JPS61200851A - Method and apparatus for preparing fine particle - Google Patents

Method and apparatus for preparing fine particle

Info

Publication number
JPS61200851A
JPS61200851A JP60041214A JP4121485A JPS61200851A JP S61200851 A JPS61200851 A JP S61200851A JP 60041214 A JP60041214 A JP 60041214A JP 4121485 A JP4121485 A JP 4121485A JP S61200851 A JPS61200851 A JP S61200851A
Authority
JP
Japan
Prior art keywords
raw material
fine particles
plasma
tubular passage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60041214A
Other languages
Japanese (ja)
Other versions
JPH0226538B2 (en
Inventor
Akinobu Yoshizawa
吉澤 昭宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATSUKOUSHIYA KK
Original Assignee
HATSUKOUSHIYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATSUKOUSHIYA KK filed Critical HATSUKOUSHIYA KK
Priority to JP60041214A priority Critical patent/JPS61200851A/en
Publication of JPS61200851A publication Critical patent/JPS61200851A/en
Publication of JPH0226538B2 publication Critical patent/JPH0226538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Abstract

PURPOSE:To easily and efficiently form fine particles with a desired particle size, by generating the heat exciting reaction of a stock material not reacting at ambient temp. by dielectric breakdown plasma generated by condensing laser beam. CONSTITUTION:CO2-TEA laser beam from a laser oscillator 6 is one with about 0.5-1J/pulse class, a pulse lasting time of about 1 mus and peak output of about 1MW and condensed by a lens 7 to generate ionization action due to an ultra- high electromagnetic field in the vicinity of the focus of said lens and laser induced dielectric breakdown plasma is generated in a tubular passage 3. If stock gases A, B, for example, SuCl4 gas and O2 gas mixed in a stock material container 1 are guided to the side of a product container 2 through the passage 3, the gaseous mixture generates heat exciting reaction by rapid heating due to LIDB plasma P in the tubular passage 3 to form fine particles which are, in turn, transferred to the container 2 while the shapes thereof are held by quenching due to heat extinction.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はレーザ光を集束させることにより発生する誘電
破壊プラズマで常温では反応しない原料を熱励起反応さ
せて微粒子を製造する方法及びその方法を実施する装置
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for producing fine particles by thermally excitation reacting raw materials that do not react at room temperature with dielectric breakdown plasma generated by focusing laser light, and a method thereof. Regarding the apparatus for carrying out the implementation.

く従来の技術〉 近年、セラミックス技術等の分野で微粒子(100Aオ
ーダー程度の微細な粒子)の利用価値が高くなり、この
ような微粒子の製造技術に対する要求が高まっている。
BACKGROUND ART In recent years, the utility value of fine particles (fine particles on the order of 100A) has increased in the field of ceramic technology, etc., and the demand for manufacturing technology for such fine particles has increased.

従来、このような微粒子を製造する技術としては下記の
ようなものが知られている。
Conventionally, the following techniques are known as techniques for producing such fine particles.

1)レーザ光の吸収による励起を利用した方法C02−
Transversely Excited Atom
ospheric v −ザ(以下、単にCO□−TE
Aレーザと記す)の波長バント(約10μm)に強い吸
収帯を有する気体状分子を原料として用い、非集束状態
のCO,−TEA  レーザ光を原料に照射し、分子を
吸収励起により反応させて微粒子を生成する。
1) Method C02- using excitation by absorption of laser light
Transversely Excited Atom
ospheric v -the (hereinafter simply CO□-TE
Using gaseous molecules that have a strong absorption band in the wavelength band (approximately 10 μm) of the A laser as a raw material, the raw material is irradiated with unfocused CO,-TEA laser light, and the molecules are reacted by absorption excitation. Generates fine particles.

II)  DCアークプラズマを利用した方法10’に
以上の高温となるDCアークプラズマのフレーム中に気
体状の原料を導いて熱励起反応させた後、急冷して微粒
子を生成する。
II) Method 10' using DC arc plasma A gaseous raw material is introduced into the flame of DC arc plasma which reaches a high temperature to cause a thermally excited reaction, and then is rapidly cooled to generate fine particles.

m)  低圧ガス中の蒸発を利用した方法低圧ガス中で
ルツぎ内の金属を加熱して蒸発させ、蒸発した金属分子
を低圧ガスの分子と衝突させることによシエネルギーを
放出させて冷却し、金属分子ガスを生成し、これを凝縮
して微粒子を生成する。
m) Method using evaporation in low-pressure gas The metal in the screw is heated in low-pressure gas to evaporate it, and the evaporated metal molecules collide with the molecules of the low-pressure gas, releasing energy and cooling the metal. , a metal molecule gas is produced, which is condensed to produce fine particles.

〈発明が解決しようとする問題点〉 前記1)の方法にあっては、吸収励起による反応である
ため、siH,等のように吸収帯がCo2−TEA  
レーザの波長バンドで強いか、或いは吸収帯が幅広いか
という性質をもった分子しか原料として用いることがで
きず、その原料の種類に制限があった。尚、可視〜紫外
の強力なレーザを使い分けるようにすれば、用いること
ができる原料の種類の範囲を広げることができるが、C
O□−TEA  レーザに較べて電力効率の面で極めて
不利となる。
<Problems to be solved by the invention> In the method 1) above, since the reaction is based on absorption excitation, the absorption band of Co2-TEA, such as siH, etc.
Only molecules that are strong in the laser wavelength band or have a broad absorption band can be used as raw materials, and there are restrictions on the types of raw materials. By using different powerful lasers in the visible to ultraviolet range, the range of raw materials that can be used can be expanded.
It is extremely disadvantageous in terms of power efficiency compared to the O□-TEA laser.

また、前記1))の方法にあっては、DCアークプラズ
マを発生させるために大電力を要すると共に、このプラ
ズマを安定化させるには困難があった。更に、プラズマ
内に原料を導くに際してt磁気的な作用がこれを阻害し
てしまうという場合もあった。
Further, in the method 1)), a large amount of electric power is required to generate DC arc plasma, and it is difficult to stabilize this plasma. Furthermore, there have been cases in which the magnetic effect obstructs the introduction of the raw material into the plasma.

また、前記I)およびl)の方法にあっては。Further, in the methods I) and l) above.

熱慣性が大きいため目的の温度シー/を短時間且つ限ら
れた範囲に作り出すことができず、制御性が患かった。
Because of the large thermal inertia, it was not possible to create the desired temperature range in a short period of time and within a limited range, resulting in poor controllability.

本発明は上述の如き従来の事情に鑑みなさ九たもので、
レンズで集束されたレーザ光によシ訪電破壊プラズマを
発生させ、このプラズマにより原料を熱励起反応させる
という新規な手法によシ微粒子を製造する方法及びその
方法を実施するための装置を提供することを目的とする
The present invention has been made in view of the conventional circumstances as described above,
Provided is a method for producing fine particles by a novel method in which electric destructive plasma is generated by a laser beam focused by a lens, and a raw material is subjected to a thermal excitation reaction using this plasma, and an apparatus for carrying out the method. The purpose is to

く問題点を解決するための手段〉 本発明に係る微粒子製造方法は、レーザ光をレンズによ
シ集束させてその焦点近傍に誘電破壊プラズマを発生さ
せ、該誘電破壊プラズマ内に気体状の原料を導いて熱励
起反応によシ微粒子を生成することを特徴とする。ま九
1本発明に係る微粒子製造装置は、気体状の原料が移送
される管状通路と、前記管状通路内に焦点を有するレン
ズと、前記レンズにより集束されて前記管状通路内の焦
点近傍に誘電破壊プラズマを生じさせるレーザ光を発振
するレーザ源と、前記管状通路に接続されて前記誘電破
壊プラズマによる熱励起反応で気体状原料から生成され
た微粒子を捕集する捕集手段とを備えたこと特徴とする
Means for Solving the Problems> The method for producing fine particles according to the present invention focuses laser light on a lens to generate dielectric breakdown plasma near its focal point, and injects gaseous raw material into the dielectric breakdown plasma. is characterized in that it generates fine particles through a thermally excited reaction. (191) The particle manufacturing apparatus according to the present invention includes a tubular passage through which a gaseous raw material is transferred, a lens having a focal point within the tubular passage, and a dielectric material that is focused by the lens and placed near the focal point within the tubular passage. A laser source that oscillates a laser beam that generates a destructive plasma, and a collection means that is connected to the tubular passage and that collects fine particles generated from a gaseous raw material by a thermally excited reaction caused by the dielectric destructive plasma. Features.

く作用〉 レーザ光で誘起された誘電破壊プラズマはし7、eの焦
点近傍の限らnた範囲で発生する。このため、このプラ
ズマ内に導かれる気体状の原料はプラズマ内で極めて高
温まで急熱されて微粒子が生成され、その後、プラズマ
外へ移送されるか或いはプラズマが消滅するかにより微
粒子は極めて大きな温度差をもって急冷されて安定し、
その粒径が一定したものとなる。tた。
Effect> Dielectric breakdown plasma induced by laser light is generated in a limited range near the focal point of the blades 7 and e. For this reason, the gaseous raw material introduced into the plasma is rapidly heated to an extremely high temperature within the plasma to generate fine particles, and then the fine particles are transferred to the outside of the plasma or the plasma is extinguished, causing the fine particles to rise to an extremely high temperature. It is rapidly cooled and stabilized with a difference,
The particle size becomes constant. It was.

気体状原料の流速及び濃度或いはプラズマの発生領域の
調整による温度制御で微粒子の粒径を容易に制御するこ
とができる。
The particle size of the fine particles can be easily controlled by controlling the temperature by adjusting the flow rate and concentration of the gaseous raw material or the plasma generation area.

〈実施例〉 以下1本発明の一実施例を図面を参照して説明する。<Example> An embodiment of the present invention will be described below with reference to the drawings.

まず1本発明の方法を実施する微粒子製造装置をその概
略構造を表す第1図を参照して説明する。微粒子製造装
置は原料容器1と生成物容器2とを円筒状の管状通路3
で連通した容器を有している。原料容器1内には気体状
の原料(以下原料ガスと言う)AとBとが導かれ、こn
ら原料ガスAと原料ガスBとは原料容器1内でファ/4
によシ混合されるようになっている。尚。
First, a fine particle manufacturing apparatus for carrying out the method of the present invention will be described with reference to FIG. 1, which schematically shows its structure. The fine particle manufacturing device connects a raw material container 1 and a product container 2 with a cylindrical tubular passage 3.
It has a container that communicates with the Gaseous raw materials (hereinafter referred to as raw material gas) A and B are introduced into the raw material container 1.
The raw material gas A and the raw material gas B are heated to F/4 in the raw material container 1.
It is designed to be mixed well. still.

これら原料ガスAと原料ガスBとは常温では混合しても
反応しない組合せである。原料容器1に較べて生成物容
器2は低圧に設定されており。
These raw material gas A and raw material gas B are a combination that does not react even if mixed at room temperature. Compared to the raw material container 1, the product container 2 is set at a lower pressure.

原料ガスAと原料ガスBとの混合ガスは成る一定の流速
で管状通路3内を通って原料容器1側から生成物容器2
側へ流れるようになっている。
A mixed gas of raw material gas A and raw material gas B passes through the tubular passage 3 at a constant flow rate from the raw material container 1 side to the product container 2.
It flows to the side.

原料容器1には管状通路3の一端側開口に対向した窓5
が設けられ、レーザ発振器6からのC02−TEAレー
デ光がレンズ7によシ集束されて窓5から容器内へ入射
され、管状通路3内で焦点を結ぶようになっている。尚
、これら窓5及びレンズ7はCO□−TEAレーザの波
長で透明となるKCI 、 NaC1、Ge等によシ成
っているが、CO,=TEAレーザ等使用されるレーザ
光が透過するものであればその材質に特に限定はない。
The raw material container 1 has a window 5 facing the opening on one end side of the tubular passage 3.
is provided, and the C02-TEA radar light from the laser oscillator 6 is focused by the lens 7, enters the container through the window 5, and is focused in the tubular passage 3. The window 5 and the lens 7 are made of KCI, NaCl, Ge, etc., which are transparent at the wavelength of the CO□-TEA laser, but they are not made of materials through which the laser light used in the CO,=TEA laser, etc. is transmitted. If so, there are no particular limitations on the material.

レーザ発振器6からのco2−TEAレーデ光は約0.
5〜約I J/pulaeクラス、パルス持続時間的1
μs、ピーク出力約I MWのものであり、レンズ7に
より集束されてその焦点近傍で超強電磁場による電離作
用を起し、管状通路3内でレーザ誘起誘電破壊プラズマ
(Laaer 工nducedDielectric 
Breakdown plaama 、以下LIDBグ
ラXマと記す)を発生する。例えば、0.6〜0.8J
/pulsseのCo、 −T EAレーザ光で長さ約
2−1直径約1mのLIDBプラズマPが発生し、 L
IDBプラズマPの体積(約0.02d:2xlOmo
l)と気体(2原子分子として)の比熱(7Chi/m
olsK:30Cal/m0aIIK)  とからLI
DBブラX’ −q pは約10’にという極めて高温
となっている。この高温状態はm8  オーダーで緩和
すると考えられ。
The CO2-TEA radar light from the laser oscillator 6 is about 0.
5 to about I J/pulae class, pulse duration 1
μs, with a peak output of about I MW, and is focused by the lens 7 to cause an ionization effect by an ultra-strong electromagnetic field near its focus, resulting in a laser-induced dielectric breakdown plasma (Laaer-induced dielectric breakdown plasma) in the tubular passage 3.
A breakdown plaama (hereinafter referred to as LIDB grammar) is generated. For example, 0.6-0.8J
A LIDB plasma P with a length of about 2-1 and a diameter of about 1 m is generated by the Co, -T EA laser beam of /pulsse.
Volume of IDB plasma P (approximately 0.02d: 2xlOmo
l) and the gas (as a diatomic molecule) (7Chi/m
olsK:30Cal/m0aIIK) TokaraLI
The DB bra X'-qp has an extremely high temperature of about 10'. This high temperature state is thought to relax on the order of m8.

衝撃波が観測されることから急速に膨張する高温気体の
細い円柱が管状通路3内に残υ、すぐ後に、膨張と輻射
により約10ms以内に急速に冷却する。すなわち、レ
ーザ発振器6のパルスに応じ九所定の時刻且つレンズ7
の焦点に応じた所定の場所に1μ8 程度の短時間でl
0K(10k/s )にもなる急熱状態と10〜IOK
/Sで降下するという急冷状態とを得ることができる。
Since a shock wave is observed, a thin cylinder of rapidly expanding high temperature gas remains in the tubular passage 3, and immediately thereafter rapidly cools down within about 10 ms due to expansion and radiation. That is, depending on the pulse of the laser oscillator 6, the lens 7
in a short time of about 1 μ8 at a predetermined location depending on the focal point of the
Rapid fever state reaching 0K (10k/s) and 10~IOK
A rapid cooling state in which the temperature drops at /S can be obtained.

このような状態は高周波放電に較べてはるかに高い周波
数(C02−TEAレーザの波長を10am として(
3X10’m/8)÷(10xiO−’m) =3X1
0”Hz)での高周波プラズマが、1)00pp程度で
繰返され得ることを示している。尚1本発明は連続発振
レーザを用いることもでき、連続発振レーザの場合は上
記パルス発振レーザと異なり急冷はLIDBプラズマP
の発生領域外へ移動されることによりなされる。
This state occurs at a much higher frequency than high-frequency discharge (assuming the wavelength of the C02-TEA laser is 10 am).
3X10'm/8)÷(10xiO-'m) =3X1
This shows that high-frequency plasma at 0"Hz) can be repeated at 1) about 00pp. Note that the present invention can also use a continuous wave laser, and in the case of a continuous wave laser, unlike the pulsed laser described above, Rapid cooling is done using LIDB Plasma P.
This is done by moving the area out of the area where it occurs.

上記構成の微粒子製造装置によれば、原料容器1内で混
合された原料ガス人と原料ガスBとが管状通路3内を通
って生成物容器2側へ流れるが、この混合ガスは管状通
路3内でLIDBプラズマPによる急熱で熱励起反応し
て微粒子が生成され、パルスレーザによるLIDBプラ
ズマが消滅することによる急冷で生成された微粒子は更
なる反応をすることなくその形状を留めて生成物容器2
へ移送される。具体的には原料として通常混合しても1
000℃以上でしか反応しない5nC14ガスと0□ 
ガスとを用いた場合には、 C12ガスと微粒子として
5n02が得られ、他の八〇 f 7化物1例えば5b
C1,、hlc13. FeCl、 。
According to the fine particle manufacturing apparatus having the above configuration, the raw material gas and the raw material gas B mixed in the raw material container 1 flow through the tubular passage 3 to the product container 2 side. The rapid heating caused by the LIDB plasma P generates fine particles through a thermal excitation reaction within the chamber, and the fine particles generated by rapid cooling when the LIDB plasma disappears due to the pulsed laser retain their shape without further reaction and form a product. container 2
will be transferred to. Specifically, even if it is normally mixed as a raw material, 1
0□ with 5nC14 gas that reacts only at temperatures above 000℃
When using gas, 5n02 is obtained as C12 gas and fine particles, and other 80f7 compounds 1 such as 5b
C1,, hlc13. FeCl, .

TlCl、等についても同様である。また、常温で気体
であるような窒化物、ホウ化物、炭化物等を原料として
用いることもできる。更にまた。
The same applies to TlCl, etc. Further, nitrides, borides, carbides, etc. that are gaseous at room temperature can also be used as raw materials. Yet again.

原料として例えばFeCj? 、の蒸発、凝縮を不活性
ガス中で行ってエアロゾルを作り、他の原料のHz  
ガスと常温で混合してLIDB7−ラズマPで反応させ
、微粒子Fe  とHC/ガスとを得ることもできる。
For example, FeCj as a raw material? , is evaporated and condensed in an inert gas to create an aerosol, and the Hz of other raw materials is
It is also possible to obtain fine particles of Fe and HC/gas by mixing with a gas at room temperature and reacting with LIDB7-lasma P.

このように原料をエアロゾルとガスとの組合せとする以
外にもエアロゾル同士等、本発明によれは極めて広範囲
な株類の原料から微粒子を製造することができる。また
、原料容器1内に供給する原料ガスは勿論2種類以上で
あっても良く、ま念これら原料ガスは予め混合して原料
容器1に供給するようにしても良い。
In addition to using a combination of an aerosol and a gas as raw materials as described above, fine particles can also be produced from a wide range of raw materials such as aerosols, etc. according to the present invention. Further, it is of course possible to supply two or more kinds of raw material gases into the raw material container 1, and these raw material gases may be mixed in advance and supplied to the raw material container 1.

ここで、co2−TEAレーザのパルスが50 pp8
の場合、直径21)m1の管状通路3内において長さ2
傷にわたって発生するLIDB7ラズマPの領域を1)
50g  で通過する原料ガスの流速は1 m/IIで
あることから、処理数は3d/sとなり、1気圧で1モ
ルの原料ガスをLIDB  プラズマで処理するのに約
2時間を要することが判る。このことは製造1)0F/
hrのオーダーを意味し、現在知られている他の製法に
較べて比較的能率の良いものである。例えば、 5nC
A’4ガス+0□ガス→sno、  微粒子+2CJ2
 ガスの場合、原料ガス合計2モルから1.50.77
のSnO□ 微粒子が生成さバ、例えば容器内を200
torrに減圧し。
Here, the pulse of the co2-TEA laser is 50 pp8
, the length 2 in the tubular passage 3 with a diameter 21) m1
1) The area of LIDB7 lasma P that occurs across the wound.
Since the flow rate of the raw material gas passing at 50 g is 1 m/II, the processing number is 3 d/s, and it is understood that it takes about 2 hours to process 1 mole of raw material gas with LIDB plasma at 1 atmosphere. . This means that manufacturing 1) 0F/
hr, and is relatively efficient compared to other currently known manufacturing methods. For example, 5nC
A'4 gas + 0□ gas → sno, fine particles + 2CJ2
In the case of gas, the total raw material gas is 2 moles to 1.50.77
When the SnO□ fine particles are generated, for example, the inside of the container is
Reduce pressure to torr.

BnガスヲArガスで50%に薄めても55E/hrの
オーダーで微粒子を生成することができる。
Even if Bn gas is diluted to 50% with Ar gas, fine particles can be generated on the order of 55 E/hr.

tt、LIDBプラズマで生成された微粒子を急冷する
過程での凝縮がエアロゾルの合一凝集理論で記述できる
と仮定すれば、微粒子の平均6/!l       6
/!1 体積否OC(滞留時間) (容積濃度)  (絶A 対温度)  となるため、微粒子の平均径dp(XO+
4 (原料ガスの分圧/原料ガスの流速)  と考えられる
(但し、絶対温度はレーザ元で決まり反応系には余り依
存しないと仮定〕。従って。
tt, if we assume that the condensation during the process of rapidly cooling the fine particles generated in the LIDB plasma can be described by the theory of coalescence and aggregation of aerosols, then the average of fine particles is 6/! l 6
/! 1 Volume not OC (residence time) (volume concentration) (absolute A vs. temperature), so the average diameter of fine particles dp (XO+
4 (Partial pressure of raw material gas/Flow rate of raw material gas) (However, it is assumed that the absolute temperature is determined at the laser source and does not depend much on the reaction system.) Therefore.

より小径の微粒子を得るには、原料ガス分圧を低く(原
料ガス濃度を薄く〕するか原料ガスの流速を速くすれば
良い。しかしながら、パルスレ・−ザでLIDBプラズ
マを誘起させる場合には。
In order to obtain fine particles with a smaller diameter, it is sufficient to lower the partial pressure of the raw material gas (lower the concentration of the raw material gas) or increase the flow rate of the raw material gas.However, when LIDB plasma is induced by a pulse laser.

管状通路3内を流れる原料ガスの全てをLIDBプラズ
マで反応させるためには、自ら原料ガスの流速には制限
が加わる。このためパルスレーザを用いる場合には生成
微粒子の粒径制御は原料ガス分圧の制(財)により行う
のが容易であるが。
In order to cause all of the raw material gas flowing in the tubular passage 3 to react with LIDB plasma, a restriction is imposed on the flow rate of the raw material gas. For this reason, when a pulse laser is used, it is easy to control the particle size of the generated fine particles by controlling the partial pressure of the raw material gas.

この点連続発振レーザを用いれば粒径制御がより容易に
行えると言える。尚、実際には生成微粒子の粒径は原料
ガスの流速より原料ガス分圧の方へ依存性がかなり大き
いため、原料ガス分圧の制御によりパルスレーザでも約
20A〜約2000Aの範囲で十分に粒径制御が行える
ことが実験により確認された。
In this respect, it can be said that particle size control can be performed more easily if a continuous wave laser is used. In reality, the particle size of the generated fine particles is much more dependent on the raw material gas partial pressure than on the raw material gas flow rate, so even with a pulsed laser, it is sufficient to control the raw material gas partial pressure in the range of about 20 A to about 2000 A. Experiments have confirmed that particle size control is possible.

上記のように、LIDBプラズマの径程度に管状通路3
を小径にしておくと下記の如き利点がある。
As mentioned above, the tubular passage 3 is approximately the diameter of the LIDB plasma.
Having a small diameter has the following advantages.

a)LIDBプラズマ内を原料ガス全てが通過するため
、微粒子の生成効率が高い。
a) Since all the raw material gas passes through the LIDB plasma, the generation efficiency of fine particles is high.

b)管状通路内のガス流が一方向であるため。b) Because the gas flow in the tubular passage is unidirectional.

生成物容器2から原料容器1への逆流が防止され、微粒
子の再成長が防止される。
Backflow from the product container 2 to the raw material container 1 is prevented, and regrowth of fine particles is prevented.

C)原料容器1と生成物容器2とが実質的に切離される
ため1例えは原料室を凝縮点以上にし、生成物容器2内
に液体窒素を入れて両者間に温度条件に差を設けたシ、
或いは原帽番1を高圧、生成物容器2を低圧として両者
間に圧力条件の差を設は九り、或いは生成物容器2内の
みに生成された微粒子表面に吸着してこの表面を改質す
る気体物質を入nておく等の条件設定を容易に行うこと
ができる。
C) Since the raw material container 1 and the product container 2 are substantially separated, for example, the raw material chamber is heated above the condensation point and liquid nitrogen is introduced into the product container 2 to create a difference in temperature conditions between the two. Tashi,
Alternatively, a difference in pressure conditions can be established between the two by setting the original cap number 1 at high pressure and the product container 2 at low pressure, or by adsorbing to the surface of fine particles generated only in the product container 2 and modifying this surface. It is possible to easily set conditions such as adding a gaseous substance to be used.

ここで上記のように管状通路3を小径のものとする場合
には上記した利点がある反面、生成された微粒子が比較
的低温の管状通路3の壁面に熱沈着したり、LIDBプ
ラズマの半径方向への急速膨張によシ管状通路3が破損
してしまったり或いは管壁をm成する物質の分解・蒸発
によるプラズマへの害作用が生ずることが考えられるが
、管状通路3の壁面を加熱して生成物容器2内への急速
膨張冷却で微粒子の熱沈着を低減させることは可能であ
る。一方、微粒子の熱沈着及び管状通路3の破損をよシ
効果的に防止するためには、管状通路3の壁面近傍部分
がプラズマ化されないため着干微粒子生成効率が落ちる
が、管状通路3の径を成る程度太くすれば良い。
Here, when the tubular passage 3 is made small in diameter as described above, while there is the above-mentioned advantage, the generated fine particles may be thermally deposited on the relatively low-temperature wall surface of the tubular passage 3, and the radial direction of the LIDB plasma may It is conceivable that the rapid expansion of the tube may damage the tubular passage 3 or cause harmful effects on the plasma due to decomposition and evaporation of the substances forming the tube wall. It is possible to reduce thermal deposition of fine particles by rapid expansion cooling into the product container 2. On the other hand, in order to more effectively prevent thermal deposition of particles and damage to the tubular passage 3, it is necessary to Just make it as thick as possible.

第2図〜第4図に示すものは微粒子生成効率を落すこと
なく管状通路3が小径であることによる利点を維持し、
尚且つ微粒子の熱沈着及び管状通路3の破損を有効に防
止する几めの態様である。
The ones shown in FIGS. 2 to 4 maintain the advantages of the small diameter of the tubular passage 3 without reducing the particle generation efficiency,
In addition, this is a method that effectively prevents thermal deposition of fine particles and damage to the tubular passage 3.

第2図に示すものは、管状通路3を原料容器側部分3a
と生成物容器側部分3bとに分割し。
In the one shown in FIG. 2, the tubular passage 3 is connected to the raw material container side portion 3a.
and a product container side portion 3b.

これら画部分3a、3bをグラスフィルター等の多孔質
部材3dを有した円筒状のソヨイント部材3Cで連結し
、少なくともLIDBプラズマPの発生領域を囲む管状
通路3の部分をLIDBプラズマの径より大径としたも
のである。尚、図中8はシール用の0す/グである。そ
して、図外の供給源からノヨイ/ト部材3C内へ供給さ
れたAr等の不活性ガスが多孔質部材3d全通して管状
通路3内のLIDBプラズマP周囲へ満遍なく供給さ九
るようになっている。これにより、管状通路3内の壁面
近傍部には不活性ガスによる層が形成されて壁面際のプ
ラズマ化されない部分が不活性ガスにより置換えられる
ため、微粒子生成に係る管状通路3の径は実質的に小さ
くなっている。このため、微粒子の熱沈着や管状通路3
の破損を生ずることなく、#記利点を維持しつつ微粒子
の製造を行うことができる。
These image parts 3a and 3b are connected by a cylindrical soyoint member 3C having a porous member 3d such as a glass filter, and at least a portion of the tubular passage 3 surrounding the generation area of the LIDB plasma P has a diameter larger than the diameter of the LIDB plasma. That is. In addition, 8 in the figure is 0 S/G for sealing. Then, an inert gas such as Ar supplied from a supply source (not shown) into the inside of the nozzle member 3C passes through the porous member 3d and is evenly supplied around the LIDB plasma P in the tubular passage 3. ing. As a result, a layer of inert gas is formed near the wall inside the tubular passage 3, and the part near the wall that is not turned into plasma is replaced by the inert gas, so the diameter of the tubular passage 3 related to particle generation is substantially reduced. It has become smaller. Therefore, thermal deposition of fine particles and tubular passage 3
Fine particles can be produced while maintaining the advantages mentioned above without causing any damage.

第3図に示すものは、管状通路3の原料容器側部分3a
をLIDBプラズマPと同程度の小径とし、生成物容器
側部分3bを大径として。
What is shown in FIG. 3 is a raw material container side portion 3a of the tubular passage 3.
is made to have a small diameter comparable to that of LIDB plasma P, and the product container side portion 3b is made to have a large diameter.

これら両部会3a、−3bt−0す/グ8を介して連結
したものである。そして1図外の供給源から生成物容器
側部分3bの先端に設けられたチャ72部3eに供給さ
れたAr等の不活性ガスが生成物容器側部分3bの内壁
面に沿って層流状態で流れ、プラズマ化されない壁面近
傍部分を不活性ガスで置換えてLIDBプラズマPの発
生領域を実質的に小径としている。
These two subcommittees 3a and -3bt-0s/g 8 are connected to each other. Then, an inert gas such as Ar is supplied from a supply source not shown in Figure 1 to the chamber 72 section 3e provided at the tip of the product container side portion 3b in a laminar flow state along the inner wall surface of the product container side portion 3b. The area where the LIDB plasma P is generated is made substantially smaller in diameter by replacing the portion near the wall surface that is not converted into plasma with an inert gas.

第4図に示すものは、原料容器1を上方、生成物容器2
を下方に位置させて、これら容器1゜2を鉛直方向に延
設され且つ第3図に示し九と同様な構造の管状通路3で
連結したものであり。
The one shown in FIG.
These containers 1.degree. 2 are connected by a tubular passage 3 extending vertically and having a structure similar to that shown in FIG. 3 and 9.

図外の供給源からチャツバ部3eに供給さnたシリコン
オイルをLIDBプラズマPの発生領域を囲む生成物容
器側部分3bの内壁面に沿って満遍なく流下させるよう
にし、プラズマ化されない壁面近傍部分をシリコンオイ
ルで置換えてLIDBプラズマPの発生領域を実質的に
小径としている。尚、管状通路3を多少長目にしておけ
ば、壁面への微粒子の熱沈着を利用して、この微粒子を
シリコンオイル中に捕集することができる。
The silicone oil supplied to the chatuba part 3e from a supply source (not shown) is made to flow down evenly along the inner wall surface of the product container side portion 3b surrounding the generation area of LIDB plasma P, so that the portion near the wall surface that is not converted into plasma is By replacing it with silicone oil, the generation area of LIDB plasma P is made substantially smaller in diameter. If the tubular passage 3 is made somewhat long, the fine particles can be collected in the silicone oil by utilizing thermal deposition of the fine particles on the wall surface.

第1図に示した装置は原料容器1内で原料ガスを混合す
るようにしているため、原料容器1に成る程度の容Iを
もたせているが、予め数種類の原料ガスを混合して供給
する場合には、第5図に示すように原料容器1を極めて
小容lのものとしたシ、或いは原料容器を省略してしま
ったりすることもできる。ここで、第5図に示した構成
のものに限らないが、原料ガス中の粒子や生成された微
粒子が窓5に沈着してレーザの透過率を低下させてしま
うのを防止するため。
The device shown in Fig. 1 mixes the raw material gases in the raw material container 1, so it has a volume I that is sufficient to form the raw material container 1, but several types of raw material gases are mixed in advance and supplied. In some cases, the raw material container 1 may have an extremely small capacity as shown in FIG. 5, or the raw material container may be omitted. Here, although not limited to the configuration shown in FIG. 5, this is to prevent particles in the source gas and generated fine particles from depositing on the window 5 and reducing the laser transmittance.

第6図に示すように原料容器1の内側から窓5に向けて
円墳状に噴射口9を設け、この噴射口9からAr  等
の不活性ガスを慾5に吹付けて粒子の沈着を防止するこ
ともできる。尚、生成さf′Lf/:、微粒子の窓5へ
の沈着防止だけを図る必要がある場合には、レンズ7に
長焦点のものを用い、LIDB7ラズマPの発生領域を
窓5から十分に離隔させるようにしても目的は達成でき
る。
As shown in FIG. 6, an injection port 9 is provided in a round shape from the inside of the raw material container 1 toward the window 5, and an inert gas such as Ar is sprayed onto the air 5 from the injection port 9 to prevent the deposition of particles. It can also be prevented. In addition, if it is necessary to prevent only the deposition of fine particles on the window 5, use a lens 7 with a long focal length so that the area where the LIDB7 lasma P is generated is sufficiently far away from the window 5. Even if you keep them apart, you can achieve your goal.

また、供給しようとする原料の辞点が高い場合には、こ
の原料を一度蒸発、#縮させて含塵気流を生成し、これ
を原料ガスとして供給することもできる。例えば第7図
に示すように、高沸点の原料Aをヒータ1oにょυ原料
容器1内で加熱し、蒸発、凝縮させて微粒子状の固体又
は液体とし、こnを身料容器1内に供給されるAr 、
 N2  等のキャリアガスに乗せて管状通路3内へ導
き、この原料ガスAをLIDBプラズマPの発生領域よ
り前で管状通路3内に供給される別の原料ガスBと混合
させてLIDBグラズマPにより反応させるようにする
ことができる。
Furthermore, when the raw material to be supplied has a high point, it is also possible to evaporate and condense the raw material once to generate a dust-containing airflow, and supply this as the raw material gas. For example, as shown in FIG. 7, a raw material A with a high boiling point is heated in a heater 1 and a raw material container 1, evaporated and condensed to form a solid or liquid particulate, and this is supplied into a raw material container 1. Ar to be done,
This raw material gas A is introduced into the tubular passage 3 on a carrier gas such as N2, and mixed with another raw material gas B supplied into the tubular passage 3 before the LIDB plasma P generation area, and is then mixed with the LIDB plasma P by the LIDB plasma P. It can be made to react.

尚、この場合、原料ガスAと原料ガスBとを混合させる
之めの中間容器=iLIDBプラズマPの発生領域よυ
前に設けても良い。また、原料Aの加熱はヒータ10以
外に、加熱用のCO2レーザを照射して加熱する等、他
の公知の手段を用いても良い。
In this case, the intermediate container for mixing raw material gas A and raw material gas B = iLIDB plasma P generation area υ
It may be placed in front. In addition to the heater 10, other known means may be used to heat the raw material A, such as heating by irradiating a CO2 laser for heating.

また、生成された微粒子の捕集手段としては生成物容器
2を設けるものに限らず、サイクロ/等の集塵装置を設
は次り、或いは流下する液膜やシャワーにより微粒子を
冷却捕集するようにしても良く、更には、生成された微
粒子の表面改質を目的とする吸着質ガス供給装置を付設
するようにしても良い。
In addition, the means for collecting the generated particulates is not limited to the one provided with the product container 2, but it is also possible to install a dust collector such as a cyclone, or to collect the particulates by cooling with a flowing liquid film or shower. Furthermore, an adsorbent gas supply device for the purpose of surface modification of the generated fine particles may be attached.

また、実施例ではレンズ7により集束さjたレーザを窓
5を通して容器内に入射させているが、窓5を省略して
レンズ7を原料容器lに設け、このレンズ7に窓を兼用
させることもできる。
Further, in the embodiment, the laser beam focused by the lens 7 is made to enter the container through the window 5, but the window 5 can be omitted and a lens 7 is provided in the raw material container l, and this lens 7 can also serve as a window. You can also do it.

また、LIDBプラズマ発生用発生−るレーザはCO2
レーザに限らず1種々条件が満されれば他のレーザを用
いることも可能である。そして、レーザの照射方向は管
状通路3の軸線に沿ったものに限らず、管状通路3に直
交する方向等のあらゆる方向から照射することができ、
このように照射されたレーザを透明な管状通路3内で焦
点を結ばせ、LIDB7ラズマを発生させることもでき
る。例えば管状通路3に直交する方向からレーザを照射
する場合には、高効率化を図るために管状通路3は照射
方向に沿った細長い矩形断面のもとするのが好ましく、
一方レーザが膜状ビームのときには断面扛正方形である
のが好ましい。更に、このようにレーザを管状通路3の
側方から照射するようにすれば、多数のレーザを管状通
路に沿って照射させてLIDBプラズマの発生領域を自
由に設足することができるため、パルスレーザを用いて
生成している微粒子の粒径を制御する場合、原料ガスの
流速が制御パラメータとして用い易くなる。
In addition, the laser used for LIDB plasma generation is CO2
Not only the laser but also other lasers can be used as long as various conditions are satisfied. The laser irradiation direction is not limited to the direction along the axis of the tubular passage 3, but can be irradiated from any direction such as a direction perpendicular to the tubular passage 3.
It is also possible to generate LIDB7 lasma by focusing the thus irradiated laser within the transparent tubular passage 3. For example, when irradiating a laser from a direction perpendicular to the tubular passage 3, it is preferable that the tubular passage 3 has an elongated rectangular cross section along the irradiation direction in order to achieve high efficiency.
On the other hand, when the laser is a film-like beam, it is preferable that the cross section is square. Furthermore, by irradiating the laser from the side of the tubular passage 3 in this way, it is possible to irradiate a large number of lasers along the tubular passage and freely establish the generation region of LIDB plasma, so that the pulse When controlling the particle size of fine particles being generated using a laser, the flow rate of the raw material gas can be easily used as a control parameter.

また上記した実施例は2種類以上の原料ガスから微粒子
を生成するものを示したが1本発明は1例えばNi (
Co) 4→Ni+4COのように遷移余積カーボニル
の熱分解により金属微粒子を生成することにも応用でき
る。すなわち、Ni。
In addition, although the above-mentioned embodiments have shown the generation of fine particles from two or more types of raw material gases, the present invention has a method of producing fine particles from two or more types of raw material gases.
Co) 4→Ni+4CO It can also be applied to the generation of metal fine particles by thermal decomposition of transition extra space carbonyl. That is, Ni.

Fe、Co、Mo、W等のようにCOと反応させてカー
ゴニルを作るメタルや鉱石を、一度カーゲニルにさせて
そnから金属微粒子に精錬するという精錬の新しい手法
として用いることができる。
It can be used as a new refining method in which metals and ores such as Fe, Co, Mo, W, etc., which are reacted with CO to form cargonyl, are once converted into cargonyl and then refined into fine metal particles.

尚、上記N1(Co)4の反応は極めて毒性が高いため
、その実施には@8図に示すような装置を用いると良い
。すなわち、メタル又灯鉱石を入れた原料容器1からの
Ni (Co) 、を管状通路3内でLIDBプラズマ
によシ熱分鮮し、生成されたNi微粒子を生成物容器2
に捕集すると共に。
Incidentally, since the above reaction of N1(Co)4 is extremely toxic, it is recommended to use an apparatus as shown in Fig. @8 to carry out the reaction. That is, Ni (Co) from a raw material container 1 containing metal or light ore is thermally refined by LIDB plasma in a tubular passage 3, and the generated Ni fine particles are transferred to a product container 2.
Along with collecting.

同時に生成されたCOガスを管路1)を通し、て原料容
器1に循環させてN1(Co)、  の生成に用いるよ
うにし、毒性のあるガスが外部に洩れないようにする。
The CO gas generated at the same time is circulated through the pipe 1) to the raw material container 1 and used for the production of N1 (Co), thereby preventing toxic gas from leaking to the outside.

また1本発明によシ生成される微粒子の粒度分布は幾可
標準偏差1.4程度のほぼ対数正規分布(自己保存型分
布)をなすものと考えられると共に微粒子の平均粒径が
容易に制御できることから、本発明は標準エアロゾル発
生器としても応用することができる。
In addition, the particle size distribution of the fine particles produced by the present invention is considered to be approximately lognormal distribution (self-preserving distribution) with a standard deviation of about 1.4, and the average particle size of the fine particles can be easily controlled. Therefore, the present invention can also be applied as a standard aerosol generator.

また更に、管状通路3を透明としておけば。Furthermore, if the tubular passage 3 is made transparent.

CVD反応を解析するための発光分光分析器としても応
用することができる。
It can also be applied as an emission spectrometer for analyzing CVD reactions.

〈発明の効果〉 本発明によれば、他めて簡単且つ扱い易い装置を用いて
広範囲の種類の原料から極めて安定した粒径の微粒子を
製造することができ、その粒径・も容易に制御すること
ができる。
<Effects of the Invention> According to the present invention, fine particles with extremely stable particle sizes can be produced from a wide range of raw materials using equipment that is simple and easy to handle, and the particle size can also be easily controlled. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一寅施例に係る微粒子製造装置を表す
概略構成図、第2図〜第4図はそれぞれ管状通路の種々
の態様を表す構成図、第5第7(!lは高沸点原料を用
いた微粒子製造装置を表す概略構成図、第8図はN1(
Co)4の熱分解反応に応用した微粒子製造装置を表す
概略構成図である。 図面中。 1は原料容器。 2は生成物容器。 3はV状通路。 6はレーザ発振器。 7はレンズ。 PはLIDBプラズマである。 特許出り人 吉  澤  昭  宣 (他1名) 代  理  人 弁理士 元 石 士 部(他1名) 第1図 ^ B 第2図 第3図 八r 第5図 第7図
FIG. 1 is a schematic configuration diagram showing a microparticle manufacturing apparatus according to one embodiment of the present invention, FIGS. 2 to 4 are configuration diagrams each showing various aspects of the tubular passage, and A schematic configuration diagram showing a fine particle manufacturing apparatus using high boiling point raw materials, Figure 8 is N1 (
1 is a schematic configuration diagram showing a fine particle manufacturing apparatus applied to a thermal decomposition reaction of Co)4. In the drawing. 1 is a raw material container. 2 is a product container. 3 is a V-shaped passage. 6 is a laser oscillator. 7 is the lens. P is LIDB plasma. Patent author Hitoyoshi Akinori Sawa (1 other person) Representative Patent attorney Former Ishishibu (1 other person) Figure 1^ B Figure 2 Figure 3 Figure 8r Figure 5 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光をレンズにより集束させてその焦点近傍
に誘電破壊プラズマを発生させ、該誘電破壊プラズマ内
に気体状の原料を導いて熱励起反応により微粒子を生成
することを特徴とする微粒子製造方法。
(1) Fine particle production characterized by focusing laser light with a lens to generate dielectric breakdown plasma near its focal point, guiding a gaseous raw material into the dielectric breakdown plasma and generating fine particles through a thermally excited reaction. Method.
(2)気体状の原料が移送される管状通路と、前記管状
通路内に焦点を有するレンズと、前記レンズにより集束
されて前記管状通路内の焦点近傍に誘電破壊プラズマを
生じさせるレーザ光を発振するレーザ源と、前記管状通
路に接続されて前記誘電破壊プラズマによる熱励起反応
で気体状原料から生成された微粒子を捕集する捕集手段
とを備えたことを特徴とする微粒子製造装置。
(2) A tubular passage through which a gaseous raw material is transferred, a lens having a focal point within the tubular passage, and a laser beam that is focused by the lens and generates dielectric breakdown plasma near the focal point within the tubular passage. A device for producing fine particles, comprising: a laser source for generating a gaseous material; and a collecting means connected to the tubular passage for collecting fine particles generated from a gaseous raw material by a thermally excited reaction caused by the dielectric breakdown plasma.
JP60041214A 1985-03-04 1985-03-04 Method and apparatus for preparing fine particle Granted JPS61200851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041214A JPS61200851A (en) 1985-03-04 1985-03-04 Method and apparatus for preparing fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041214A JPS61200851A (en) 1985-03-04 1985-03-04 Method and apparatus for preparing fine particle

Publications (2)

Publication Number Publication Date
JPS61200851A true JPS61200851A (en) 1986-09-05
JPH0226538B2 JPH0226538B2 (en) 1990-06-11

Family

ID=12602150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041214A Granted JPS61200851A (en) 1985-03-04 1985-03-04 Method and apparatus for preparing fine particle

Country Status (1)

Country Link
JP (1) JPS61200851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411916A (en) * 1987-07-06 1989-01-17 Idemitsu Kosan Co Production of metal fine particles
JPH02194110A (en) * 1989-01-23 1990-07-31 Rikagaku Kenkyusho Manufacture of molybdenum fine particles
JPH04253200A (en) * 1991-01-28 1992-09-08 Kansai Electric Power Co Inc:The Plasma channel generator
JP2002529224A (en) * 1998-11-09 2002-09-10 ナノグラム・コーポレーション Reactant supply device
US7214349B2 (en) 1996-12-31 2007-05-08 Applied Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
JP2021508287A (en) * 2018-07-23 2021-03-04 エルジー・ケム・リミテッド Nanoparticle synthesizer and nanoparticle synthesis method using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255611A (en) * 1984-05-14 1985-12-17 アライド・コーポレーシヨン Manufacture of light conduction of superfine powder made from metal silicide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255611A (en) * 1984-05-14 1985-12-17 アライド・コーポレーシヨン Manufacture of light conduction of superfine powder made from metal silicide powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411916A (en) * 1987-07-06 1989-01-17 Idemitsu Kosan Co Production of metal fine particles
JPH02194110A (en) * 1989-01-23 1990-07-31 Rikagaku Kenkyusho Manufacture of molybdenum fine particles
JPH04253200A (en) * 1991-01-28 1992-09-08 Kansai Electric Power Co Inc:The Plasma channel generator
US7214349B2 (en) 1996-12-31 2007-05-08 Applied Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
US7695700B2 (en) 1996-12-31 2010-04-13 Applied Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
JP2002529224A (en) * 1998-11-09 2002-09-10 ナノグラム・コーポレーション Reactant supply device
JP2021508287A (en) * 2018-07-23 2021-03-04 エルジー・ケム・リミテッド Nanoparticle synthesizer and nanoparticle synthesis method using it

Also Published As

Publication number Publication date
JPH0226538B2 (en) 1990-06-11

Similar Documents

Publication Publication Date Title
Tendero et al. Atmospheric pressure plasmas: A review
EP1778597B1 (en) Method for producing an optical waveguide material
JPH04214859A (en) Manufacture of ultrafine particles
Jasiński et al. CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge
JP2001504753A (en) Microwave plasma chemical synthesis of ultrafine powder
JPS6254005A (en) Production of hyperfine particles
US5256854A (en) Tunable plasma method and apparatus using radio frequency heating and electron beam irradiation
US4452771A (en) Carbon particles
JPS61200851A (en) Method and apparatus for preparing fine particle
CN103338839B (en) For the treatment of the application for the treatment of gaseous medium, liquid, solid, surface or its any combination of the apparatus and method of gaseous medium and this device
Heneral et al. Atmospheric pressure plasma jets generated by the DBD in argon-air, helium-air, and helium-water vapour mixtures
Uchida et al. Gas flow rate dependence of the discharge characteristics of a plasma jet impinging onto the liquid surface
Chen et al. Low–power plasma torch method for the production of crystalline spherical ceramic particles
Fauchais et al. Physics on plasma chemistry
Metev et al. New technology for high rate synthesis of PC-diamond coatings in air with photon plasmatron
Ristić et al. Diamond synthesis by lasers: recent progress
Bazzal et al. Formation of Al2O3 and AIN Nanopowders by Exposing Aluminum to a Series of Double Laser Pulses in Air
JPS6397226A (en) Producing apparatus for hyperfine particle
Choi Cold Atmospheric Plasma Sources for Cancer Applications and Their Diagnostics
CN1058920C (en) Technology for preparing room temp. austenitic iron submicron-sized particles
Herziger Laser material processing
Kiss et al. Experimental Study on Microwave-Induced Plasma-Assisted Premixed Methane-Air Combustion
Mouane et al. Formation of monodispersed carbon nanospheres by pulsed laser irradiation of HOPG
Narimisa et al. Diagnostics and characterization of a novel multi gas layer RF atmospheric pressure plasma jet for polymer processing
JP2024012226A (en) Production apparatus of fine particle and production method of fine particle