JPS5928632B2 - dry etching equipment - Google Patents

dry etching equipment

Info

Publication number
JPS5928632B2
JPS5928632B2 JP2906177A JP2906177A JPS5928632B2 JP S5928632 B2 JPS5928632 B2 JP S5928632B2 JP 2906177 A JP2906177 A JP 2906177A JP 2906177 A JP2906177 A JP 2906177A JP S5928632 B2 JPS5928632 B2 JP S5928632B2
Authority
JP
Japan
Prior art keywords
reaction product
laser beam
film
metal material
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2906177A
Other languages
Japanese (ja)
Other versions
JPS53113233A (en
Inventor
寿夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2906177A priority Critical patent/JPS5928632B2/en
Publication of JPS53113233A publication Critical patent/JPS53113233A/en
Publication of JPS5928632B2 publication Critical patent/JPS5928632B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 この発明は、レーザビームを用いて、金属表面に固相の
反応生成物の皮膜を形成させる乾式腐蝕装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry etching apparatus that uses a laser beam to form a solid phase reaction product film on a metal surface.

従来の乾式腐蝕装置を第1図に示す。A conventional dry etching apparatus is shown in FIG.

この図において、1は酸素−アセチレン炎発生器、2は
酸素−アセチレン炎、3は金属材料、16は所定の造膜
図形である。酸素−アセチレン炎発生器1から噴射され
た酸素−アセチレン炎2によつて金属材料3を加熱し、
金属表面が雰囲気中の気相状態にある酸素との反応速度
を大きくしてその表面に固相の反応生成物の皮膜を形成
させている。酸素−アセチレン炎2は、Co、H2、C
O2、H2OおよびO2の高温混合気体の噴流であり、
酸素−アセチレン炎2が金属材料3の表面に衝突すると
き気体の熱エネルギーが金属に伝達される。所定の造膜
領域近傍に噴射された酸素一アセチレン炎2は金属材料
3の表面に沿つて流れるので所定の造膜図形16よりも
相当幅広く加熱され、加熱された金属材料3の表面には
金属酸化皮膜が形成される。
In this figure, 1 is an oxygen-acetylene flame generator, 2 is an oxygen-acetylene flame, 3 is a metal material, and 16 is a predetermined film forming pattern. heating the metal material 3 by the oxygen-acetylene flame 2 injected from the oxygen-acetylene flame generator 1;
The reaction rate of the metal surface with oxygen in the gaseous state in the atmosphere is increased to form a film of a solid phase reaction product on the surface. Oxygen-acetylene flame 2 includes Co, H2, C
A jet of high temperature mixed gas of O2, H2O and O2,
When the oxygen-acetylene flame 2 impinges on the surface of the metal material 3, the thermal energy of the gas is transferred to the metal. The oxygen-acetylene flame 2 injected near the predetermined film-forming region flows along the surface of the metal material 3, so that it is heated over a considerably wider area than the predetermined film-forming figure 16, and the heated metal material 3 has a metal layer on its surface. An oxide film is formed.

酸素−アセチレン炎2のような高温原子、分子および電
離気体噴流は流体の制御が困難で小さなスポットに集束
することが不可能であり、そのパワー密度も低い。従来
の乾式腐蝕装置は、パワー密度の低い、大きな加熱面積
をもつ酸素−アセチレン炎2などの高温混合気体の噴流
で所定の造膜図形16を加熱しているので、局部(所定
の造膜領域の表面層のみ)の加熱が不可能であり、金属
材料3の不必要な領域も加熱されるので、所定の造膜図
形16以外の表面も造膜され、熱による歪が多量に発生
する欠点があつた。
High-temperature atomic, molecular and ionized gas jets, such as the oxygen-acetylene flame 2, are difficult to control and impossible to focus into a small spot, and their power density is low. Conventional dry etching equipment heats a predetermined film-forming pattern 16 with a jet of high-temperature mixed gas such as an oxygen-acetylene flame 2 with a large heating area and low power density. It is impossible to heat only the surface layer of the metal material 3), and unnecessary areas of the metal material 3 are also heated, so a film is formed on surfaces other than the predetermined film formation pattern 16, resulting in a large amount of distortion due to heat. It was hot.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、金属表面加熱源としてCO2レー
ザビームを用いることにより、所定の造膜図形16の表
面層のみを高パワー密度熱源で加熱するようにし、金属
材料3にほとんど歪(変形)を発生させずに反応生成物
の皮膜を形成させることができる乾式腐蝕装置を提供す
ることを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and by using a CO2 laser beam as a metal surface heating source, only the surface layer of a predetermined film forming pattern 16 can be heated with a high power density heat source. It is an object of the present invention to provide a dry etching apparatus capable of heating a metal material 3 and forming a film of a reaction product with almost no distortion (deformation) occurring on the metal material 3.

以下この発明について説明する。第2図はこの発明の一
実施例を示すもので、11はCO2レーザ発振器、12
はレーザビームを造膜に適した強度分布にするレーザビ
ーム制御装置、13はレーザビームを造膜領域に誘導す
る反射鏡、14は一連の造膜図形の始端に反応生成物の
種を印刷(塗布)する反応生成物種印刷装置である。
This invention will be explained below. FIG. 2 shows an embodiment of the present invention, where 11 is a CO2 laser oscillator, 12 is a CO2 laser oscillator, and 12 is a CO2 laser oscillator.
13 is a reflector that guides the laser beam to the film-forming area; 14 is a device that prints reaction product seeds at the starting end of a series of film-forming figures; This is a printing device for reaction product species (coating).

使用する種としては、例えば、Fe2O3粉末とバイン
ダとの混合溶液を用い、これを金属材料3の表面に付着
させる。CO2レーザ発振器11のグロー放電空間のレ
ーザ光軸に垂直な面の形状が細長い長方形になるように
CO2レーザ発振器11の放電々極を配設することによ
つて、CO2レーザ発振器11から放出するレーザビー
ム15aの断面形状(近視野像)を細長い長方形にする
ことができる。
As the seed used, for example, a mixed solution of Fe2O3 powder and a binder is used, and this is attached to the surface of the metal material 3. By arranging the discharge poles of the CO2 laser oscillator 11 so that the plane perpendicular to the laser optical axis of the glow discharge space of the CO2 laser oscillator 11 has an elongated rectangular shape, the laser emitted from the CO2 laser oscillator 11 can be The cross-sectional shape (near-field image) of the beam 15a can be made into an elongated rectangle.

レーザビーム制御装置12は互いに直交させて配設され
た2枚の円筒レンズおよび位置調整器からなり、各円筒
レンズの位置は調整できるようになつている。第3図に
レーザビーム制御装置の原理図を示す。第3図A,bに
おいて、第3図aは平面図、第3図bは側面図であり、
レーザビーム15aの進行方向をZ軸、Z軸に垂直なビ
ームの断面を一辺XO、他辺YOの長方形とする。焦点
距離Faの円筒レンズ12aと焦点距離Fbの円筒レン
ズ12bとの間隔をD1とする。レーザビーム15a0
x,y成分は図のようになる。円筒レンズ12bから間
隔D2の位置のレーザビームのX,y成分Xl,ylは
、になる。
The laser beam control device 12 is composed of two cylindrical lenses arranged orthogonally to each other and a position adjuster, and the position of each cylindrical lens can be adjusted. FIG. 3 shows a diagram of the principle of the laser beam control device. In FIGS. 3A and 3B, FIG. 3A is a plan view, FIG. 3B is a side view,
The traveling direction of the laser beam 15a is the Z axis, and the cross section of the beam perpendicular to the Z axis is a rectangle with one side XO and the other side YO. Let D1 be the distance between the cylindrical lens 12a having a focal length Fa and the cylindrical lens 12b having a focal length Fb. Laser beam 15a0
The x and y components are as shown in the figure. The X and y components Xl and yl of the laser beam at the distance D2 from the cylindrical lens 12b are as follows.

このように円筒レンズ12a,12bと金属材料との距
離をそれぞれ調整することにより、金属材料表面におい
て任意の長方形熱源に整形することができる。第4図は
反応生成物種印刷装置14の構成を示すもので、所定の
形状を切抜いたマスク14aと、このマスクを造膜図形
16の始端に配設する位置調整器14bおよび反応生成
物の微粉末とバインダーとの混合溶液を噴霧状にして噴
射する噴霧器14cとから構成されている。
By adjusting the distances between the cylindrical lenses 12a and 12b and the metal material in this way, it is possible to shape the heat source into an arbitrary rectangular shape on the surface of the metal material. FIG. 4 shows the configuration of the reaction product species printing device 14, which includes a mask 14a cut out in a predetermined shape, a position adjuster 14b for disposing this mask at the starting end of the film forming figure 16, and a reaction product species printing device 14. It is comprised of a sprayer 14c that sprays a mixed solution of powder and binder in the form of a spray.

位置調整器14bによつて造膜図形16の始端にマスク
14aは配設される。噴霧器14cを構成する噴射ノズ
ルの気体輸送路14c1に高圧力気体を導入することに
より、液体輸送路14c2に導入された反応生成物混合
溶液は噴霧状になり、気体とともに造膜図形16の始端
に噴射され、造膜図形16の始端にマスク14aの切抜
かれたパターン状に反応生成物混合溶液が付着(印刷)
する。この印刷された反応生成物混合溶液中の溶媒は気
化し、反応生成混合物17aは物理的に造膜図形16の
始端に被覆される。波長10.6μmのCO2レーザビ
ームに対する物質の吸収率は、その物質の直流電気伝導
度に反比例するので、各種金属材料の吸収率は極めて低
いが、金属反応生成物の吸収率は極めて高い(800/
)以上)。さて、再び第2図において、レーザビーム制
御装置12によつて制御された長方形のレーザビーム1
5bは反射鏡13によつて誘導され、反応性成物種印刷
装置14によつて造膜図形16の始端に印刷された反応
生成混合物17aの皮膜によつて吸収される。
The mask 14a is arranged at the starting end of the film forming figure 16 by the position adjuster 14b. By introducing high-pressure gas into the gas transport path 14c1 of the injection nozzle constituting the sprayer 14c, the reaction product mixed solution introduced into the liquid transport path 14c2 becomes atomized, and is sprayed together with the gas at the starting end of the film-forming figure 16. The reaction product mixture solution is sprayed and adheres to the starting end of the film-forming figure 16 in the pattern cut out of the mask 14a (printing).
do. The solvent in this printed reaction product mixture solution is vaporized, and the reaction product mixture 17a is physically coated on the starting end of the film-forming figure 16. The absorption rate of a substance for a CO2 laser beam with a wavelength of 10.6 μm is inversely proportional to the DC electrical conductivity of that substance, so the absorption rate of various metal materials is extremely low, but the absorption rate of metal reaction products is extremely high (800 μm). /
)that's all). Now, referring again to FIG. 2, the rectangular laser beam 1 controlled by the laser beam controller 12
5b is guided by the reflector 13 and absorbed by a film of the reaction product mixture 17a printed by the reactive product species printing device 14 at the beginning of the film pattern 16.

そこで吸収された光エネルギーは熱エネルギーに変換さ
れる。この熱エネルギーは拡散し、レーザビーム照射面
近傍の金属材料3の表面を高温に加熱する。高温に加熱
された金属材料3の表面は雰囲気中の酸素、イオウまた
はハロゲンなどの電気的に陰性な元素と反応してその表
面に固相の反応生成物の皮膜が成長する。これは丁度、
マツチ棒の先端のリンとイオウが燃えると、この燃焼熱
によつて軸の部分の木が燃焼温度に達して木が燃える現
像と類似である。金属材料3とレーザビーム15bとを
相対的に移動することにより、反応生成物を形成させた
金属表面積は拡大する。ち密な金属酸化皮膜が形成され
る場合、金属原子(イオンとして)が金属一酸化物界面
から酸化物一気相界面・\と拡散し、酸化物一気相界面
で新しく酸化物格子が組み上げられる。
The light energy absorbed there is converted into thermal energy. This thermal energy is diffused and heats the surface of the metal material 3 near the laser beam irradiation surface to a high temperature. The surface of the metal material 3 heated to a high temperature reacts with electronegative elements such as oxygen, sulfur, or halogen in the atmosphere, and a solid phase reaction product film grows on the surface. This is exactly
When the phosphorus and sulfur at the tip of a pine stick burns, the heat of combustion causes the wood at the shaft to reach a combustion temperature, similar to the development of wood burning. By relatively moving the metal material 3 and the laser beam 15b, the metal surface area on which reaction products are formed is expanded. When a dense metal oxide film is formed, metal atoms (as ions) diffuse from the metal monoxide interface to the oxide vapor phase interface, and a new oxide lattice is assembled at the oxide vapor phase interface.

界面反応速度は大で、界面では熱力学平衡に達している
とき、酸化物層中の荷電粒子の移動、すなわち体積拡散
が酸化の進行を支配する場合の酸化物層の当量成長速度
Dn/Dtは、WagりE.rO)理論より、ここでで
表わされる。
When the interfacial reaction rate is large and thermodynamic equilibrium is reached at the interface, the equivalent growth rate of the oxide layer is Dn/Dt when the movement of charged particles in the oxide layer, that is, the progress of oxidation is dominated by volume diffusion. is Waguri E. rO) According to theory, it is expressed here.

温度Tが一定のとき、酸化速度は酸化物層の厚さに逆比
例し、酸化皮膜の厚さδは放物線則δ2−Kpt+C(
Kp,C:定数)になる。酸化皮膜の厚さδが一定のと
き、酸化速度は温度Tに比例する。すなわち酸化皮膜を
加熱することによつて酸化皮膜の成長速度を犬きくする
ことができる。第5図A,bに反応生成物の形成状態の
説明図と金属表面の温度分布を示す。
When the temperature T is constant, the oxidation rate is inversely proportional to the thickness of the oxide layer, and the thickness δ of the oxide film is determined by the parabolic law δ2−Kpt+C(
Kp, C: constant). When the thickness δ of the oxide film is constant, the oxidation rate is proportional to the temperature T. That is, by heating the oxide film, the growth rate of the oxide film can be increased. FIGS. 5A and 5B show explanatory diagrams of the formation state of reaction products and the temperature distribution on the metal surface.

第5図aに示すように幅y1=Yb−Yaの細長いレー
ザビーム15cを異動速度Vyで連続照射したとき、照
射されたレーザビームは反応生成物17によつて大部分
吸収される。ただし、レーザビーム15cの照射面直下
の反応生成物17の厚さδが2δ≧α−12〜5μm(
ただしαはレーザビームに対する反応生成物の吸収係数
)になるように移動速度Vyが設定されている。
As shown in FIG. 5a, when a long and narrow laser beam 15c having a width y1=Yb-Ya is continuously irradiated at a variable velocity Vy, most of the irradiated laser beam is absorbed by the reaction product 17. However, the thickness δ of the reaction product 17 directly under the irradiation surface of the laser beam 15c is 2δ≧α−12 to 5 μm (
However, the moving speed Vy is set so that α is the absorption coefficient of the reaction product with respect to the laser beam.

吸収された光エネルギーは熱エネルギーに変換される。
この熱エネルギーは拡散され、レーザ熱源15cの近傍
も加熱される。y軸上(金属表面線上)の温度分布は第
5図bに示す曲線18のようになり、y=Ybにおいて
温度Tは最大となり、y<Yaにおける温度勾配δT/
δyは、y>Ybにおける温度勾配−θT/θyよりも
大きくなる。ただし、y−Ybにおける温度を反応生成
物17の融点以下にする必要がある。Wagnerの理
論より反応生成物17の温度を高くすることによつて反
応速度は増大する。また、反応速度は反応生成物17の
厚さδに逆比例する。したがつて熱伝導によつて間接的
に加熱されたy<Yaの領域において反応生成物17の
厚さδは、yの増加とともに急速に増大する。Ya≦y
≦Ybなる領域では反応生成物17は直接レーザビーム
によつて加熱されて高温(融点以下)になるので反応速
度は大きく、さらに反応生成物17の厚さδは増大する
。y≧Ybなる領域では、温度勾配θVOyは負となり
、yの増加とともに温度は減少し、さらに反応生成物1
7の厚さδは比較的厚くなつているのでこの領域におけ
る反応速度は小さく、反応生成物17の厚さδは徐々に
飽和する傾向にある。このように、CO2レーザ15a
はレーザビーム制御装置12によつて任意の高パワー密
度の長方形熱源に整形することができるので、金属材料
3・\の熱拡散量を少なくすることができる。したがつ
て金属材料3に発生する熱歪は微小である。また、反応
生成物種印刷装置14によつて造膜図形16の始端に反
応生成混合物が印刷されるので、造膜加工の初期段階か
らレーザビームを効率よく吸収し、安定な造膜加工がで
きる。なお、上記実施例では、レーザビーム制御装置1
2に2枚の円筒レンズ12a,12bを設けたものを示
したが、円筒面鏡を設けてもよい。
The absorbed light energy is converted into thermal energy.
This thermal energy is diffused and the vicinity of the laser heat source 15c is also heated. The temperature distribution on the y-axis (on the metal surface line) is like the curve 18 shown in Figure 5b, where the temperature T is maximum at y=Yb, and the temperature gradient δT/ when y<Ya.
δy becomes larger than the temperature gradient −θT/θy when y>Yb. However, it is necessary to keep the temperature at y-Yb below the melting point of the reaction product 17. According to Wagner's theory, the reaction rate increases by increasing the temperature of the reaction product 17. Further, the reaction rate is inversely proportional to the thickness δ of the reaction product 17. Therefore, the thickness δ of the reaction product 17 in the region y<Ya, which is indirectly heated by thermal conduction, increases rapidly as y increases. Ya≦y
In the region ≦Yb, the reaction product 17 is directly heated by the laser beam to a high temperature (below the melting point), so the reaction rate is high and the thickness δ of the reaction product 17 increases. In the region where y≧Yb, the temperature gradient θVOy becomes negative, the temperature decreases as y increases, and the reaction product 1
Since the thickness δ of the reaction product 17 is relatively thick, the reaction rate in this region is low, and the thickness δ of the reaction product 17 tends to gradually become saturated. In this way, the CO2 laser 15a
can be shaped into any rectangular heat source with high power density by the laser beam control device 12, so the amount of heat diffusion of the metal material 3 can be reduced. Therefore, the thermal strain generated in the metal material 3 is minute. Further, since the reaction product mixture is printed at the starting end of the film-forming figure 16 by the reaction product species printing device 14, the laser beam can be efficiently absorbed from the initial stage of the film-forming process, and stable film-forming process can be performed. In addition, in the above embodiment, the laser beam control device 1
2 is shown in which two cylindrical lenses 12a and 12b are provided, but a cylindrical mirror may also be provided.

また集光器によつて反応生成物の層上に集光された高パ
ワー密度の微小な円形ビームを高速で(100Hz以上
)走査することによつて等価的に長方形熱源としてもよ
い。また炭素鋼などの鉄鋼材料にこの発明を適用すると
鉄鋼材料の表面積のみを急速加熱、急速冷却することが
できるので、表面に酸化鉄皮膜を形成させながら表面焼
入れができる。以上詳細に説明したように、この発明に
よればCO2レーザ発振器から放出されたレーザビーム
をレーザビーム制御装置によつて高パワー密度の細長い
長方形熱源に整形し、一方造膜図形の始端に反応生成物
の種を印刷し、これに前記レーザビームを誘導するよう
にしたので、CO2レーザビーム熱源が効率よく利用で
き、金属材料に熱歪をほとんど与えずに安定な乾式腐蝕
(造膜)が得られる。
Alternatively, an equivalent rectangular heat source may be obtained by scanning a small circular beam with high power density focused on the layer of reaction products by a condenser at high speed (100 Hz or more). Further, when the present invention is applied to a steel material such as carbon steel, only the surface area of the steel material can be rapidly heated and rapidly cooled, so that surface hardening can be performed while forming an iron oxide film on the surface. As explained in detail above, according to the present invention, the laser beam emitted from the CO2 laser oscillator is shaped into a long and narrow rectangular heat source with high power density by the laser beam control device, while a reaction is generated at the starting end of the film formation pattern. Since the seed of the material is printed and the laser beam is guided to this, the CO2 laser beam heat source can be used efficiently, and stable dry corrosion (film formation) can be achieved with almost no thermal strain on the metal material. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の乾式腐蝕装置の概略図、第2図はこの発
明の一実施例による乾式腐蝕装置を示す模式的な概略図
、第3図A,bはレーザビーム制御装置の原理を説明す
るためのレンズ系の平面図と側面図、第4図は反応生成
物種印刷装置の概略図、第5図A,bは反応生成物の生
成状態の説明図および金属表面の温度分布図である。 図中、3は金属材料、11はCO2レーザ発振器、12
はレーザビーム制御装置、13は反射鏡、14は反応生
成物種印刷装置、15はレーザビ一6は造膜図形である
。 なお、図中の同一符一または相当部分を示す。
Fig. 1 is a schematic diagram of a conventional dry etching apparatus, Fig. 2 is a schematic diagram showing a dry etching apparatus according to an embodiment of the present invention, and Figs. 3A and 3B explain the principle of a laser beam control device. 4 is a schematic diagram of a reaction product species printing device, and FIGS. 5A and 5B are explanatory diagrams of the formation state of reaction products and temperature distribution diagrams on metal surfaces. . In the figure, 3 is a metal material, 11 is a CO2 laser oscillator, 12
13 is a laser beam control device, 13 is a reflecting mirror, 14 is a reaction product species printing device, 15 is a laser beam, and 6 is a film forming pattern. Note that the same reference numerals or corresponding parts in the figures are indicated.

Claims (1)

【特許請求の範囲】 1 金属材料の表面に反応生成物皮膜を形成させる乾式
腐蝕装置において、レーザビームを放出するレーザ発振
器と、このレーザビームを反応生成物表面上で細長い長
方形熱源に整形するレーザビーム制御装置と、前記レー
ザビームを前記金属材料の表面の所定の箇所に誘導する
反射鏡と、前記金属材料表面の造膜図形の始端に反応生
成物の種を印刷する反応生成物種印刷装置とで構成した
ことを特徴とする乾式腐蝕装置。 2 レーザビーム制御装置は、互いに直交させて配設さ
せた2枚の円筒レンズと、この各円筒レンズの位置を調
整するための位置調整器とで構成されたものであること
を特徴とする特許請求の範囲第1項記載の乾式腐蝕装置
。 3 反応生成物種印刷装置は、所定の形状を切抜いたマ
スクと、このマスクを造膜図形の始端に配設する位置調
整器と、前記マスクの切抜いた箇所に反応生成物の微粉
末とバインダー溶液との混合溶液を噴霧状に噴射させる
噴霧器とで構成されたものであることを特徴とする特許
請求の範囲第1項記載の乾式腐蝕装置。
[Scope of Claims] 1. A dry etching apparatus for forming a reaction product film on the surface of a metal material, comprising: a laser oscillator that emits a laser beam; and a laser that shapes the laser beam into an elongated rectangular heat source on the surface of the reaction product. a beam control device, a reflecting mirror that guides the laser beam to a predetermined location on the surface of the metal material, and a reaction product species printing device that prints reaction product seeds at the starting end of a film formation pattern on the surface of the metal material. A dry corrosion apparatus characterized by comprising: 2. A patent characterized in that the laser beam control device is composed of two cylindrical lenses arranged perpendicular to each other and a position adjuster for adjusting the position of each cylindrical lens. A dry etching apparatus according to claim 1. 3. The reaction product species printing device includes a mask cut out in a predetermined shape, a position adjuster for arranging this mask at the starting end of a film-forming pattern, and a fine powder of the reaction product and a binder solution placed in the cutout part of the mask. 2. The dry etching apparatus according to claim 1, further comprising: a sprayer for spraying a mixed solution of a mixture of
JP2906177A 1977-03-15 1977-03-15 dry etching equipment Expired JPS5928632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2906177A JPS5928632B2 (en) 1977-03-15 1977-03-15 dry etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2906177A JPS5928632B2 (en) 1977-03-15 1977-03-15 dry etching equipment

Publications (2)

Publication Number Publication Date
JPS53113233A JPS53113233A (en) 1978-10-03
JPS5928632B2 true JPS5928632B2 (en) 1984-07-14

Family

ID=12265842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2906177A Expired JPS5928632B2 (en) 1977-03-15 1977-03-15 dry etching equipment

Country Status (1)

Country Link
JP (1) JPS5928632B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692191A (en) * 1985-06-04 1987-09-08 Nippon Steel Corporation Method of improving functions of surface of alloy steel by means of irradiation of laser beam, and alloy steel and structure made by the method
CA2941898C (en) * 2014-03-11 2022-03-15 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece

Also Published As

Publication number Publication date
JPS53113233A (en) 1978-10-03

Similar Documents

Publication Publication Date Title
US5847357A (en) Laser-assisted material spray processing
US4377735A (en) Laser working treatment process capable of controlling the form of heated portion of a steel material
WO1997045678A1 (en) Laser preheat enhanced ignition
CA1118848A (en) Plasma generation and confinement with continuous wave lasers
US5769621A (en) Laser ablation based fuel ignition
US3131091A (en) Spray gun having means to control heat concentration in metal substrate
JPH02164793A (en) Method and apparatus of producing high tc oxide
JPS5928632B2 (en) dry etching equipment
US4179599A (en) Laser plasmatron
JP2001232487A (en) Laser beam machining device and method, manufacturing method for ink jet recording head using the device or the method and ink jet recording head manufactured by the manufacturing method
US6747244B1 (en) Laser working apparatus, laser working method, method for producing ink jet recording head utilizing such laser working apparatus or method, and ink jet recording head formed by such producing method
US6603095B2 (en) Apparatus and method of overlapping formation of chamfers and orifices by laser light
RU2316612C1 (en) Method for applying film coatings with use of laser ablation
Gutu et al. Surface treatment with linearly polarized laser beam at oblique incidence
JPH09122940A (en) Laser beam marking method
JP3754857B2 (en) Laser processing method
JPS62179882A (en) Heating method by laser beam
JPS5911644B2 (en) Surface hardening equipment
JPH08118053A (en) Workpiece cutting process
Veiko Laser microshaping: Fundamentals, practical applications, and future prospects
JPS61200851A (en) Method and apparatus for preparing fine particle
CN117047130B (en) Metal 3D printing method with preheating and heat preservation
JPH06198466A (en) Rainbow color development processing method
JP3165965B2 (en) Surface modification method of inorganic material by laser irradiation
JP3526935B2 (en) Laser marking method and laser processing apparatus used for the method