JPS5928627B2 - Temperature measurement method for vapor phase plating base material - Google Patents

Temperature measurement method for vapor phase plating base material

Info

Publication number
JPS5928627B2
JPS5928627B2 JP16320279A JP16320279A JPS5928627B2 JP S5928627 B2 JPS5928627 B2 JP S5928627B2 JP 16320279 A JP16320279 A JP 16320279A JP 16320279 A JP16320279 A JP 16320279A JP S5928627 B2 JPS5928627 B2 JP S5928627B2
Authority
JP
Japan
Prior art keywords
plating
base material
temperature
vapor phase
plating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16320279A
Other languages
Japanese (ja)
Other versions
JPS56108872A (en
Inventor
重威 岡本
順生 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16320279A priority Critical patent/JPS5928627B2/en
Publication of JPS56108872A publication Critical patent/JPS56108872A/en
Publication of JPS5928627B2 publication Critical patent/JPS5928627B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、気相メッキのためのメッキ母材温度を正確に
判定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for accurately determining the temperature of a plating base material for vapor phase plating.

気相メッキ法は、メッキ母材を加熱してそのメッキ母材
の周辺に導かれたメッキペーパとの接触に伴う熱化学反
応によりメッキを行う方法である。この気相メッキにお
けるメッキ母材の加熱温度は、メッキ膜質とメッキ速度
を決定する重要な因子で、その精密制(財)は気相メッ
キにおける重要な課題であり、気相メッキ製品の良否は
このメッキ母材の温度制(財)にかかつているというこ
とができる。これに対し、従来の気相メッキにおける母
材の温度測定において、電気炉の如き外熱式の加熱手段
を用いる気相メッキ法では接触式の熱電対が多用され、
また高周波加熱や通電加熱万式その他の内熱式気相メッ
キ法では、反応室の外部から非接触式の光温度計で温度
測定を行つている。外熱式の気相メッキ法では、反応室
自体を炉の灼熱部に位置させることにより反応室の周辺
を含めて温度を均一に保持できるので、その部分の温度
を熱電対で測定することが可能であるが、内熱式の高層
J 波加熱、通電加熱、光ビーム加熱、発熱体を内部に
置いた加熱などの場合、メッキ母材の表面温度を直接測
定するために熱電対を使用すると、次のような問題があ
る。(1)加熱メッキ母材の温度を局所的に測定する場
合、熱電対をその保護管を介して品物の表面に接触させ
て測定するため、熱電対が保護管の壁の厚みだけ測定面
から離れ、実際の温度より測定値が低くなる(70〜1
00℃)。
The vapor phase plating method is a method of heating a plating base material and performing plating by a thermochemical reaction accompanying contact with plating paper guided around the plating base material. The heating temperature of the plating base material in this vapor phase plating is an important factor that determines the plating film quality and plating speed, and its precision control is an important issue in vapor phase plating, and the quality of the vapor phase plated product depends on it. It can be said that this depends on the temperature control of the plating base material. On the other hand, when measuring the temperature of the base material in conventional vapor phase plating, contact thermocouples are often used in vapor phase plating methods that use external heating means such as electric furnaces.
In addition, in high-frequency heating, electrical heating, and other internal heating vapor phase plating methods, temperature is measured from outside the reaction chamber using a non-contact optical thermometer. In the external heating type vapor phase plating method, by placing the reaction chamber itself in the scorching hot part of the furnace, it is possible to maintain a uniform temperature including the area around the reaction chamber, so it is possible to measure the temperature in that area with a thermocouple. However, in the case of internal heating type high-rise J-wave heating, current heating, light beam heating, heating with a heating element placed inside, etc., it is difficult to use a thermocouple to directly measure the surface temperature of the plated base material. , there are the following problems. (1) When locally measuring the temperature of a heat-plated base material, the thermocouple is brought into contact with the surface of the item through its protective tube, so the thermocouple is removed from the measurement surface by the thickness of the protective tube wall. away, the measured value will be lower than the actual temperature (70-1
00℃).

(2)測温精度をあげるためには、メッキ母材に熱電対
を差込むための小孔を設け、これに熱電対を差込めばよ
いが、メッキ製品を傷つけるために実用化には不適当で
ある。
(2) In order to improve temperature measurement accuracy, it is possible to make a small hole in the plated base material and insert the thermocouple into this, but this is not practical because it would damage the plated product. Appropriate.

(3)メッキ製品に熱電対を接触させて測定するときは
、その接触部分にメッキむらが生じる。
(3) When measuring by bringing a thermocouple into contact with a plated product, uneven plating occurs at the contact area.

(4)微小部分の温度測定が困難である。このような場
合に、非接触式の光温度計を用い、封じられたガラス壁
面を遡して品物の温度を測定するのが好都合であると考
えられるが、気相メッキを行う場合には次のような欠点
が生じる。
(4) It is difficult to measure the temperature of minute parts. In such cases, it may be convenient to use a non-contact optical thermometer to measure the temperature of the item by tracing the sealed glass wall surface, but when performing vapor phase plating, the following There are drawbacks such as:

(1)従来の非接触式の光温度計ではメッキ反応生成物
の雰囲気を通して測定するための誤差がある。(2)メ
ッキの進行に伴つて生じる反応生成物によりガラス壁面
が汚れるため、正確な測定が困難である。
(1) Conventional non-contact optical thermometers have errors because they measure through the atmosphere of plating reaction products. (2) Accurate measurement is difficult because the glass wall surface is contaminated by reaction products generated as plating progresses.

従つて、現状ではメッキペーパを流す前の初期温度を測
定して気相メッキを行い、その後の温度を推定しながら
調整しており、そのためメツキ製品に不満な点が多かつ
た。
Therefore, at present, vapor phase plating is performed by measuring the initial temperature before pouring the plating paper, and the subsequent temperature is estimated and adjusted, which has led to many dissatisfaction with the plating products.

一方、近時、非接触式の光温度計で加熱されたメツキ母
材表面からの赤外線を捉える方式のものに、単色式ある
いは二色式のものが開発され、メツキペーパを通じてメ
ツキ中の品物の温度をかなり精度よく測定することが可
能になつてきた。
On the other hand, in recent years, non-contact photothermometers have been developed to capture infrared rays from the surface of the heated plating base material, and monochromatic or two-color types have been developed. It has become possible to measure with considerable precision.

しかしながら、上述したように、メツキの進行に伴う反
応生成物によつて曇つたガラス面を通してメツキ母材の
温度測定を行うことはできない。本発明は、このような
非接触式の温度測定器を用いて、外部から隔離されたメ
ツキ反応室内でメツキ中のメツキ母材の温度を正確に測
定できるようにしたもので、メツキ反応容器内にメツキ
ベーパを導入して加熱したメツキ母材に気相メツキを行
うに際し、上記メツキ反応容器の一部を貫通してメツキ
母材の近傍に達する筒体の外端を光学用ガラス板で密閉
し、この筒体の内部を通じてメツキ反応容器内にキヤリ
ヤガスを送入することによつて測定用ガラス板の汚れを
防止しながら、上記光学用ガラス板及び筒体内を通して
非接触型の温度測定器によりメツキ母材の温度を測定す
ることを特徴とするものである。図面を参照して本発明
について詳述するに、第1図において、気相メツキ装置
1は、石英管等からなるメツキ反応容器2の一端をゴム
シール材3によつて密封することによりその内部にメツ
キ反応室4を形成し、一端部にメツキベーパ入口5を設
けると共に他端部にメツキベーパ出口6を設けたもので
、メツキ反応室4に適宜の支持部材によリメツキ母材A
を保持可能とし、それを加熱するための高周波コイル7
をメツキ反応容器2に周設している。
However, as described above, it is not possible to measure the temperature of the plating base material through the glass surface which is clouded by reaction products as the plating progresses. The present invention uses such a non-contact temperature measuring device to accurately measure the temperature of the plating base material during plating in the plating reaction chamber isolated from the outside. When performing vapor phase plating on the heated plating base material by introducing a plating vapor into the plating reactor, the outer end of the cylinder that penetrates a part of the plating reaction vessel and reaches the vicinity of the plating base material is sealed with an optical glass plate. By feeding a carrier gas into the plating reaction vessel through the inside of the cylinder, plating is carried out using a non-contact temperature measuring device through the optical glass plate and the cylinder, while preventing the measurement glass plate from becoming contaminated. It is characterized by measuring the temperature of the base material. The present invention will be described in detail with reference to the drawings. In FIG. 1, a vapor phase plating apparatus 1 is constructed by sealing one end of a plating reaction vessel 2 made of a quartz tube or the like with a rubber sealing material 3. A plating reaction chamber 4 is formed, a plating vapor inlet 5 is provided at one end, and a plating vapor outlet 6 is provided at the other end.
A high frequency coil 7 for holding and heating the
are placed around the Metzki reaction vessel 2.

この気相メツキ装置1は、公知の気相メツキ法に従い、
メツキ母材Aを高周波コイル7によつて加熱し、入口5
からメツキ反応室4へ流人させたメツキベーパをメツキ
母材Aの周辺に送つて熱化学反応によるメツキを行い、
出口6から排気を排出させるもので、メツキ母材Aの加
熱には適宜の内熱式または外熱式の加熱手段を採用する
ことができる。この気相メツキ装置1に付設する非接触
型の温度測定装置8は、上記ゴムシール材3等のメツキ
反応容器の一部を貫通してメツキ反応室4内におけるメ
ツキ母材Aの近傍に達する筒体9を備えている。
This vapor phase plating device 1 follows the known vapor phase plating method.
The plating base material A is heated by the high frequency coil 7, and the inlet 5
The plating vapor flown from the plating reaction chamber 4 is sent to the vicinity of the plating base material A, and plating is performed by a thermochemical reaction.
Exhaust gas is discharged from the outlet 6, and an appropriate internal heating type or external heating type heating means can be employed to heat the plating base material A. A non-contact temperature measuring device 8 attached to this gas phase plating device 1 is a cylinder that penetrates a part of the plating reaction container such as the rubber sealing material 3 and reaches the vicinity of the plating base material A in the plating reaction chamber 4. It has a body of 9.

この筒体9は、測定用熱放射線を外部に導出するための
もので、ガラスまたは不銹金属により円錐状または円筒
状に形成して、外端10を光学用ガラス板11によつて
密閉し、その外端10の近傍に筒体内を通じて内端開口
12からメツキ反応室4にキヤリヤガスを送るための入
口管13を取付けている。この入口管13からメツキ反
応室4に供給するキヤリヤガスは、メツキ反応室4から
メツキベーパが筒体9内に流入するのを抑制するための
ものであり、従つて入口管からは少なくともそれに必要
な最少限のキヤリヤガスを送給すればよい。上記光学用
ガラス板11には、必要に応じてその内面に例えばSi
O2またはTiO2などの増透用物質をコーテイングし
、必要な赤外線の反射を少なくすると共に赤外線以外の
波長の光を阻止して測定精度の向上をはかることができ
る。光温度計として構成される温度測定器本体14は、
被測定物体からの熱放射線によつてその温度を検出する
もので、筒体9の外端に光学用ガラス板11を介して対
物レンズ15を固定し、その対物レンズ15の光軸を筒
体9の中心軸線と略一致させている。また、この温度測
定器本体14は、ピット調整つまみ16により操作され
る。ピット調整機構を内蔵すると共に、対物レンズの視
野を目視可能な接眼レンズ17が付設されている。なお
、図中18は外部からの光線を遮断するフード、19は
ゴムパツキングを示す〇上記温度測定器本体14には、
変換器を介して測定温度を表示する温度指示計を接続し
ている。
This cylindrical body 9 is for guiding heat radiation for measurement to the outside, and is formed of glass or stainless steel into a conical or cylindrical shape, and its outer end 10 is sealed with an optical glass plate 11. An inlet pipe 13 is attached near the outer end 10 of the cylinder for feeding carrier gas from the inner end opening 12 to the plating reaction chamber 4 through the cylindrical body. The carrier gas supplied from the inlet pipe 13 to the plating reaction chamber 4 is to suppress the plating vapor from flowing into the cylinder 9 from the plating reaction chamber 4, and therefore, at least the minimum amount necessary for the plating vapor is supplied from the inlet pipe. It is only necessary to supply a limited amount of carrier gas. The optical glass plate 11 may be coated with Si, for example, on its inner surface as necessary.
It is possible to improve measurement accuracy by coating with a transparency enhancing substance such as O2 or TiO2 to reduce the necessary reflection of infrared rays and block light of wavelengths other than infrared rays. The temperature measuring device main body 14 configured as an optical thermometer is
The temperature of the object to be measured is detected by thermal radiation from the object, and an objective lens 15 is fixed to the outer end of the cylindrical body 9 via an optical glass plate 11, and the optical axis of the objective lens 15 is aligned with the cylindrical body. It is made to substantially coincide with the central axis of No. 9. Further, this temperature measuring device main body 14 is operated by a pit adjustment knob 16. It has a built-in pit adjustment mechanism and is attached with an eyepiece lens 17 that allows the visual field of the objective lens to be viewed. In the figure, 18 indicates a hood that blocks light from the outside, and 19 indicates a rubber packing. The temperature measuring device main body 14 includes:
A temperature indicator is connected to display the measured temperature via a converter.

この温度指示計には必要に応じて記録計を接続して測定
温度を記録させることができ、また温度測定結果に基づ
いてその温度制岬を行う場合には、温度指示計における
計測温度の信号に基づいて制御装置により高周波加熱機
を制?し、前記高周波コイル7によつて必要な加熱を行
うこともできる。第2図は他の装置例を示すもので、メ
ツキ反応室24を構成するメツキ反応容器22の一端に
不銹金属製のフレキシブルベロ一40を介して端板41
を固定することによりメツキ反応室24を密閉し、上記
端板41を通して筒体29の内端をメツキ反応室24内
におけるメツキ母材Aの近傍まで挿入している。また、
上記筒体29を支持する支持部材42を微動回転装置4
3に取付け、この微動回転装置43によつて筒体29を
回転中心点Oのまわりに微動回転できるように構成して
いる。従つて、筒体29の中心軸線即ち温度測定器本体
34の対物レンズ35の光軸をメツキ母材A上の任意の
点に向けることができる。なお、その他の構成は前記第
1図の場合と同一であるためその説明は省略する。
If necessary, a recorder can be connected to this temperature indicator to record the measured temperature, and if temperature control is to be performed based on the temperature measurement results, a signal of the measured temperature in the temperature indicator can be sent. Is the high frequency heating machine controlled by the control device based on this? However, the high frequency coil 7 can also perform the necessary heating. FIG. 2 shows another example of the apparatus, in which an end plate 41 is connected to one end of the plating reaction vessel 22 constituting the plating reaction chamber 24 via a flexible tongue 40 made of a rustless metal.
The plating reaction chamber 24 is sealed by fixing the plating reaction chamber 24, and the inner end of the cylinder 29 is inserted through the end plate 41 to the vicinity of the plating base material A in the plating reaction chamber 24. Also,
The support member 42 that supports the cylindrical body 29 is rotated by the fine rotation device 4.
3, and the cylindrical body 29 is configured to be able to be slightly rotated around the rotation center point O by this fine rotation rotation device 43. Therefore, the central axis of the cylindrical body 29, that is, the optical axis of the objective lens 35 of the temperature measuring device main body 34, can be directed to any point on the plating base material A. Note that the other configurations are the same as those shown in FIG. 1, so their explanation will be omitted.

このような構成を有する温度測定装置においては、気相
メツキに際して筒体9または29を通して温度測定器本
体14または34に達する熱放射線によりメツキ中の母
材Aの温度を正確に測定することができ、この場合に筒
体の外端近傍から筒体内を通してその先端開口に向つて
キヤリヤガスを送給するため、筒体内にメツキベーパが
流入するようなことはなく、従つてメツキ母材Aと温度
測定器本体との間に反応生成物の付着面がなく、極めて
正確な測定を行うことができる。
In a temperature measuring device having such a configuration, the temperature of the base material A during plating can be accurately measured using thermal radiation that reaches the temperature measuring device main body 14 or 34 through the cylinder 9 or 29 during gas phase plating. In this case, since the carrier gas is fed from near the outer end of the cylinder through the cylinder toward its tip opening, the plating vapor does not flow into the cylinder, and therefore the plating base material A and the temperature measuring device There is no surface on which reaction products adhere between the device and the main body, making it possible to perform extremely accurate measurements.

また、特に第2図に示すような構成とした場合には、温
度測定装置本体34における対物レンズ35の光軸をメ
ツキ母材Aの表面の任意の点に向けることができるため
、メツキ母材Aの表面の温度分布をも測定することがで
き、従つて光ビームにより局部的な加熱を行う場合など
の温度測定に有効である。
In addition, especially when the configuration shown in FIG. It is also possible to measure the temperature distribution on the surface of A, and therefore it is effective for temperature measurement when local heating is performed with a light beam.

なお、第2図では筒体29を温度測定器本体34と共に
微動回転させる場合を示しているが、逆にメツキ母材を
適宜の1駆動装置により平面的に移動させても差支えな
い。
Although FIG. 2 shows a case in which the cylindrical body 29 is slightly rotated together with the temperature measuring device main body 34, the plating base material may be moved in a plane by an appropriate driving device.

以上に詳述したように、本発明の温度測定方法によれば
、非接触式の温度測定器本体とメツキ母材との間に反応
生成物の付着面がないため、メツキ母材の温度をメツキ
中においても精度よく測定することができる。
As detailed above, according to the temperature measurement method of the present invention, since there is no surface on which reaction products adhere between the non-contact temperature measuring device body and the plating base material, the temperature of the plating base material can be measured. Accurate measurement is possible even during plating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の要部を断面で示した構
成図、第2図は他の装置例の要部断面図である。 A・・・・・・メツキ母材、1・・・・・・気相メツキ
装置、2,22・・・・・・メツキ反応容器、9,29
・・・・・・筒体、11・・・・・・光学用ガラス板、
12・・・・・・内端開口、13・・・・・・入口管、
14,34・・・・・・温度測定器本体。
FIG. 1 is a cross-sectional view showing the main parts of an apparatus for implementing the present invention, and FIG. 2 is a cross-sectional view of the main parts of another example of the apparatus. A... Plating base material, 1... Gas phase plating device, 2, 22... Plating reaction vessel, 9, 29
... cylinder body, 11 ... optical glass plate,
12... Inner end opening, 13... Inlet pipe,
14, 34...Temperature measuring device body.

Claims (1)

【特許請求の範囲】[Claims] 1 メッキ反応容器内にメッキペーパを導入して、加熱
したメッキ母材に気相メッキを行うに際し、上記メッキ
反応容器の一部を貫通してメッキ母材の近傍に達する筒
体の外端を光学用ガラス板で密閉し、この筒体の内部を
通じてメッキ反応容器内にキャリヤガスを送入しながら
、上記光学用ガラス板及び筒体内を通して非接触型の温
度測定器によりメッキ母材の温度を測定することを特徴
とする気相メッキ母材の温度測定方法。
1. When plating paper is introduced into the plating reaction vessel and vapor phase plating is performed on the heated plating base material, the outer end of the cylindrical body that penetrates a part of the plating reaction vessel and reaches the vicinity of the plating base material is optically The temperature of the plating base material is measured through the optical glass plate and the cylinder with a non-contact temperature measuring device while supplying carrier gas into the plating reaction vessel through the inside of the cylinder. A method for measuring the temperature of a vapor phase plating base material.
JP16320279A 1979-12-15 1979-12-15 Temperature measurement method for vapor phase plating base material Expired JPS5928627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16320279A JPS5928627B2 (en) 1979-12-15 1979-12-15 Temperature measurement method for vapor phase plating base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16320279A JPS5928627B2 (en) 1979-12-15 1979-12-15 Temperature measurement method for vapor phase plating base material

Publications (2)

Publication Number Publication Date
JPS56108872A JPS56108872A (en) 1981-08-28
JPS5928627B2 true JPS5928627B2 (en) 1984-07-14

Family

ID=15769213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16320279A Expired JPS5928627B2 (en) 1979-12-15 1979-12-15 Temperature measurement method for vapor phase plating base material

Country Status (1)

Country Link
JP (1) JPS5928627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) * 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) * 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device

Also Published As

Publication number Publication date
JPS56108872A (en) 1981-08-28

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
JPH06323915A (en) Method of thermometry for material body
US5052661A (en) Controlling heat treating furnaces
US3377838A (en) Apparatus for measuring various transformation characteristics of metallic materials
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
US5944422A (en) Apparatus for measuring the processing temperature of workpieces particularly semiconductor wafers
JPS5928627B2 (en) Temperature measurement method for vapor phase plating base material
US3577784A (en) Method and apparatus for measuring coke oven flue wall temperatures
JPS6250627A (en) Controlling method for surface temperature of substrate
JP2007309750A (en) Blackbody furnace
JPH1140510A (en) Device and method of temperature measurement and wafer heat treatment equipment
SU731321A1 (en) Device for contact-free measuring of temperature
SU661264A1 (en) Device for determining radiating capacity of materials
JPH1019690A (en) Base temperature monitor
JPS63241919A (en) Molecular beam epitaxy system
JPS6038627A (en) Temperature measuring apparatus
JP2693902B2 (en) Melt temperature measuring device
JPH10160579A (en) Temperature measuring device and board thermal treatment device using the same
JPS56117134A (en) Temperature measuring device for high heat substance
JPS5523473A (en) Measuring method for temperature of material in heating furnace
JPS6024058B2 (en) Optical fiber preform manufacturing equipment
JPH0450734A (en) Noncontact heating device for surface of body accompanied by temperature measurement
JPH0979909A (en) Method for measuring temperature of hot molten material
JPS59221628A (en) Method and device for measuring surface temperature