JPS59221628A - Method and device for measuring surface temperature - Google Patents

Method and device for measuring surface temperature

Info

Publication number
JPS59221628A
JPS59221628A JP58097653A JP9765383A JPS59221628A JP S59221628 A JPS59221628 A JP S59221628A JP 58097653 A JP58097653 A JP 58097653A JP 9765383 A JP9765383 A JP 9765383A JP S59221628 A JPS59221628 A JP S59221628A
Authority
JP
Japan
Prior art keywords
temperature
optical
optical path
path member
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097653A
Other languages
Japanese (ja)
Inventor
Tatsuo Kamisaka
上坂 辰男
Takeo Kawate
川手 剛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58097653A priority Critical patent/JPS59221628A/en
Publication of JPS59221628A publication Critical patent/JPS59221628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of a material to be detected accurately by finding the temperature from the amount of radiant heat arriving at a detection part through an optical path member when the object end surface of the optical path member contacts the material to be detected. CONSTITUTION:The optical path member 6 is a solid optical rod molded of a heat-resistant optical path material, and its outer circumferential surface is covered with a light shield member 10 except both end surfaces. Heat radiation light from the surface of the material to be detected enters the optical member 6 from the object end surface and is projected upon an optical fiber 14 from the projection end surface 12. The heat radiation light guided through the optical fiber 14 is transduced by a transducer 13 into temperature, which is outputted to a temperature display device 8. A contacting state detecting means 9 grasps the point of time when the object end surface 11 of the optical rod 6 contacts the surface of the material to be detected. Then the temperature at this time is regarded as the surface temperature of the material to be detected.

Description

【発明の詳細な説明】 本発明は、表面温度測定方法及びその装置に関する。[Detailed description of the invention] The present invention relates to a surface temperature measuring method and apparatus.

被検材の表面温度測定方法として、熱電素子を用いた接
触式と、放射温度計を用いた非接触式とが周知である。
As methods for measuring the surface temperature of a material to be tested, a contact method using a thermoelectric element and a non-contact method using a radiation thermometer are well known.

上記接触式では、温度測定精度が感温部分と被検材表面
との熱的接触状態に影響を受けるため、高精度の測定が
期待し難く、かつ応答時間が数秒かかシ遅いと云う欠点
を有していた。
With the above contact method, temperature measurement accuracy is affected by the state of thermal contact between the temperature-sensing part and the surface of the material being tested, so it is difficult to expect high-precision measurement, and the response time is slow, taking several seconds. It had

一方、前記非接触式では、表面放射率の変動、ダストや
ミスト等の光路中介在物、及び炉内光や太陽光等の背景
光などKよる外乱要因に影響を受けるため、高精度測定
が困難であった。
On the other hand, the non-contact method is affected by disturbance factors such as fluctuations in surface emissivity, inclusions in the optical path such as dust and mist, and background light such as furnace light and sunlight, making high-precision measurement difficult. It was difficult.

前記外乱要因を除去するため、第1図に示すように、高
反射率を有するキャビティ(内面を金属メッキしたもの
)(1)で放射光を多重反射させ、みかけの放射率を高
めるおわん形表面温度計(2)が周知である。しかし、
この温度計(2)は、ブランケット(保温)効果、及び
メッキ面の汚れ等にょシ、測定精度の低下が生じていた
In order to eliminate the above-mentioned disturbance factors, as shown in Figure 1, a bowl-shaped surface is used that multiple-reflects the emitted light with a cavity (inner surface plated with metal) (1) that has a high reflectance and increases the apparent emissivity. Thermometers (2) are well known. but,
This thermometer (2) had a blanket (heat retention) effect and dirt on the plated surface, which resulted in a decrease in measurement accuracy.

また第2図に示すように、チューブ(3)Kよシ背景光
を遮光し、かつガスパージによって光路を清浄にして外
乱要因を除去しようとしたサイティングチューブ式表面
温度計(4)が周知であるが、パージガスによる被検材
表面(5)の冷却効果によシ、真温度測定が困難であっ
た。
Furthermore, as shown in Fig. 2, a sighting tube type surface thermometer (4) is well known which attempts to block background light through the tube (3) K and clean the optical path by gas purging to remove disturbance factors. However, it was difficult to measure the true temperature due to the cooling effect of the purge gas on the surface of the test material (5).

そこで、本発明は、前記問題点を解消して高精度な測定
を可能とした表面温度測定方法及びその装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a surface temperature measuring method and an apparatus therefor, which solve the above-mentioned problems and enable highly accurate measurement.

従って、その方法の特徴とする処は、両端面以外の外周
が遮光されかつ光学材料で満たされた光路部材を介して
被検材の熱放射を検出部に伝達し、該検出部に到達した
熱放射量から被検材の温度を求めると共に、光路部材の
対物端面が被検材に接触した時を検出する検出手段が設
けられ、該検出手段の検出信号発生時の測定温度を被検
材の表面温度とする点にあシ、その装置の特徴とする処
は、被検材の熱放射を検出部に伝達する光路部材を有し
、該光路部材は、両端面以外の外周が遮光部材で被覆さ
れかつ光学材料で満たされている点にある。
Therefore, the feature of this method is that the thermal radiation of the specimen is transmitted to the detection part through an optical path member whose outer periphery other than both end faces is shielded from light and filled with optical material, and reaches the detection part. A detection means is provided that determines the temperature of the material to be inspected from the amount of heat radiation and detects when the objective end surface of the optical path member comes into contact with the material to be inspected. The device is characterized in that it has an optical path member that transmits the thermal radiation of the specimen to the detection part, and the outer periphery of the optical path member other than both end faces is covered with a light shielding member. and filled with optical material.

以下、本発明の実施例を図面に基づき詳述する。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第8図に示すものは、特定発明である表面温度測定方法
の実施に直接使用する表面温度測定装置の概略である。
What is shown in FIG. 8 is a schematic diagram of a surface temperature measuring device that is directly used to carry out the surface temperature measuring method of the specified invention.

該装置は、光路部材(6)、検出部(7)、温度表示器
(8)及び接触状態検出手段(9)等から主構成されて
いる。
The device mainly includes an optical path member (6), a detection section (7), a temperature indicator (8), a contact state detection means (9), and the like.

前記光路部材(6)は、被検材表面(5)の熱放射を検
出部(7)に伝達するものである。該光路部材(6)は
、耐熱性のあるMgO(融点!2800’C)、サファ
イア(融点2080℃)、石−英(融点1470 ℃)
などの光学材料から成形された中実光学ロンドである。
The optical path member (6) transmits thermal radiation from the surface of the test material (5) to the detection section (7). The optical path member (6) is made of heat-resistant MgO (melting point: 2800'C), sapphire (melting point: 2080°C), quartz (melting point: 1470°C).
It is a solid optical rond molded from optical materials such as.

この四ツド(6)の外周面は、両端面を除き、金属蒸着
、メタルテープ等の遮光部材αOで被覆されている。従
って、背景光はロンド(6)の外周面から内部に侵入す
ることはない。このロンド(6)の一端面は対一端面(
6)とされ、該対物端面α力から被検材表面(5)の熱
放射光が光学ロンド(6)内に侵入し、他端面の出射端
面(2)から外部に出射される。
The outer peripheral surface of this quad (6), except for both end surfaces, is covered with a light shielding member αO such as metal vapor deposition or metal tape. Therefore, background light does not enter into the interior from the outer peripheral surface of the iron (6). One end surface of this rond (6) is the opposite end surface (
6), thermal radiation from the surface of the object to be inspected (5) enters the optical rond (6) from the α force of the objective end surface, and is emitted to the outside from the output end surface (2) of the other end surface.

前記検出部(7)Kは変換器0を有し、該変換器(2)
と前記光路部材の光学ロンド(6)は光ファイバーα→
で接続されている。光学aラド(6)と光ファイバーα
々はコネクターaυで接続され、外部からの光の侵入が
防止されている。光学ロッド(6)の出射端面0と光フ
ァイバー〇の端面は対向し、結合効率を良くするため両
者間にコンデンサーレンズαQが介在されている。
The detection unit (7)K has a converter 0, and the converter (2)
and the optical rond (6) of the optical path member is an optical fiber α→
connected with. Optical arad (6) and optical fiber α
They are connected by a connector aυ to prevent light from entering from the outside. The output end face 0 of the optical rod (6) and the end face of the optical fiber 0 face each other, and a condenser lens αQ is interposed between the two to improve coupling efficiency.

変換器αJは、光ファイバーα4によって導かれた熱放
射光を温度に変換するものであシ、その変換方式には2
通がある。本発明では、いずれを採用してもよい。
The converter αJ converts the thermal radiation guided by the optical fiber α4 into temperature, and there are two conversion methods.
I have a good knowledge of it. In the present invention, either method may be adopted.

その1つは輝度温度変換である。これは、単一波長にお
ける光強度から温度を求めるものであシ、物体の温度と
熱放射光強度とはl対lの対応があるとするブランクの
公式に基礎をおく。
One of them is brightness temperature conversion. This method calculates the temperature from the light intensity at a single wavelength, and is based on Blank's formula, which assumes that there is a 1:1 correspondence between the temperature of an object and the intensity of thermal radiation.

この輝度温度変換においては、光学ロッド(6)、コン
デンサーレンズ(至)及び光ファイバー a4 Kよる
光量損失を前もって補正しなければならないが、これら
の補正は容易である。
In this brightness temperature conversion, it is necessary to correct in advance the loss of light amount due to the optical rod (6), condenser lens (to), and optical fiber A4K, but these corrections are easy.

他の1つは色温度変換である。これは複数の波摩におけ
る光強度の相対比から温度を求めるものであシ、熱放射
光の波長分布、すなわち可視域で「色」といわれるもの
の形を固定する。
The other one is color temperature conversion. This method determines temperature from the relative ratio of light intensities at multiple waves, and fixes the wavelength distribution of thermal radiation, that is, the shape of what is called ``color'' in the visible range.

この場合も、変換器a3までの光学系の分光透過特性は
、事前の校正によって容品に補正できる。
In this case as well, the spectral transmission characteristics of the optical system up to the converter a3 can be properly corrected by prior calibration.

以上の輝度温度、色温度ともに被検材が黒体(放射率=
1)であれば真温度と一致するが、実際の物体は不完全
放射体であるから、放射率の値を正確に求めておく必要
がある。
For both the brightness temperature and color temperature above, the test material is a black body (emissivity =
If 1), it matches the true temperature, but since the actual object is an imperfect radiator, it is necessary to accurately determine the emissivity value.

前記変換器錦は温度表示器(8)に接続されておシ、熱
放射量は変換器(2)で温度に変換されて温度表示器(
8)に出力される。この温度表示器(8)は、デジタル
表示するもの及びプリンターの如きものである。
The converter plate is connected to a temperature indicator (8), and the amount of heat radiation is converted to temperature by the converter (2) and displayed on the temperature indicator (8).
8). The temperature display (8) is a digital display or a printer.

前記接触状態検出手段(9)は、光学ロンド(6)の対
物端面(ロ)が被検材表面(5)に接触した時点を把握
するためのものであシ、光学ロッド(6)の外周にコー
ティングされた導電性遮光部材顛と被検材(導電性)と
を両電極となし、この両電極の接触抵抗を検出するi!
識装置(財)は温度表示器(8)K接続されている。認
識装置(財)で接触抵抗のモニタを行ない、接一時のト
リガー信号を作ることによって、温度表示器(8)の表
示温度値をホールドすることも可能である。
The contact state detecting means (9) is for detecting the point in time when the objective end face (b) of the optical rod (6) comes into contact with the surface of the material to be inspected (5). The conductive light-shielding member coated with the i!
The temperature indicator (8) is connected to the temperature indicator (8). It is also possible to hold the temperature value displayed on the temperature indicator (8) by monitoring the contact resistance with a recognition device and creating a trigger signal when the contact is made.

前記接触状態検出手段(9)は、渦電流式変位計、静電
容量式変位計、又は光学式変位計等を光学ロッド(6)
に取付けることによって、接触時のトリガ信号を作るこ
とKよっても達成できる。
The contact state detection means (9) connects an eddy current displacement meter, a capacitance displacement meter, an optical displacement meter, etc. to an optical rod (6).
This can also be achieved by attaching the K to create a trigger signal upon contact.

前記本発明に係る表面温度測定装置を用いて被検材表面
(5)の温度を測定するには、まず光学ロッド(6)の
対物端面αDを被検材表面(5)に近づける。被検材表
面(5)からの熱放射光は、光学ロッド(6)の対物端
面0Dからロッド(6)内に入シ、出射端面(至)から
出射すれ、コンデンサーレンズαQを介して光ファイバ
ーα委に入射され、光ファイバー〇滲を通って変換器α
3に伝達される。変換器0では、熱放射量が温度に変換
され、該温度は温度表示器(8)で出力される。
To measure the temperature of the surface (5) of a material to be tested using the surface temperature measuring device according to the present invention, first, the objective end surface αD of the optical rod (6) is brought close to the surface (5) of the material to be tested. Thermal radiation from the surface of the material to be inspected (5) enters the rod (6) from the objective end surface 0D of the optical rod (6), exits from the output end surface (to), and passes through the condenser lens αQ to the optical fiber α. input to the converter α through the optical fiber
3. In converter 0, the amount of heat radiation is converted into temperature, which temperature is output on a temperature indicator (8).

さらに光学ロッド(6)を被検材表面(5)K近づけて
対物端面αDと被検材表面(5)とを接触させると、光
学ロッド(6)の外周面の遮光部材αOと被検材表面(
5)が短絡され、認識装置αηによル該接触時のトリガ
信号が発せられ、これによ多接触時点が把握され、該時
点の温度をもって、被検材表面(5)の温度とされる。
Furthermore, when the optical rod (6) is brought closer to the surface (5)K of the test material and the objective end surface αD is brought into contact with the surface (5) of the test material, the light shielding member αO on the outer peripheral surface of the optical rod (6) and the test material surface(
5) is short-circuited, the recognition device αη issues a trigger signal at the time of contact, the point of multiple contact is determined by this, and the temperature at that point is taken as the temperature of the surface of the material to be inspected (5). .

上記測定において、表面温度認定時は光学ロッド(6)
の対物端面(6)と被検材表面(5)とは接触状態にあ
るため、被検材表面(5)からの熱放射光は、直接光学
ロッド(6)に入る。従って、雰囲気中のダストやミス
トの外乱要因に影響を受けることがなくなる。光学ロッ
ド(6)や光ファイバーα尋の光学系光路は外部から遮
光されているので、背景光による影響も受けることがな
い。更に、光学ロッド(6)の対物端面(ロ)は被検材
表面(5)に接触するだけであるからブランケット効果
を生じることもない。
In the above measurement, when the surface temperature is certified, the optical rod (6)
Since the objective end surface (6) and the surface of the test material (5) are in contact with each other, the thermal radiation from the surface of the test material (5) directly enters the optical rod (6). Therefore, it is not affected by disturbance factors such as dust and mist in the atmosphere. Since the optical system optical path of the optical rod (6) and the optical fiber α fathom is shielded from light from the outside, it is not affected by background light. Furthermore, since the objective end surface (b) of the optical rod (6) only contacts the surface (5) of the specimen, no blanket effect occurs.

尚、対物端面(ロ)と被検材表面(5)とが接触するこ
とによp1被検材表面(5)の温度は低下するが、温度
測定は接触の瞬間をもって測定するため、温度低下の影
響はない。このことは、第4図に示す実験結果から明ら
かである。すなわち、第4図に示すものは、被検材表面
(5)に熱電対(タイプに10.85’素線対)を溶接
し、熱電対取付は位置付近に光学ロッド(6)を接触さ
せ(約1秒間)て測定し九結果であり、同図における上
部の線図が熱電対による被検材表面温度で、下部の線図
が本装置によシ測定した温度である。同図における符号
a力!接触時を示すトリガ信号、符号すが離れた時を示
すトリガ信号である。
It should be noted that the temperature of the p1 test material surface (5) decreases due to contact between the objective end surface (b) and the test material surface (5), but since the temperature is measured at the moment of contact, the temperature drop does not occur. There is no effect. This is clear from the experimental results shown in FIG. In other words, in the case shown in Fig. 4, a thermocouple (type: 10.85' wire pair) is welded to the surface of the material to be tested (5), and the thermocouple is attached by touching an optical rod (6) near the position. The upper line in the figure is the surface temperature of the sample measured by the thermocouple, and the lower line is the temperature measured by this device. The symbol a force in the same figure! A trigger signal indicates when the touch is made, and a trigger signal indicates when the code is separated.

接触した瞬間に熱電対指示温度は光学ロッド(6)によ
シ冷却を受けて下っていることが判る。本装置による温
度指示も接触中に徐々に温度低下していることがわかる
が、接触時点の温度をもって表面温度とすれば、その影
響がないことがわかる。
It can be seen that the temperature indicated by the thermocouple is cooled by the optical rod (6) and drops at the moment of contact. It can be seen that the temperature indicated by this device also gradually decreases during contact, but if the temperature at the time of contact is taken as the surface temperature, it can be seen that there is no effect.

尚、上記実験における変換器α3には、2色温度計を用
いている。また学光ロッド(6)の端面のキズ及び光フ
ァイバーα4の素線の部分的な切断等によシ変換器0ま
での光量が長期にわたっては変化するおそれがあるため
、温度変換方式としては色温度変換のほうが有利である
Note that a two-color thermometer was used as the converter α3 in the above experiment. In addition, there is a risk that the light intensity up to converter 0 may change over a long period of time due to scratches on the end surface of the optical rod (6) or partial breaks in the fibers of the optical fiber α4. Conversion is more advantageous.

第5図に示すものは、光学ロッド(6)の対物端面(ロ
)を曲面形状にしたものであシ、このように端面(ロ)
に曲率をもたせることによ多接触動作を容易とすること
ができる。
The one shown in Fig. 5 is an optical rod (6) whose objective end surface (b) is curved.
By giving a curvature to the surface, multi-touch operation can be facilitated.

尚、木発明は、上記実施例に限定されるものではない。It should be noted that the invention is not limited to the above embodiments.

本発明によれば、放射温度計の指示に対する外乱要因で
ある光路中介在物及び背景光の内、光路中介在物と背景
光を確実に除外することができ、正確な温度測定が可能
になる。更に、熱電素子を用いた接触式表面温度計に比
べ、応答時間の速さ、熱的平衡状態を作る必要がない等
の点で極めて優れている。
According to the present invention, it is possible to reliably exclude the inclusions in the optical path and the background light among the inclusions in the optical path and the background light which are disturbance factors to the indication of the radiation thermometer, and it becomes possible to measure the temperature accurately. . Furthermore, it is extremely superior to contact type surface thermometers using thermoelectric elements in terms of quick response time and no need to create a thermal equilibrium state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のおわん形表面温度計を示す説明図、第2
図は従来のサイティングチューブ式表面温度計を示す説
明図、第8図は本発明に係る接触式放射温度計を示す構
成図、第4図は木発明の実験結果を示すグラフであシ光
ロッド接触時の温度信号出力例、第6図は本発明に係る
光ロッドの他の実施例を示す断面図である。 (5)・・・被検材表面、(6)・・・光路部材(光学
ロッド)、(7)・・・検出部、(9)・・・接触状態
検出手段、QO・・・遮光部材、卸・・・対物端面、(
2)・・・出射端面。
Figure 1 is an explanatory diagram showing a conventional bowl-shaped surface thermometer, Figure 2
The figure is an explanatory diagram showing a conventional sighting tube type surface thermometer, Figure 8 is a configuration diagram showing a contact type radiation thermometer according to the present invention, and Figure 4 is a graph showing the experimental results of the invention. Example of Output of Temperature Signal When Rod Contacts FIG. 6 is a sectional view showing another embodiment of the optical rod according to the present invention. (5)...Test material surface, (6)...Optical path member (optical rod), (7)...Detection section, (9)...Contact state detection means, QO...Light blocking member , wholesale...objective end face, (
2)...Emission end surface.

Claims (1)

【特許請求の範囲】 1、 両端面以外の外周が遮光されかつ光学材料で満た
された光路部材を介して被検材の熱放射を検出部に伝達
し、該検出部に到達した熱放射量から被検材の温度を求
めると共に1光路部材の対物端面が被検材に接触した時
を検出する検出手段が設けられ、該検出手段の検出信号
発生時の測定温度を被検材の表面温度とすることを特徴
とする表面温度測定方法。 2、被検材の熱放射を検出部に伝達する光路部材を有し
、該光路部材は、両端面以外の外周が遮光部材で被覆さ
れかつ光学材料で満たされていることを特徴とする表面
温度測定装置。
[Claims] 1. Thermal radiation of the specimen is transmitted to the detection section through an optical path member whose outer periphery other than both end surfaces is shielded from light and filled with an optical material, and the amount of thermal radiation that reaches the detection section. A detection means is provided for determining the temperature of the material to be tested and detecting when the objective end face of one optical path member comes into contact with the material to be tested. A surface temperature measuring method characterized by: 2. A surface having an optical path member that transmits thermal radiation of the test material to the detection part, the outer periphery of the optical path member other than both end surfaces being covered with a light shielding member and filled with an optical material. Temperature measuring device.
JP58097653A 1983-05-31 1983-05-31 Method and device for measuring surface temperature Pending JPS59221628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097653A JPS59221628A (en) 1983-05-31 1983-05-31 Method and device for measuring surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097653A JPS59221628A (en) 1983-05-31 1983-05-31 Method and device for measuring surface temperature

Publications (1)

Publication Number Publication Date
JPS59221628A true JPS59221628A (en) 1984-12-13

Family

ID=14198040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097653A Pending JPS59221628A (en) 1983-05-31 1983-05-31 Method and device for measuring surface temperature

Country Status (1)

Country Link
JP (1) JPS59221628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132657U (en) * 1985-02-06 1986-08-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132657U (en) * 1985-02-06 1986-08-19

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4576486A (en) Optical fiber thermometer
US5553939A (en) Method and device for calibrating an optical pyrometer and associated reference wafers
US2565249A (en) High-temperature-measuring system
JPS59221628A (en) Method and device for measuring surface temperature
US6840671B2 (en) System and method for non-contact temperature sensing
US3452598A (en) Immersion radiation pyrometer device
US3483378A (en) Apparatus for determining the emittance of a body
CN111458033A (en) Dual-wavelength temperature measuring device and method for steel-making furnace
JPH0979911A (en) Method for calibrating optical fiber thermometer
JPH03118429A (en) Infrared-ray thermometer
JP3552861B2 (en) Surface temperature measurement method for objects in heating furnace
SU741067A1 (en) Method of measuring the temperature of medium in radiation flux
JPS59225321A (en) Optical fiber type radiation thermometer
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
US7518113B2 (en) Pressure sensor
JPS62145122A (en) Radiation thermometer
JPS6344134A (en) Image guide type radiation thermometer
JPH06109547A (en) Optical fiber thermometer
Griffiths et al. Pyrometer standardization
Roy Review of Infra-red Thermometry for the Glass Industry
Lapchenko et al. Analysis of metrological reliability instrument of pyrometry
Wareing Temperature measurement techniques applicable to induction heating processing of solid components
JPS6138806B2 (en)