の実放電
時間および蓄電池全放電量のほぼ30%以下の第2の実
放電時間、もしくは前記第1の実放電時間および前記第
2の実放電時間および前記第1の実放電時間と前記第2
の実放電時間間の1以上の実放電時間において蓄電池の
端子電圧を測定し、その端子電圧の低下速度により放電
終止電圧に至る時間を推定する蓄電池容量測定方法。1. A power converter that receives an AC power supply or a DC power supply as an input and outputs a DC voltage required for a load device, and is connected in parallel to an output terminal of the power converter and is floatingly charged when the power converter is in operation and is floatingly charged. In an uninterruptible power supply system consisting of a storage battery that supplies power to the load during a stop, the output set voltage of the power converter is determined by the storage battery discharge end voltage.
The load voltage is reduced to a voltage that allows the load device to maintain normal operation, the storage battery is discharged, and the discharge voltage characteristics are almost linear.
First actual discharge for approximately 30 seconds to 5 minutes after the start of discharge
Time and less than 30% of the total battery discharge
Discharge time, or the first actual discharge time and the
2 and the first actual discharge time and the second actual discharge time.
And measuring the terminal voltage of the storage battery during one or more actual discharge times during the actual discharge time of the storage battery, and estimating the time to reach the discharge end voltage based on the rate of decrease in the terminal voltage.
おいて、 蓄電池放電状態における端子電圧を、測定時の電池温度
から基準温度における電圧に、測定時の電池放電電流か
ら基準放電電流における電圧に、それぞれ補正した後、
その補正後の端子電圧の低下速度により放電終止電圧に
至る時間を推定する蓄電池容量測定方法。2. The storage battery capacity measurement method according to claim 1, wherein the terminal voltage in the storage battery discharge state is changed from a battery temperature at the time of measurement to a voltage at a reference temperature, and a battery discharge current at the time of measurement is changed to a voltage at a reference discharge current, respectively. After correcting
A storage battery capacity measurement method for estimating a time to reach a discharge end voltage based on a terminal voltage drop rate after the correction.
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力電圧を低下させる手段と、蓄電池端
子電圧を測定する手段と、外部信号をトリガとして電力
変換装置の出力電圧を蓄電池の放電終止電圧より高い負
荷装置が正常動作を維持できる電圧まで低下させる信号
と出力電圧低下信号発生期間中に放電電圧特性がほぼ直
線的に低下する放電開始後ほぼ30秒〜5分の第1の実
放電時間および蓄電池全放電量のほぼ30%以下の第2
の実放電時間、もしくは前記第1の実放電時間および前
記第2の実放電時間および前記第1の実放電時間と前記
第2の実放電時間間の1以上の実放電時間にタイミング
信号を発生するタイミング信号発生回路と、前記タイミ
ング信号によって蓄電池端子電圧信号を通過させるゲー
ト回路と、ゲート回路出力信号を記憶するメモリ回路
と、メモリ回路のデータを基に残放電時間を求める演算
回路とを具備することを特徴とする蓄電池容量測定回
路。3. A power converter that receives an AC power supply or a DC power supply and outputs a DC voltage required for a load device, and is connected in parallel to an output terminal of the power converter and is floatingly charged when the power converter is in operation and is floatingly charged. In an uninterruptible power supply system consisting of a storage battery that supplies power to the load when the power is stopped, a means for lowering the output voltage of the power converter, a means for measuring the battery terminal voltage, and Negative output voltage higher than the discharge end voltage of the storage battery
The discharge voltage characteristics are almost straightforward during the period during which the signal that reduces the load
The first actual time of approximately 30 seconds to 5 minutes after the start of the linearly decreasing discharge
Discharge time and the second of approximately 30% or less of the total discharge amount of the storage battery
The actual discharge time, or the first actual discharge time and
The second actual discharge time and the first actual discharge time
A timing signal generation circuit for generating a timing signal at one or more actual discharge times between second actual discharge times , a gate circuit for passing a battery terminal voltage signal by the timing signal, and a memory circuit for storing a gate circuit output signal And a calculation circuit for calculating a remaining discharge time based on data of a memory circuit.
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力電圧を低下させる手段と、蓄電池端
子電圧、蓄電池放電電流、蓄電池温度をそれぞれ測定す
る手段と、外部信号をトリガとして電力変換装置の出力
電圧を蓄電池の放電終止電圧より高い負荷装置が正常動
作を維持できる電圧まで低下させる信号と出力電圧低下
信号発生期間中に放電電圧特性がほぼ直線的に低下する
放電開始後ほぼ30秒〜5分の第1の実放電時間および
蓄電池全放電量のほぼ30%以下の第2の実放電時間、
もしくは前記第1の実放電時間および前記第2の実放電
時間および前記第1の実放電時間と前記第2の実放電時
間間の1以上の実放電時間にタイミング信号を発生する
タイミング信号発生回路と、前記タイミング信号によっ
て蓄電池端子電圧、蓄電池放電電流、蓄電池温度信号を
通過させるゲート回路と、ゲート回路出力信号を記憶す
るメモリ回路と、メモリ回路のデータを基に残放電時間
を求める演算回路とを具備することを特徴とする蓄電池
容量測定回路。4. A power converter that receives an AC power supply or a DC power supply as input and outputs a DC voltage required for a load device, and is connected in parallel to an output terminal of the power converter and is floatingly charged when the power converter is in operation and is floatingly charged. In an uninterruptible power supply system configured by a storage battery that supplies power to a load when the power supply is stopped, a unit that reduces an output voltage of a power converter, a unit that measures a storage battery terminal voltage, a storage battery discharge current, and a storage battery temperature, and an external device. A signal triggers a load device whose output voltage is higher than the discharge end voltage of the storage battery.
The discharge voltage characteristics decrease almost linearly during the signal that reduces the voltage to a level that can maintain the operation and the output voltage decrease signal
A first actual discharge time of approximately 30 seconds to 5 minutes after the start of discharge, and
A second actual discharge time of approximately 30% or less of the total discharge amount of the storage battery;
Alternatively, the first actual discharge time and the second actual discharge
Time and the first actual discharge time and the second actual discharge time
A timing signal generating circuit for generating a timing signal during one or more actual discharge times between the gates, a gate circuit for passing a storage battery terminal voltage, a storage battery discharge current, and a storage battery temperature signal according to the timing signal, and storing a gate circuit output signal. A storage battery capacity measurement circuit, comprising: a memory circuit; and an arithmetic circuit for calculating a remaining discharge time based on data of the memory circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06262361A JP3075103B2 (en) | 1994-10-26 | 1994-10-26 | Battery capacity measuring method and circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06262361A JP3075103B2 (en) | 1994-10-26 | 1994-10-26 | Battery capacity measuring method and circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08126214A JPH08126214A (en) | 1996-05-17 |
JP3075103B2 true JP3075103B2 (en) | 2000-08-07 |
Family
ID=17374677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06262361A Expired - Lifetime JP3075103B2 (en) | 1994-10-26 | 1994-10-26 | Battery capacity measuring method and circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3075103B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004312849A (en) * | 2003-04-04 | 2004-11-04 | Sanyo Denki Co Ltd | Uninterruptive power supply system with storage battery deterioration judging circuit |
CN101523659B (en) * | 2006-10-06 | 2011-10-26 | 松下电器产业株式会社 | Discharge controller |
JP4770916B2 (en) * | 2008-11-17 | 2011-09-14 | 日本テキサス・インスツルメンツ株式会社 | Electronic price tag system |
JP5375110B2 (en) * | 2009-01-14 | 2013-12-25 | ミツミ電機株式会社 | Battery pack, semiconductor integrated circuit, remaining capacity correction method, remaining capacity correction program |
CN102854474A (en) * | 2012-09-25 | 2013-01-02 | 深圳市泰昂能源科技股份有限公司 | Online detection method for actual capacity of storage batteries |
JP6325497B2 (en) | 2015-09-10 | 2018-05-16 | ファナック株式会社 | Electronic device with a function to notify the remaining battery level |
JP6907066B2 (en) * | 2017-08-10 | 2021-07-21 | 日置電機株式会社 | Impedance measuring device |
CN112433162B (en) * | 2020-10-26 | 2023-09-01 | 惠州市豪鹏科技有限公司 | Aging method of lithium ion battery |
-
1994
- 1994-10-26 JP JP06262361A patent/JP3075103B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08126214A (en) | 1996-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3379283B2 (en) | Battery state of charge detection method | |
KR101015185B1 (en) | State detecting system and device employing the same | |
US5391974A (en) | Secondary battery charging circuit | |
US8198863B1 (en) | Model-based battery fuel gauges and methods | |
JP4215171B2 (en) | Battery capacity detection method | |
US8643331B1 (en) | Enhanced voltage-based fuel gauges and methods | |
US20020084771A1 (en) | Battery operable device with battery state-of-charge indicator | |
US5252906A (en) | Method of optimizing the charging of a battery of storage cells, and apparatus for performing the method | |
JP3641367B2 (en) | Alkaline battery capacity remaining amount estimation method and capacity estimation device | |
JP2012185124A (en) | State-of-charge estimation device, state-of-charge estimation method, and program | |
JP2000121710A (en) | Battery control device for backup power supply and method for diagnosing deterioration of secondary battery | |
Çadırcı et al. | Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries | |
US12055591B2 (en) | Battery management controllers capable of determining estimate of state of charge | |
JP3075103B2 (en) | Battery capacity measuring method and circuit | |
JPH0898426A (en) | Battery charging method | |
JP3539123B2 (en) | Method and apparatus for determining deterioration of secondary battery | |
US20220349947A1 (en) | Semiconductor device and method of monitoring battery remaining capacity | |
JP2001157364A (en) | System power stabilization device and controlling method thereof | |
KR19990028876A (en) | Control and Termination of Battery Charging Process | |
JP2979938B2 (en) | Lead-acid battery life judgment method | |
JP3237293B2 (en) | Method and apparatus for charging sealed lead-acid battery | |
JPH09113588A (en) | Method for detecting pack battery condition | |
KR960027130A (en) | Battery charging control device and method for electric vehicle | |
JPH08297516A (en) | Solar power generation device | |
JPH10260236A (en) | Method for monitoring remaining capacity of secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140609 Year of fee payment: 14 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |