JPH0898426A - Battery charging method - Google Patents

Battery charging method

Info

Publication number
JPH0898426A
JPH0898426A JP6226707A JP22670794A JPH0898426A JP H0898426 A JPH0898426 A JP H0898426A JP 6226707 A JP6226707 A JP 6226707A JP 22670794 A JP22670794 A JP 22670794A JP H0898426 A JPH0898426 A JP H0898426A
Authority
JP
Japan
Prior art keywords
charging
battery
temperature
stage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6226707A
Other languages
Japanese (ja)
Inventor
Koji Nakamura
好志 中村
Koichiro Hara
浩一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP6226707A priority Critical patent/JPH0898426A/en
Publication of JPH0898426A publication Critical patent/JPH0898426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To shorten the charging time while suppressing deterioration of a battery by calculating a maximum charging current, when the battery temperature at the end of charging operation is lower than a predetermined level, based on the battery temperature and the electric quantity to be charged. CONSTITUTION: Battery temperature Ta before starting the charging operation is detected at step S10 and battery terminal voltage is detected at step S12. A battery charging state (SOC) is then calculated at step S14 based on the detected temperature and voltage. Subsequently, a required charging amount C is calculated at step S16 followed by calculation of a first stage charging amount C1 at step S18. A first stage charging current I1 is then assumed at step S20 and a temperature variation ΔT1 at the time of first stage charging operation is determined at step S22. Battery temperature T1 at the time of ending the first stage charging operation is calculated at step S24 based on the battery temperature Ta and the temperature variation ΔT1 and then it is compared at step S26 with an upper limit temperature TU1 of first stage charging operation. Charging is performed with the first stage charging current I1 at step S28 if the temperature T1 at the end of charging operation is lower than the upper limit TU1 immediately followed by the second stage charging operation at step S30. This method shortens the charging time while suppressing deterioration of battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリの劣化が進ま
ず、また効率良く充電できる状態にバッテリを維持しつ
つバッテリの充電を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of charging a battery while maintaining the battery in a state where the battery does not deteriorate and can be charged efficiently.

【0002】[0002]

【従来の技術】バッテリには、通常乾電池と呼ばれるマ
ンガン電池やアルカリ電池などの使い切り形式のいわゆ
る電池と、一旦放電しても充電を行うことによって再び
使用することができる二次電池がある。二次電池は、そ
の使用状態や充電時の状態によって、その寿命が大きく
異なってくる。たとえば、後者の電池の代表的なもので
ある鉛二次電池の場合、一旦蓄電量が0になってしまう
と、劣化が著しく進む。また、充電時のバッテリ温度の
上昇や過充電によっても劣化が進む。
2. Description of the Related Art As batteries, there are used batteries such as manganese batteries and alkaline batteries which are usually called dry batteries, and so-called secondary batteries, and secondary batteries which can be used again by charging even if discharged. The life of the secondary battery varies greatly depending on the usage condition and the charging condition. For example, in the case of a lead secondary battery, which is a typical example of the latter battery, once the amount of stored electricity becomes 0, deterioration progresses significantly. Deterioration also progresses due to an increase in battery temperature during charging and overcharging.

【0003】このように二次電池の場合は、その電池の
特性に合わせて適正な状態で使用および充電する必要が
ある。特開平4−351428号公報には、二次電池に
充電する際に、現在の蓄電量に基づき適切な充電時間を
算出し、この充電電気量を達成する充電時間を算出して
過充電を防止する技術が開示されている。そして、この
充電時間の算出においては、充電時の電流(充電電流)
は一定であるとして行われている。
As described above, in the case of the secondary battery, it is necessary to use and charge the battery in an appropriate state according to the characteristics of the battery. In Japanese Patent Laid-Open No. 4-351428, when a secondary battery is charged, an appropriate charging time is calculated based on the current stored amount of electricity, and a charging time for achieving this charged amount of electricity is calculated to prevent overcharging. Techniques for doing so are disclosed. When calculating the charging time, the current during charging (charging current)
Is done as being constant.

【0004】[0004]

【発明が解決しようとする課題】以上のように従来の装
置においては、充電電流は一定であり、充電電流を増加
させることができず充電時間が長くなるという問題があ
った。すなわち、バッテリの温度上昇による劣化を抑制
するために、充電電流は十分に低い値に固定されてお
り、たとえ、充電時間が短く温度上昇が少ないと考えら
れるときにおいても、また充電時の外気温、バッテリ温
度等が低く、バッテリが高温にならないと予想される時
においても、前記の低い充電電流によって充電しなけれ
ばならなかった。
As described above, the conventional device has a problem that the charging current is constant, the charging current cannot be increased, and the charging time becomes long. That is, the charging current is fixed to a sufficiently low value in order to suppress the deterioration due to the temperature rise of the battery, and even when it is considered that the charging time is short and the temperature rise is small, the outside temperature during charging is also reduced. Even when the battery temperature is low and the battery is not expected to reach a high temperature, the battery must be charged with the low charging current.

【0005】バッテリ温度が高い状態で充電を行うと、
電解液中より水の電気分解によるガスが発生し、電解液
が減少してついには液枯れ状態となり、電池として機能
しなくなる。このガス発生はバッテリ温度が高いほど発
生しやすく、したがって充電中のバッテリ温度が高いほ
ど早くバッテリの劣化が進行する。また、充電電流がガ
ス発生のために消費されてしまうので充電の効率も悪化
する。また、バッテリ温度が高いと格子腐蝕が発生し、
これもバッテリの劣化を早めることとなる。
If the battery is charged at a high temperature,
Gas is generated from the electrolytic solution due to electrolysis of water, the electrolytic solution is reduced, and finally the liquid is exhausted, and the battery does not function. This gas generation is more likely to occur as the battery temperature is higher, and therefore the higher the battery temperature during charging, the faster the deterioration of the battery. Further, the charging current is consumed due to the generation of gas, so that the charging efficiency also deteriorates. Also, when the battery temperature is high, lattice corrosion occurs,
This also accelerates the deterioration of the battery.

【0006】以上のように、バッテリ温度が高い状態で
充電を行うと、効率が悪く、バッテリの劣化が早く進む
ので、充電中にバッテリ温度が高くなり過ぎないような
充電電流を設定する必要がある。前記公報に示された装
置においては、充電電流は一定であり、バッテリの劣化
を考慮した場合、充電時間が長く温度上昇が多いと考え
られるときに合わせた低い充電電流に設定する必要があ
る。したがって、充電すべき電気量が少なく比較的短時
間で充電が終了する場合においても、バッテリ温度がそ
れほど上昇しないにもかかわらず、充電電流を増加させ
ることができず、必要以上に充電時間が長くなる場合が
あるという問題があった。
[0006] As described above, if charging is performed in a state where the battery temperature is high, the efficiency is poor and the deterioration of the battery progresses rapidly. Therefore, it is necessary to set the charging current such that the battery temperature does not become too high during charging. is there. In the device disclosed in the above publication, the charging current is constant, and in consideration of the deterioration of the battery, it is necessary to set the charging current to a low value when it is considered that the charging time is long and the temperature rise is large. Therefore, even when the amount of electricity to be charged is small and charging is completed in a relatively short time, the charging current cannot be increased even though the battery temperature does not rise so much, and the charging time is longer than necessary. There was a problem that sometimes.

【0007】本発明は前述の問題点を解決するためにな
されたものであり、バッテリの劣化を抑えつつ充電時間
の短縮を行うことのできるバッテリの充電方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a battery charging method capable of shortening the charging time while suppressing deterioration of the battery.

【0008】[0008]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明にかかるバッテリの充電方法は、バッテリ
温度を検出する工程と、バッテリ蓄電状態を検出する工
程と、前記検出されたバッテリ蓄電状態に基づき充電す
べき電気量を算出する工程と、前記バッテリ温度と前記
充電すべき電気量に基づき充電終了時のバッテリ温度が
予め定められた所定温度以下となる最大の充電電流を算
出する工程と、算出された充電電流によって充電を実行
する工程とを有している。
In order to achieve the above-mentioned object, a battery charging method according to the present invention comprises a step of detecting a battery temperature, a step of detecting a battery charge state, and the detected battery. Calculating the amount of electricity to be charged based on the state of charge, and calculating the maximum charging current at which the battery temperature at the end of charging falls below a predetermined temperature based on the battery temperature and the amount of electricity to be charged. The method includes a step and a step of performing charging with the calculated charging current.

【0009】[0009]

【作用】本発明は以上のような構成を有しており、バッ
テリの温度上昇を所定値以内に抑えることができるの
で、充電時の温度上昇によるバッテリ劣化を防止するこ
とができる。また、バッテリ劣化が発生しない範囲で充
電電流を増加させることができるので、充電時間の短縮
が可能となる。
Since the present invention has the above-mentioned structure and can suppress the temperature rise of the battery within a predetermined value, it is possible to prevent the deterioration of the battery due to the temperature rise during charging. Moreover, since the charging current can be increased within the range where the battery deterioration does not occur, the charging time can be shortened.

【0010】[0010]

【実施例】以下、本発明にかかる好適な実施例を図面に
従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0011】図1には、第1実施例のフローチャートが
示されている。まず、充電開始前のバッテリの温度Ta
が検出される(S10)。また、充電していない状態で
のバッテリ端子電圧が検出され(S12)、これを基に
バッテリにどのくらいの電気量が蓄えられているかを示
すバッテリ蓄電状態(SOC)を算出する(S14)。
SOCは、バッテリが十分に蓄電している状態の電気量
に対する現在蓄電されている電気量の割合であり、通常
百分率により表示される。また、SOCが高いとき、す
なわち蓄電された電気量が多いときにはバッテリ端子電
圧も高くなり、逆にSOCが低いときには端子電圧は低
くなる。したがって、端子電圧を検出することでSOC
を算出することができる。
FIG. 1 shows a flow chart of the first embodiment. First, the temperature T a of the battery before the start of charging
Is detected (S10). Further, the battery terminal voltage in the uncharged state is detected (S12), and based on this, the battery storage state (SOC) indicating how much electricity is stored in the battery is calculated (S14).
The SOC is a ratio of the currently stored electricity amount to the electricity amount in a state where the battery is sufficiently stored, and is usually displayed as a percentage. Further, when the SOC is high, that is, when the amount of stored electricity is large, the battery terminal voltage also becomes high, and conversely, when the SOC is low, the terminal voltage becomes low. Therefore, the SOC can be detected by detecting the terminal voltage.
Can be calculated.

【0012】算出されたSOCに基づき充電すべき電気
量(必要充電量)Cを算出する(S16)。必要充電量
Cは、バッテリが十分に蓄電された状態とするまで充電
されるべき電気量に、均等化充電量Cs を加えたもので
ある。バッテリに蓄えられるべき電気量は、バッテリの
容量(Cfull)とSOC(%)から、
Based on the calculated SOC, the amount of electricity (required amount of charge) C to be charged is calculated (S16). Necessary charge amount C is the amount of electricity to be charged to a state in which the battery is sufficiently power storage, plus the equalization charge quantity C s. The amount of electricity to be stored in the battery is calculated from the battery capacity (C full ) and SOC (%).

【数1】Cfull*(1−SOC/100) …(1) と表される。また、均等化充電量Cs は、充電中ガス発
生などで失われる電気量、および複数のバッテリ間での
蓄電状態のばらつきを少なくするための電気量である。
直列接続されたバッテリにおいては、蓄電状態のばらつ
きがあったまま使用すると、このばらつきがさらに大き
くなり、特定のバッテリの劣化が急速に進む。したがっ
て、やや多めに充電を行うことによって、複数のバッテ
リのばらつきを減少させている。よって、必要充電量C
は、
## EQU1 ## C full * (1-SOC / 100) (1) Further, the equalized charge amount C s is the amount of electricity lost due to gas generation during charging, and the amount of electricity for reducing the variation in the storage state among a plurality of batteries.
If the batteries connected in series are used without any variation in the storage state, the variation becomes even larger, and the deterioration of the specific battery progresses rapidly. Therefore, by charging a little more, the variation of the plurality of batteries is reduced. Therefore, the required charge C
Is

【数2】 C=Cfull*(1−SOC/100)+Cs …(2) で表される。## EQU2 ## C = C full * (1-SOC / 100) + C s (2)

【0013】次に、前記の必要充電量Cに基づき、1段
目充電の充電量C1 を算出する(S18)。バッテリの
充電は通常2段階に分けて行われ、前期(1段目)では
比較的大きな充電電流で急速に蓄電状態の改善を図り、
後期(2段目)では比較的充電電流を低くして、ガス発
生を抑えて効率良く充電を行う。本実施例においても2
段に分けて充電を行っており、2段目の充電条件は固定
されている。すなわち、2段目充電においては、充電電
流および充電時間が予め定められた値に固定されてお
り、よってこの間のバッテリ温度の上昇はほぼ一定の値
となる。また、充電電流および充電時間が定まっている
ので、2段目充電C2 における充電量も定まる。したが
って、必要充電量Cと2段目充電量C2 から、1段目の
充電量C1は、
Next, the charge amount C 1 for the first stage charge is calculated based on the required charge amount C (S18). The battery is usually charged in two stages, and in the first half (first stage), the state of charge is rapidly improved with a relatively large charging current.
In the latter half (second stage), the charging current is made relatively low to suppress gas generation and charge efficiently. Also in this embodiment, 2
The charging is performed in stages, and the charging conditions for the second stage are fixed. That is, in the second-stage charging, the charging current and the charging time are fixed to predetermined values, so that the rise in the battery temperature during this period becomes a substantially constant value. Further, since the charging current and the charging time are fixed, the charging amount in the second-stage charging C 2 is also fixed. Therefore, from the required charge amount C and the second-stage charge amount C 2 , the first-stage charge amount C 1 is

【数3】C1 =C−C2 …(3) として求まる。## EQU3 ## C 1 = C-C 2 (3)

【0014】次に、1段目充電電流I1 を仮定する(S
20)。この仮定値は、実施例の装置が発生し得る最大
の充電電流であり、この充電電流I1 と1段目充電量C
1 から1段目充電時間t1 が、
Next, the first-stage charging current I 1 is assumed (S
20). This assumed value is the maximum charging current that can be generated by the apparatus of the embodiment, and this charging current I 1 and the first-stage charging amount C
1st to 1st stage charging time t 1

【数4】t1 =C1 /I1 …(4) より求まる。## EQU4 ## t 1 = C 1 / I 1 (4)

【0015】以上から1段目充電を行った際の温度変化
ΔT1 を求めることができる(S22)。すなわち、図
2に示すような、ある充電電流I1 である充電時間
1 、充電を行ったときの温度変化ΔT1 を示す温度上
昇特性図を予め作成しておき、この図から温度変化を推
定する。そして、ステップS10で求めたバッテリ温度
a と1段目充電における温度変化ΔT1 とから、1段
目充電の終了時点でのバッテリ温度T1
From the above, the temperature change ΔT 1 when the first-stage charging is performed can be obtained (S22). That is, as shown in FIG. 2, there charging current I 1 charge time t 1 is beforehand prepared a temperature rise characteristic graph showing the temperature change [Delta] T 1 when performing charging, the temperature change from FIG. presume. Then, from the battery temperature T a obtained in step S10 and the temperature change ΔT 1 in the first-stage charging, the battery temperature T 1 at the end of the first-stage charging is

【数5】T1 =Ta +ΔT1 …(5) として算出される(S24)。この1段目終了時のバッ
テリ温度T1 と1段目充電上限温度Tu1が比較される
(S26)。1段目上限温度Tu1は、ガス発生などによ
りバッテリの劣化が著しく進行する温度の下限値(充電
時上限温度)Tu と2段目充電の際の温度変化ΔT2
から、
## EQU5 ## T 1 = T a + ΔT 1 (5) is calculated (S24). The battery temperature T 1 at the end of the first stage is compared with the upper limit charge temperature T u1 of the first stage (S26). The first-stage upper-limit temperature T u1 is calculated from the lower-limit temperature (upper-charging upper-limit temperature) T u at which the deterioration of the battery significantly progresses due to gas generation and the temperature change ΔT 2 during the second-stage charging,

【数6】Tu1=Tu −ΔT2 …(6) として求まる。すなわち、1段目、2段目を含めて充電
時に越えることがないようにすべき温度が充電時上限温
度Tu であり、2段目充電終了時点でこの上限温度上限
温度Tu を越えないようにするためには2段目充電で上
昇する温度ΔT2を見越して、1段目終了時の上限温度
u1が定められている。そして、推定された1段目充電
終了時の温度T1 が1段目の上限温度Tu1以下であれ
ば、1段目充電電流I1 で、1段目充電時間t1 の充電
が実行される(S28)。1段目充電時間終了後ただち
に2段目充電が実行される(S30)。前述のように本
実施例においては、2段目充電の電流および時間は予め
設定された固定値である。
[Equation 6] T u1 = T u −ΔT 2 (6) That is, the temperature that should not be exceeded during charging, including the first and second stages, is the charging upper limit temperature T u , and does not exceed this upper limit temperature upper limit temperature T u at the end of the second stage charging. In order to do so, the upper limit temperature T u1 at the end of the first stage is set in anticipation of the temperature ΔT 2 that rises in the second stage charging. Then, if the estimated temperature T 1 at the end of the first-stage charging is equal to or lower than the upper-limit temperature T u1 of the first stage, the charging for the first-stage charging time t 1 is executed with the first-stage charging current I 1. (S28). The second-stage charging is executed immediately after the end of the first-stage charging time (S30). As described above, in the present embodiment, the current and time for the second stage charging are preset fixed values.

【0016】一方、ステップS26で一段目充電終了時
の温度T1 が1段目の上限温度Tu1を越えている場合、
より低い充電電流が仮定しなおされ、ステップS22に
移行する。
On the other hand, if the temperature T 1 at the end of the first-stage charging exceeds the upper limit temperature T u1 of the first stage in step S26,
A lower charging current is assumed again, and the process proceeds to step S22.

【0017】1段目充電条件の決定について、図2を用
いて具体例をあげて説明する。バッテリは、蓄電容量C
fullが50Ah、充電時の上限温度Tu が60℃の性能
を有する。また、2段目充電の充電条件は、充電電流I
2 が2.5A、充電時間t2が4時間、またこのときの
バッテリ温度上昇ΔT2 が10℃とする。そして、SO
Cが0%、すなわち空の状態、バッテリ温度Ta が15
℃から充電を開始するとする。また、均等化充電量Cs
が8Ahとする。充電装置の性能は、充電電流を12
A,8A,6A,2.5Aと設定できるものとする。
The determination of the first-stage charging condition will be described using a concrete example with reference to FIG. The battery has a storage capacity C
full is 50 Ah, the upper limit temperature T u of charging has a performance of 60 ° C.. The charging condition for the second-stage charging is the charging current I
2 is 2.5 A, charging time t 2 is 4 hours, and battery temperature rise ΔT 2 at this time is 10 ° C. And SO
C is 0%, that is, an empty state, the battery temperature T a is 15
Suppose you start charging from ℃. In addition, the equalized charge amount C s
Is 8 Ah. The charging device has a charging current of 12
It can be set to A, 8A, 6A, 2.5A.

【0018】必要充電量は式(2)より必要充電量Cは
58Ahとなり、さらに式(3)より1段目充電量C1
は48Ahとなる。充電装置の発生可能な電流の最大値
12Aをまず1段目充電電流I1 として仮定する。この
とき、式(4)から充電時間t1 が4時間と求まる。図
2から、このときの1段目充電終了時点での温度上昇Δ
1 が50℃であることが分かる。さらに、式(5)か
ら1段目充電終了時点でのバッテリ温度T1 が65℃と
して算出される。一方、1段目充電上限温度Tu1は式
(6)より50℃と求まり、算出されたバッテリ温度T
1 はこの50℃より大幅に高い。すなわち、仮定した充
電電流I1 が高すぎる値であったことが分かる。そこ
で、1段目充電電流I1 を前回仮定した値より低めに再
度仮定する。前述のように充電装置の設定できる電流が
離散的であるとしているので、この場合の新たな1段目
充電電流I1 として8Aを仮定する。
The required amount of charge C is 58 Ah from the formula (2), and the amount of charge C 1 of the first stage is further from the formula (3).
Is 48 Ah. The maximum value 12A of the current that can be generated by the charging device is first assumed as the first-stage charging current I 1 . At this time, the charging time t 1 is found to be 4 hours from the equation (4). From FIG. 2, the temperature rise Δ at the end of the first-stage charging at this time Δ
It can be seen that T 1 is 50 ° C. Furthermore, the battery temperature T 1 at the end of the first-stage charging is calculated as 65 ° C. from the equation (5). On the other hand, the first-stage charging upper limit temperature T u1 is calculated as 50 ° C. from the equation (6), and the calculated battery temperature T
1 is significantly higher than this 50 ° C. That is, it can be seen that the assumed charging current I 1 was too high. Therefore, the first-stage charging current I 1 is again assumed to be lower than the previously assumed value. Since the current that can be set in the charging device is discrete as described above, 8 A is assumed as the new first-stage charging current I 1 in this case.

【0019】12Aと仮定した場合と同様にして、1段
目充電時間t1 が6時間、1段目充電終了時の温度上昇
ΔT1 が35℃、このときの温度が50℃と求まる。こ
の場合は、1段目充電上限温度Tu1(=50℃)を越え
ないので、この条件で1段目充電が行われる。そして、
1段目充電終了後前述の充電条件で2段目充電が行われ
る。
Similarly to the case of assuming 12 A, the first stage charging time t 1 is 6 hours, the temperature rise ΔT 1 at the end of the first stage charging is 35 ° C., and the temperature at this time is 50 ° C. In this case, the first-stage charging upper limit temperature T u1 (= 50 ° C.) is not exceeded, so the first-stage charging is performed under this condition. And
After the completion of the first-stage charging, the second-stage charging is performed under the above-mentioned charging conditions.

【0020】以上の具体例によれば、1段目充電終了時
の温度T1 が上限温度Tu1と等しいが、充電電流I1
離散的な値しかとれない場合は、これらが等しくならな
い場合がある。このときは上限温度Tu1を越えない範囲
で最も高い充電電流が設定される。
According to the above specific example, the temperature T 1 at the end of the first charging is equal to the upper limit temperature T u1 , but when the charging current I 1 can take only discrete values, these are not equal. There is. At this time, the highest charging current is set within a range not exceeding the upper limit temperature T u1 .

【0021】図3には、本発明にかかる第2の実施例の
フローチャートが示されている。第1の実施例と同様の
ステップには同一の符号を付し、説明を省略する。本実
施例に特徴的なことは、バッテリの蓄電状態(SOC)
を算出するのに、バッテリの内部抵抗から算出している
ことと、1段目充電電流I1 の算出に際して、仮定値を
用いずに直接算出している点にある。
FIG. 3 shows a flowchart of the second embodiment according to the present invention. The same steps as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. The characteristic of this embodiment is that the state of charge (SOC) of the battery is
The calculation is based on the calculation from the internal resistance of the battery and the calculation of the first-stage charging current I 1 is performed directly without using an assumed value.

【0022】バッテリ内部抵抗の検出(S34)は、た
とえばある電流が流れた時の端子間の電圧を検出するこ
とによって求められる。他に、交流電流を流してインピ
ーダンスの測定を行うことによっても求めることができ
る。内部抵抗は、SOCが高い場合は小さく、SOCが
低い場合は大きいので、予め内部抵抗とSOCの関係を
求めておけば、内部抵抗からSOC算出することができ
る(S36)。
The detection of the battery internal resistance (S34) is obtained, for example, by detecting the voltage between the terminals when a certain current flows. Alternatively, it can be obtained by passing an alternating current and measuring the impedance. Since the internal resistance is small when the SOC is high and large when the SOC is low, the SOC can be calculated from the internal resistance by previously obtaining the relationship between the internal resistance and the SOC (S36).

【0023】また、1段目充電電流I1 の算出は、以下
のように行われる。ステップS18で算出された1段目
充電量C1 を充電するためには電流I1 を時間t1 流す
必要がある。すなわち、
The first-stage charging current I 1 is calculated as follows. In order to charge the first-stage charge amount C 1 calculated in step S18, the current I 1 needs to flow for time t 1 . That is,

【数7】C1 =I1 *t1 …(7) となる。また、この間の発熱はほとんどがジュ−ル熱で
あるので、発熱量Qは電流I1 の2乗に比例し、
## EQU7 ## C 1 = I 1 * t 1 (7) Also, most of the heat generated during this period is Jur heat, so the heat generation amount Q is proportional to the square of the current I 1 ,

【数8】Q=k1 *I1 2 *t1 …(8) で表される。ここで、k1 は比例定数である。さらに、
この発熱量Qによる温度上昇ΔT1 は、
## EQU8 ## Q = k 1 * I 1 2 * t 1 (8) Here, k 1 is a proportional constant. further,
The temperature increase ΔT 1 due to this heat generation amount Q is

【数9】ΔT1 =k2 *Q …(9) で表され(k2 は比例定数)、前記の式(7),
(8),(9)から1段目充電電流I1 は、
[Expression 9] ΔT 1 = k 2 * Q (9) (k 2 is a proportional constant) and the above equation (7),
From (8) and (9), the first-stage charging current I 1 is

【数10】 I1 =ΔT1 /(k1 *k2 *C1 ) …(10) と表される。比例定数k1 はバッテリの内部抵抗によっ
て定まり、比例定数k2はバッテリの熱容量によって定
まるので、同一のバッテリにおいてこれらの比例定数を
予め測定しておけば、充電電流I1 は、温度上昇ΔT1
と充電容量C1 の関数となる。さらに、上昇温度ΔT1
は、バッテリの特性によって定まる1段目充電時の上限
温度Tu1と充電前のバッテリ温度Ta の差であれば、充
電中にバッテリが上限温度Tu 以上に加熱されることが
ない。したがって、式(10)は、
[Expression 10] I 1 = ΔT 1 / (k 1 * k 2 * C 1 ) ... (10) Since the proportional constant k 1 is determined by the internal resistance of the battery and the proportional constant k 2 is determined by the heat capacity of the battery, if these proportional constants are measured in advance for the same battery, the charging current I 1 will increase the temperature increase ΔT 1
And a function of charge capacity C 1. Furthermore, the rising temperature ΔT 1
Is the difference between the upper limit temperature T u1 at the time of first-stage charging and the battery temperature T a before charging, which is determined by the characteristics of the battery, the battery will not be heated above the upper limit temperature T u during charging. Therefore, equation (10) becomes

【数11】 I1 =(Tu1−Ta )/(k1 *k2 *C1 ) …(11) となり、このうち1段目充電上限温度Tu1、比例定数k
1 ,k2 は前述のようにバッテリの特性により定まる定
数であるので、これらを予め求めておけば、1段目充電
電流I1 は、充電前のバッテリ温度Ta と1段目充電量
1 より算出することができる(S38)。
[ Equation 11] I 1 = (T u1 −T a ) / (k 1 * k 2 * C 1 ) ... (11), of which the first-stage charging upper limit temperature T u1 and proportional constant k
Since 1 and k 2 are constants determined by the characteristics of the battery as described above, if these are obtained in advance, the first-stage charging current I 1 is the battery temperature T a before charging and the first-stage charging amount C. It can be calculated from 1 (S38).

【0024】1段目充電電流I1 が求まれば式(7)よ
り、1段目充電時間t1 が算出できる(S40)。これ
らの条件に基づき1段目充電が実行され、これが終了す
ると2段目充電が実行される。
If the first-stage charging current I 1 is obtained, the first-stage charging time t 1 can be calculated from the equation (7) (S40). The first-stage charging is executed based on these conditions, and when this is completed, the second-stage charging is executed.

【0025】以上、ふたつの実施例において、充電によ
って生じるバッテリ温度の上昇を考慮して、適正な温度
範囲で充電を行うことが可能となる。したがって、SO
Cが多くそれほど充電を行わなくて良いときには、充電
時間が短いので大きな電流を流すことが可能となる。言
い換えれば、電流をより多く流せることができるので、
充電時間を短縮することができる。また、充電時のバッ
テリ温度を所定値以下に納めることができるので、劣化
が抑制され、バッテリの寿命を延ばすことができる。
As described above, in the two embodiments, it is possible to charge the battery within an appropriate temperature range in consideration of the increase in the battery temperature caused by the charging. Therefore, SO
When C is large and it is not necessary to perform charging so much, the charging time is short and a large current can be passed. In other words, because more current can flow,
The charging time can be shortened. Moreover, since the battery temperature during charging can be kept below a predetermined value, deterioration can be suppressed and the life of the battery can be extended.

【0026】また、ふたつの実施例において、バッテリ
の蓄電状態(SOC)の算出方法が異なるが、どちらの
方法を用いることも可能である。すなわち、第1の実施
例において、バッテリの内部抵抗に基づきSOCの算出
を行うことも可能であり、また第2実施例において、バ
ッテリ端子電圧からSOCの算出を行うこともできる。
さらに、バッテリに対する電気量の出入りを逐次監視
し、この履歴よりSOCを算出することもできる。
In the two embodiments, the method of calculating the state of charge (SOC) of the battery is different, but either method can be used. That is, in the first embodiment, the SOC can be calculated based on the internal resistance of the battery, and in the second embodiment, the SOC can be calculated from the battery terminal voltage.
Furthermore, it is also possible to successively monitor the amount of electricity flowing in and out of the battery and calculate the SOC from this history.

【0027】さらに、ふたつの実施例おいては、2段階
の充電を行ったが、1段のみの充電を行うことも可能で
ある。この場合、1段目終了時のバッテリ温度がバッテ
リの充電時の上限温度となるように算出を行えば良く、
前述の実施例と同様充電時間が短縮される場合がある。
Furthermore, in the two embodiments, the two-stage charging was performed, but it is also possible to perform only one-stage charging. In this case, the calculation may be performed so that the battery temperature at the end of the first stage is the upper limit temperature when charging the battery,
The charging time may be shortened as in the above-described embodiment.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、バッテ
リの温度上昇を所定値以内に抑えることができるので、
充電時の温度上昇によるバッテリ劣化を防止することが
できる。したがって、バッテリの寿命を延ばすことがで
きる。また、バッテリ劣化が発生しない範囲で充電電流
を増加させることができるので、充電時間の短縮が可能
となる。
As described above, according to the present invention, the temperature rise of the battery can be suppressed within a predetermined value.
It is possible to prevent battery deterioration due to temperature rise during charging. Therefore, the life of the battery can be extended. Moreover, since the charging current can be increased within the range where the battery deterioration does not occur, the charging time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる第1の実施例のフローチャート
である。
FIG. 1 is a flowchart of a first embodiment according to the present invention.

【図2】第1の実施例において、適正な充電電流を算出
するときに用いる特性図である。
FIG. 2 is a characteristic diagram used when calculating an appropriate charging current in the first embodiment.

【図3】本発明にかかる第2の実施例のフローチャート
である。
FIG. 3 is a flowchart of a second embodiment according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バッテリ温度を検出する工程と、 バッテリ蓄電状態を検出する工程と、 前記検出されたバッテリ蓄電状態に基づき充電すべき電
気量を算出する工程と、 前記バッテリ温度と前記充電すべき電気量に基づき、充
電終了時のバッテリ温度が予め定められた所定温度以下
となる最大の充電電流を算出する工程と、 算出された充電電流によって充電を実行する工程と、 を含むことを特徴とするバッテリの充電方法。
1. A step of detecting a battery temperature, a step of detecting a battery charge state, a step of calculating an amount of electricity to be charged based on the detected battery charge state, the battery temperature and the charge Based on the amount of electricity, a step of calculating a maximum charging current at which the battery temperature at the end of charging is equal to or lower than a predetermined temperature, and a step of executing charging by the calculated charging current, How to charge the battery.
JP6226707A 1994-09-21 1994-09-21 Battery charging method Pending JPH0898426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226707A JPH0898426A (en) 1994-09-21 1994-09-21 Battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226707A JPH0898426A (en) 1994-09-21 1994-09-21 Battery charging method

Publications (1)

Publication Number Publication Date
JPH0898426A true JPH0898426A (en) 1996-04-12

Family

ID=16849385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226707A Pending JPH0898426A (en) 1994-09-21 1994-09-21 Battery charging method

Country Status (1)

Country Link
JP (1) JPH0898426A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136330A (en) * 2006-11-29 2008-06-12 Matsushita Electric Ind Co Ltd Charging system, charger, and battery pack
CN101394103A (en) * 2007-09-19 2009-03-25 联想(新加坡)私人有限公司 Surface temperature dependent battery cell charging system
JP2009081958A (en) * 2007-09-26 2009-04-16 Hitachi Vehicle Energy Ltd Charge/discharge controller
JP2009148046A (en) * 2007-12-12 2009-07-02 Sanyo Electric Co Ltd Charging method
JP2009183105A (en) * 2008-01-31 2009-08-13 Panasonic Corp Charge control circuit, battery pack, and charging system
JP2010121459A (en) * 2008-11-17 2010-06-03 Mitsubishi Motors Corp Idling stop control device
JP2010263676A (en) * 2009-04-30 2010-11-18 Toshiba Corp Information processing apparatus
US7887941B2 (en) 2007-03-05 2011-02-15 Lenovo (Singapore) Pte. Ltd. Battery pack
JP2013106476A (en) * 2011-11-15 2013-05-30 Toshiba Corp Charge and discharge planning system and charge and discharge planning method
JP2013258902A (en) * 2007-12-10 2013-12-26 Bayer Healthcare Llc Fast charge and power supply management of battery-driven fluid sample measuring instrument
CN103682498A (en) * 2013-12-04 2014-03-26 华为终端有限公司 Charging method and electronic device
JP2015133813A (en) * 2014-01-10 2015-07-23 株式会社デンソー Charger
CN106663957A (en) * 2016-03-01 2017-05-10 广东欧珀移动通信有限公司 Charging method, adapter, mobile terminal and charging system
JP2017108522A (en) * 2015-12-09 2017-06-15 本田技研工業株式会社 Charge current setting method, charging method, charger and actuator
JP2020005350A (en) * 2018-06-26 2020-01-09 株式会社マキタ Rechargeable cleaner
CN114243136A (en) * 2021-12-27 2022-03-25 厦门金龙汽车新能源科技有限公司 Charging optimization method for lithium battery
WO2023245555A1 (en) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 Calculation device and charging method and device for battery thereof, and medium

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136330A (en) * 2006-11-29 2008-06-12 Matsushita Electric Ind Co Ltd Charging system, charger, and battery pack
US8111035B2 (en) 2006-11-29 2012-02-07 Panasonic Corporation Charging system, charging device and battery pack
US8097356B2 (en) 2007-03-05 2012-01-17 Lenovo (Singapore) Pte. Ltd. Battery pack
US7887941B2 (en) 2007-03-05 2011-02-15 Lenovo (Singapore) Pte. Ltd. Battery pack
JP4660523B2 (en) * 2007-09-19 2011-03-30 レノボ・シンガポール・プライベート・リミテッド Charging system that controls charging at the surface temperature of the battery cell
CN101394103A (en) * 2007-09-19 2009-03-25 联想(新加坡)私人有限公司 Surface temperature dependent battery cell charging system
JP2009077466A (en) * 2007-09-19 2009-04-09 Lenovo Singapore Pte Ltd Charging system for controlling charge by using surface temperature of battery cell
TWI475781B (en) * 2007-09-19 2015-03-01 Lenovo Singapore Pte Ltd A charging system for charging control of the surface temperature of the battery cell, a charging method, a charging device, a battery pack, and a computer program
JP2009081958A (en) * 2007-09-26 2009-04-16 Hitachi Vehicle Energy Ltd Charge/discharge controller
US9312720B2 (en) 2007-12-10 2016-04-12 Ascensia Diabetes Care Holdings Ag Rapid charging and power management of a battery-powered fluid analyte meter
US9667078B2 (en) 2007-12-10 2017-05-30 Ascensia Diabetes Care Holdings Ag Rapid charging and power management of a battery-powered fluid analyte meter
JP2013258902A (en) * 2007-12-10 2013-12-26 Bayer Healthcare Llc Fast charge and power supply management of battery-driven fluid sample measuring instrument
US10763681B2 (en) 2007-12-10 2020-09-01 Ascensia Diabetes Care Holdings Ag Rapid charging and power management of a battery-powered fluid analyte meter
US10320212B2 (en) 2007-12-10 2019-06-11 Ascensia Diabetes Care Holdings Ag Rapid charging and power management of a battery-powered fluid analyte meter
US10050458B2 (en) 2007-12-10 2018-08-14 Ascensia Diabetes Care Holdings Ag Rapid charging and power management of a battery-powered fluid analyte meter
JP2009148046A (en) * 2007-12-12 2009-07-02 Sanyo Electric Co Ltd Charging method
JP2009183105A (en) * 2008-01-31 2009-08-13 Panasonic Corp Charge control circuit, battery pack, and charging system
JP2010121459A (en) * 2008-11-17 2010-06-03 Mitsubishi Motors Corp Idling stop control device
JP2011078307A (en) * 2009-04-30 2011-04-14 Toshiba Corp Information processing device and charging method
US8035351B2 (en) 2009-04-30 2011-10-11 Kabushiki Kaisha Toshiba Information processing apparatus
JP2010263676A (en) * 2009-04-30 2010-11-18 Toshiba Corp Information processing apparatus
JP4635094B2 (en) * 2009-04-30 2011-02-16 株式会社東芝 Information processing device
JP2013106476A (en) * 2011-11-15 2013-05-30 Toshiba Corp Charge and discharge planning system and charge and discharge planning method
US9093844B2 (en) 2011-11-15 2015-07-28 Kabushiki Kaisha Toshiba Charge/discharge scheduling system and charge/discharge scheduling method
CN103682498A (en) * 2013-12-04 2014-03-26 华为终端有限公司 Charging method and electronic device
JP2015133813A (en) * 2014-01-10 2015-07-23 株式会社デンソー Charger
JP2017108522A (en) * 2015-12-09 2017-06-15 本田技研工業株式会社 Charge current setting method, charging method, charger and actuator
CN106663957A (en) * 2016-03-01 2017-05-10 广东欧珀移动通信有限公司 Charging method, adapter, mobile terminal and charging system
JP2020005350A (en) * 2018-06-26 2020-01-09 株式会社マキタ Rechargeable cleaner
CN114243136A (en) * 2021-12-27 2022-03-25 厦门金龙汽车新能源科技有限公司 Charging optimization method for lithium battery
WO2023245555A1 (en) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 Calculation device and charging method and device for battery thereof, and medium

Similar Documents

Publication Publication Date Title
JPH0898426A (en) Battery charging method
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US7253587B2 (en) Method for prediction of electrical characteristics of an electrochemical storage battery
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
US20010035738A1 (en) Method for determining the state of charge of lead-acid rechargeable batteries
JPH0652903A (en) Battery monitor for monitoring of operating parameter of battery
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JP2006337155A (en) Battery-monitoring device
JP2002165380A (en) Charging system of battery set
TW200827754A (en) A method of calculating remaining capacity of rechargeable battery
JP2010252474A (en) Method of charging secondary battery
JP2015104139A (en) Charging method of secondary battery, and charging device employing the same
JP5129029B2 (en) Open voltage value estimation method and open voltage value estimation apparatus
JP5372208B2 (en) Secondary battery charging method and charging device using the same
US20050062458A1 (en) Method for determination of characteristic variable which relates to the state of charge of a storage battery
KR19990028876A (en) Control and Termination of Battery Charging Process
CN117250514A (en) Correction method for full life cycle SOC of power battery system
CN113075558B (en) Battery SOC estimation method, device and system
JP3678045B2 (en) Battery charging method
JP3075103B2 (en) Battery capacity measuring method and circuit
CN112349986B (en) Self-adaptive charging method and system
JP3506037B2 (en) Battery life determining method and battery life determining device
JP2002199606A (en) Battery pack and charging method of the battery
JPH10201111A (en) Charging control method and charging control device
JP4007945B2 (en) Charging method and program thereof