JPS5928063B2 - Manufacturing method of solid-state image sensor - Google Patents

Manufacturing method of solid-state image sensor

Info

Publication number
JPS5928063B2
JPS5928063B2 JP54123335A JP12333579A JPS5928063B2 JP S5928063 B2 JPS5928063 B2 JP S5928063B2 JP 54123335 A JP54123335 A JP 54123335A JP 12333579 A JP12333579 A JP 12333579A JP S5928063 B2 JPS5928063 B2 JP S5928063B2
Authority
JP
Japan
Prior art keywords
solid
manufacturing
picture element
image sensor
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123335A
Other languages
Japanese (ja)
Other versions
JPS5646568A (en
Inventor
一文 小川
隆夫 近村
卓夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54123335A priority Critical patent/JPS5928063B2/en
Priority to US06/188,580 priority patent/US4345021A/en
Publication of JPS5646568A publication Critical patent/JPS5646568A/en
Priority to US06/398,569 priority patent/US4447720A/en
Publication of JPS5928063B2 publication Critical patent/JPS5928063B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

【発明の詳細な説明】 この発明は光導電膜を有する高感度高密度の固体撮像素
子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-sensitivity, high-density solid-state imaging device having a photoconductive film.

従来のこの種の固体撮像素子は、第1図および第2図に
示すように、p形下地基板1上の中央部に光学像を感知
するホトダイオードおよび光学信号を転送する電荷転送
素子等よりなる絵素部2(具体的構造は後述する)を設
け、この絵素部2の周囲に絵素部2を駆動するシフトレ
ジスタあるいはCCD等の駆動回路部3を設け、駆動回
路部3の上部に絶縁膜4を設けている。この絶縁膜4の
上部には、駆動回路部3の端子と絶縁膜4の開口を介し
て接続されるとともに外部配線用パッド部5に及ぶ導体
配線部6と光導電膜接続用電極Tとが設けられている。
さらにまた、絵素部2上には、光導電膜(たとえば、Z
nSe−Znl−xCdxTe・アモルファスシリコン
等)8および透明電極9が積層形成され、さらに接着剤
層10を介してカラーフィルタ11が貼着されている。
つぎに、絵素部2の構成について詳しく説明する。
As shown in FIGS. 1 and 2, a conventional solid-state image sensor of this kind consists of a photodiode that senses an optical image, a charge transfer element that transfers an optical signal, etc. in the center of a p-type base substrate 1. A picture element section 2 (the specific structure will be described later) is provided, a drive circuit section 3 such as a shift register or CCD for driving the picture element section 2 is provided around this picture element section 2, and a An insulating film 4 is provided. On the upper part of this insulating film 4, a conductor wiring part 6 and a photoconductive film connecting electrode T are connected to the terminals of the drive circuit part 3 through the opening of the insulating film 4 and extend to the external wiring pad part 5. It is provided.
Furthermore, a photoconductive film (for example, Z
nSe-Znl-xCdxTe, amorphous silicon, etc.) 8 and a transparent electrode 9 are laminated, and a color filter 11 is further adhered via an adhesive layer 10.
Next, the configuration of the picture element section 2 will be explained in detail.

第3図および第4図において、n+拡散領域12はp形
下地基板1とでホトダイオードを形成する。n+拡散領
域13は、BBDを構成する拡散領域であり、第1ゲー
ト電極14に電圧を加えることにより、n+拡散領域1
2からチャージ電荷を転送する。15および16はそれ
ぞれ絶縁物である。
In FIGS. 3 and 4, n+ diffusion region 12 and p-type base substrate 1 form a photodiode. The n+ diffusion region 13 is a diffusion region that constitutes the BBD, and by applying a voltage to the first gate electrode 14, the n+ diffusion region 1
Transfer the charge from 2. 15 and 16 are insulators, respectively.

電極ITは、Moで形成されてn+拡散領域12と電気
的に接続され、光導電膜8の電極を兼ねている。第2ゲ
ート電極18はBBDゲートを構成している。つぎに、
この固体撮像素子の光情報読込動作について第5図を参
照して説明する。
The electrode IT is made of Mo, is electrically connected to the n+ diffusion region 12, and also serves as an electrode of the photoconductive film 8. The second gate electrode 18 constitutes a BBD gate. next,
The optical information reading operation of this solid-state image sensor will be explained with reference to FIG.

第5図Aは駆動パルスパターン、第5図Bはn+拡散領
域12における電位変化を示している。時間t1におい
て、第1ゲート電極14に電圧VCHなる読込パルスP
,を印加すると、n+拡散領域12における電位は第5
図Bに示したように(VOH−T)にチヤージされる。
ここで、Tはn+拡散領域12,13および第1ゲート
電極14より構成されるFETのしきい値電圧である。
今、矢印Aで示すような入射光があると、光導電膜8に
おいて電子正孔対が生成され、それぞれ電極17および
透明電極9に到達し、n+拡散領域12の電位が低下す
る。
FIG. 5A shows a driving pulse pattern, and FIG. 5B shows potential changes in the n+ diffusion region 12. At time t1, a read pulse P having a voltage VCH is applied to the first gate electrode 14.
, the potential in the n+ diffusion region 12 becomes the fifth
As shown in Figure B, it is charged to (VOH-T).
Here, T is the threshold voltage of the FET composed of the n+ diffusion regions 12 and 13 and the first gate electrode 14.
Now, when there is incident light as shown by arrow A, electron-hole pairs are generated in the photoconductive film 8, which reach the electrode 17 and the transparent electrode 9, respectively, and the potential of the n+ diffusion region 12 decreases.

しかも、この電位の低下は入射光量に比例(Q1は通常
光、Q2は非常に強い光の場合を示す)し、1フイール
ド期間TF蓄積されるので、電圧Vsまで低下する。さ
らに、時間T2において、第1ゲート電極14に電圧V
CHを印加すると、その下のp形下地基板1の表面電位
が上昇し、その結果、n+拡散領域12からn+拡散領
域13に電子の移動が生じる。それに続き、n+拡散領
域12の電位が再び上昇し、(VCH−VT)となる。
したがつて、n+拡散領域13に移動した電荷の総量は
入射光に対応することとなる。このようにしてn+拡散
領域13に読み込まれた光情報は、第5図Aに示す電圧
Vφなる転送パルスP2を第2ゲート電極18に印加す
ることにより、BBD電荷転送の形で光情報が第3図の
紙面の土下方向(矢印zで示す)へ転送される。すなわ
ち、ホトダイオードで光電変換された信号を2相クロツ
ク信号で出力段に送り出すことができる。このような固
体撮像素子の製造プロセスにおいて、導体配線部6およ
び光導電膜接続用電極7を形成した後絵素部2上面にの
み光導電膜8および透明電極9を形成する方法として、
金属製のカバーマスクを用いて所定部へのみ蒸着すると
いう方法が用いられていた(以下、マスク蒸着方式とい
う)。このマスク蒸着方式が用いられている理由はつぎ
のとおりである。
Moreover, this potential drop is proportional to the amount of incident light (Q1 indicates normal light, Q2 indicates very strong light), and TF is accumulated for one field period, so that the potential decreases to the voltage Vs. Furthermore, at time T2, the voltage V is applied to the first gate electrode 14.
When CH is applied, the surface potential of the underlying p-type base substrate 1 increases, and as a result, electrons move from the n+ diffusion region 12 to the n+ diffusion region 13. Subsequently, the potential of the n+ diffusion region 12 rises again to (VCH-VT).
Therefore, the total amount of charge transferred to the n+ diffusion region 13 corresponds to the incident light. The optical information read into the n+ diffusion region 13 in this way is transferred in the form of BBD charge transfer by applying a transfer pulse P2 having a voltage Vφ shown in FIG. 5A to the second gate electrode 18. It is transferred to the underground direction (indicated by arrow z) on the page of Figure 3. That is, the signal photoelectrically converted by the photodiode can be sent to the output stage as a two-phase clock signal. In the manufacturing process of such a solid-state image sensor, a method of forming a photoconductive film 8 and a transparent electrode 9 only on the upper surface of the picture element part 2 after forming the conductor wiring part 6 and the photoconductive film connection electrode 7 is as follows.
A method has been used in which vapor deposition is performed only on predetermined areas using a metal cover mask (hereinafter referred to as mask vapor deposition method). The reason why this mask vapor deposition method is used is as follows.

すなわち、一般に、光導電膜8は、溶剤や水分で感度が
劣化しやすく、従来より半導体装置の製造に用いられて
いるレジスト(たとえば、KTFR(商品名)、AZl
35OJ(商品名)等)によるホトリソ法を用いれば、
レジスト除去工程で使用されるレジスト除去液、たとえ
ばJ−100(商品名)または発煙硝酸等で特性が大幅
に劣化してしまう。したがつて、従来は、マスク蒸着方
式によつてのみ製造が可能であつたが、このマスク蒸着
方式では、基板上で金属マスクを位置調整する際、p形
下地基板1に傷を付けたり、またごみの付着等による欠
陥が多数生じ、完成された固体撮像素子を動作させた場
合、多数の線傷や点傷となつた。さらにまた、一般に蒸
着形成された光導電膜8および透明電極9は、強度が非
常に弱いので完成されたウエハを切断する際に付着する
ごみを洗浄等により取り除くのが難しかつた。そして、
残留したごみは、カラーフイルタ11を接着する際に生
じる欠陥の大きな原因でもあつた(通常、カラーフイル
タ11と透明電極9の間のギヤツプは5〜6ミクロン程
度に接着されねばならないので、カラーフイルタ11に
よりごみが圧着され、固体撮像素子に欠陥が生じる)。
このように従来の製造方法では、製造時に欠陥が生じ、
製造時の歩留りが悪かつた。
That is, in general, the sensitivity of the photoconductive film 8 is easily deteriorated by solvents and moisture, and resists conventionally used in the manufacture of semiconductor devices (for example, KTFR (trade name), AZI
35OJ (trade name) etc.),
The resist removal liquid used in the resist removal process, such as J-100 (trade name) or fuming nitric acid, significantly deteriorates the characteristics. Therefore, in the past, manufacturing was possible only by the mask vapor deposition method, but with this mask vapor deposition method, when adjusting the position of the metal mask on the substrate, the p-type base substrate 1 may be scratched, In addition, many defects were caused by adhesion of dust, etc., and when the completed solid-state image sensor was operated, many line scratches and dots appeared. Furthermore, since the photoconductive film 8 and the transparent electrode 9 that are generally formed by vapor deposition have very low strength, it is difficult to remove dust that adheres when cutting a completed wafer by cleaning or the like. and,
The remaining dust was also a major cause of defects that occurred when bonding the color filter 11 (normally, the gap between the color filter 11 and the transparent electrode 9 must be bonded to about 5 to 6 microns, so the color filter 11, the dust is compressed and defects occur in the solid-state image sensor).
In this way, with conventional manufacturing methods, defects occur during manufacturing,
Yield during manufacturing was poor.

したがつて、この発明の目的は、歩留りを大幅に向上す
ることができる固体撮像素子の製造方法を提供すること
である。
Therefore, an object of the present invention is to provide a method for manufacturing a solid-state image sensor that can significantly improve yield.

この発明の一実施例を第6図ないし第8図に基づいて説
明する。
An embodiment of the present invention will be explained based on FIGS. 6 to 8.

まず、第6図に示すように、シリコンのp形下地基板1
9上に、通常のMOSプロセスを用いて光学像を感知す
るホトダイオードと転送用BBD素子よりなる絵素部2
0およびMOSトランジスタとCCD素子よりなる1駆
動回路部21を形成した後、絶縁膜22を介して導体配
線部23、光導電膜接続用電極24およびホトダイオー
ドと後に形成する光導電膜とを接続する電極25を形成
する。
First, as shown in FIG. 6, a silicon p-type base substrate 1
9, there is a picture element section 2 consisting of a photodiode for sensing an optical image and a transfer BBD element using a normal MOS process.
After forming the drive circuit section 21 consisting of 0 and MOS transistors and CCD elements, the conductor wiring section 23, the photoconductive film connecting electrode 24, the photodiode, and the photoconductive film to be formed later are connected via the insulating film 22. Electrodes 25 are formed.

つぎに、光導電膜26(たとえば、ZnSeZnl−X
CdxTe等)および透明電極27(たとえばSnをド
ープしたIn2O3)を順次全面に蒸着する。
Next, a photoconductive film 26 (for example, ZnSeZnl-X
CdxTe, etc.) and a transparent electrode 27 (for example, In2O3 doped with Sn) are sequentially deposited over the entire surface.

その後、第7図に示すように、透明光硬化型樹脂を全面
塗布し(たとえば、商品名サマーズUV74、ノーラン
ドNOA−61等をスピンナーを用いて1〜2μmの厚
みで塗布する)、所定のパターンを持つホトマスクを用
いて光照射を行い、絵素部20の上面にのみ硬化樹脂膜
パターン28を残す。
Thereafter, as shown in FIG. 7, a transparent photocurable resin is applied to the entire surface (for example, a product such as Summers UV74 or Norland NOA-61 is applied to a thickness of 1 to 2 μm using a spinner), and a predetermined pattern is applied. Light irradiation is performed using a photomask with a mask, leaving the cured resin film pattern 28 only on the upper surface of the picture element section 20.

そして、硬化樹脂膜パターン28をエツチングマスクに
用いて光導電膜26および透明電極27の不要部をエツ
チング除去する。この場合、光導電膜26がZnSe−
Znl−XCdxTeであれば、10規定硝酸で2〜3
分で除去可能であるので、硬化樹脂膜パターン28に何
ら悪影響を及ぼさない。さらに、硬化樹脂膜パターン2
8を除去せずに保護膜として用いてp形下地基板19を
所定の大きさに切断し洗浄する。
Then, using the cured resin film pattern 28 as an etching mask, unnecessary portions of the photoconductive film 26 and the transparent electrode 27 are removed by etching. In this case, the photoconductive film 26 is made of ZnSe-
For Znl-XCdxTe, 2 to 3
Since it can be removed in minutes, it does not have any adverse effect on the cured resin film pattern 28. Furthermore, cured resin film pattern 2
The p-type base substrate 19 is cut into a predetermined size using the p-type base substrate 19, which is used as a protective film without removing it, and is cleaned.

最後に、第8図に示すように、透明接着剤29を用いて
カラーフイルタ30を硬化樹脂膜パターン28上に接着
し、外部リードとパツド部とのワイヤボンデイングを行
つて固体撮像素子を完成する。
Finally, as shown in FIG. 8, the color filter 30 is adhered onto the cured resin film pattern 28 using a transparent adhesive 29, and wire bonding is performed between the external leads and the pad portion to complete the solid-state imaging device. .

ここで、透明光硬化型樹脂および透明接着剤29として
ともにU硬化型接着剤を用いれば、透明電極27とカラ
ーフイルタ30間の2層の樹脂が同一屈折率の樹脂とな
るので、光学特性が良くなり、また、樹脂間の接着性も
良いので都合が良い。
Here, if U-curing adhesives are used as both the transparent light-curing resin and the transparent adhesive 29, the two layers of resin between the transparent electrode 27 and the color filter 30 will have the same refractive index, so the optical properties will be improved. This is advantageous because the adhesiveness between the resins is also good.

さらに、接着時の所要時間も大幅に短縮できる。なお、
従来のカラーフイルタは300〜400nmの波長域を
10(Ff)程度通過させるので、通常のU硬化(高圧
水銀灯の365nmの光による)が利用できる。
Furthermore, the time required for adhesion can be significantly reduced. In addition,
Conventional color filters allow about 10 (Ff) to pass through the wavelength range of 300 to 400 nm, so normal U curing (using 365 nm light from a high-pressure mercury lamp) can be used.

このように、この実施例の製造方法によれば、光導電膜
26および透明電極27の蒸着にマスク蒸着法を用いて
いないので、従来に比べ素子に傷を生じたり、ごみが付
着する確率が非常に少くなる。
As described above, according to the manufacturing method of this embodiment, since the mask vapor deposition method is not used for vapor deposition of the photoconductive film 26 and the transparent electrode 27, the probability of causing scratches on the device or adhesion of dust to the device is reduced compared to the conventional method. Very little.

しかも、エツチングマスクに用いた透明光硬化型樹脂を
除去しないで、p形下地基板19の切断時の保護マスク
としても用いているので、水分が浸透することなく切断
後のごみの水洗除去も容易に行える。また、この透明光
硬化型樹脂は、フイルタ接着時にも残してあるので、接
着時に生じる欠陥を大幅に減少できる。したがつて、高
感度高密度の固体撮像素子を歩留りよく製造することが
可能である。さらにまた、透明光硬化型樹脂および透明
接着剤29の双方にUV硬化型接着剤を用いれば接着樹
脂層で界面を生じず光学特性が改善され、しかも硬化時
間を大幅に短縮できて製造能率が高くなる。以上のよう
に、この発明の固体撮像素子の製造方法は、光導電膜お
よび透明電極蒸着を金属マスクを用いることなく全面に
行うことにより、位置調整時に生じる傷およびごみの付
着を防ぎ、しかも、所定の領域に光導電膜および透明電
極を残すためのエツチングマスクとして透明光硬化型樹
脂による硬化樹脂膜パターンを用い、この硬化樹脂膜パ
ターンを除去せずに、下地基板切断後の洗浄およびカラ
ーフイルタの接着を行つているため、洗浄時およびフイ
ルタ接着時における光導電膜および透明電極の保護を行
うことができ、カラー化固体撮像素子の無欠陥製造の歩
留りを大幅に向上させることができるという効果がある
Moreover, since the transparent photocurable resin used for the etching mask is not removed and is also used as a protective mask when cutting the p-type base substrate 19, moisture does not penetrate and dirt can be easily removed by washing with water after cutting. can be done. Moreover, since this transparent photocurable resin remains even when the filter is bonded, defects that occur during bonding can be significantly reduced. Therefore, it is possible to manufacture a high-sensitivity, high-density solid-state imaging device with a high yield. Furthermore, if a UV-curable adhesive is used for both the transparent light-curable resin and the transparent adhesive 29, the optical properties will be improved without creating an interface in the adhesive resin layer, and the curing time can be significantly shortened, increasing manufacturing efficiency. It gets expensive. As described above, the method for manufacturing a solid-state image sensor of the present invention prevents scratches and dust from attaching during position adjustment by depositing a photoconductive film and a transparent electrode on the entire surface without using a metal mask. A cured resin film pattern made of transparent photocurable resin is used as an etching mask to leave the photoconductive film and transparent electrode in predetermined areas, and cleaning and color filtering after cutting the base substrate are performed without removing the cured resin film pattern. Because of this, the photoconductive film and transparent electrode can be protected during cleaning and filter bonding, and the yield of defect-free manufacturing of color solid-state image sensors can be greatly improved. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像素子の平面図、第2図はその−
線断面図、第3図は同じくその要部平面図、第4図はそ
の−線断面図、第5図は同じくその動作説明のための波
形図、第6図ないし第8図はそれぞれこの発明の一実施
例を説明するための断面図である。 19・・・・・・p形下地基板、20・・・・・・絵素
部、21・・・・・・駆動部、23・・・・・・導体配
線部、26・・・・・・光導電膜、27・・・・・・透
明電極、28・・・・・・硬化樹脂膜パターン。
Figure 1 is a plan view of a conventional solid-state image sensor, and Figure 2 is its -
3 is a plan view of the main part thereof, FIG. 4 is a sectional view along the line 4, FIG. 5 is a waveform diagram for explaining the operation, and FIGS. 6 to 8 respectively show the present invention. FIG. 2 is a sectional view for explaining one embodiment of the invention. 19...P-type base substrate, 20...Picture element section, 21...Drive section, 23...Conductor wiring section, 26... - Photoconductive film, 27...transparent electrode, 28...cured resin film pattern.

Claims (1)

【特許請求の範囲】 1 下地基板を準備する工程と、この下地基板上に光学
像を感知転送する絵素部とこの絵素部を駆動する駆動回
路部とを形成する工程と、前記絵素部および駆動回路部
を形成した下地基板の基板面の全面に前記絵素部の光感
知部分に接続される光導電膜を形成する工程と、この光
導電膜の全面に透明電極を形成する工程と、この透明電
極の全面に光硬化型樹脂を塗布する工程と、この光硬化
型樹脂を所定のパターンマスクを用いて露光現像し前記
光硬化型樹脂による硬化樹脂膜パターンを前記絵素部の
表面に形成する工程と、この硬化樹脂膜パターンをマス
クにして前記透明電極および前記光導電膜を選択エッチ
ングする工程と、前記硬化樹脂膜パターンを除去せずに
さらに接着剤を用いて前記硬化樹脂膜パターン上にカラ
ーフィルタを接着する工程とを含む固体撮像素子の製造
方法。 2 前記光硬化型樹脂と前記接着剤を同材質としている
特許請求の範囲第1項記載の固体撮像素子の製造方法。
[Scope of Claims] 1. A step of preparing a base substrate, a step of forming on the base substrate a picture element section for sensing and transferring an optical image, and a drive circuit section for driving this picture element section, A step of forming a photoconductive film connected to the photosensitive portion of the picture element portion on the entire substrate surface of the base substrate on which the portion and the driving circuit portion are formed, and a step of forming a transparent electrode on the entire surface of this photoconductive film. a step of applying a photocurable resin to the entire surface of the transparent electrode; and a step of exposing and developing the photocurable resin using a predetermined pattern mask to form a cured resin film pattern of the photocurable resin on the picture element area. a step of selectively etching the transparent electrode and the photoconductive film using the cured resin film pattern as a mask; and a step of etching the cured resin film pattern using an adhesive without removing the cured resin film pattern. A method for manufacturing a solid-state image sensor, including the step of bonding a color filter onto a film pattern. 2. The method of manufacturing a solid-state image sensor according to claim 1, wherein the photocurable resin and the adhesive are made of the same material.
JP54123335A 1979-09-25 1979-09-25 Manufacturing method of solid-state image sensor Expired JPS5928063B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54123335A JPS5928063B2 (en) 1979-09-25 1979-09-25 Manufacturing method of solid-state image sensor
US06/188,580 US4345021A (en) 1979-09-25 1980-09-18 Solid-state image pickup element and process for fabricating the same
US06/398,569 US4447720A (en) 1979-09-25 1982-07-15 Solid-state image pickup element and process for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54123335A JPS5928063B2 (en) 1979-09-25 1979-09-25 Manufacturing method of solid-state image sensor

Publications (2)

Publication Number Publication Date
JPS5646568A JPS5646568A (en) 1981-04-27
JPS5928063B2 true JPS5928063B2 (en) 1984-07-10

Family

ID=14858004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54123335A Expired JPS5928063B2 (en) 1979-09-25 1979-09-25 Manufacturing method of solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS5928063B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174132A (en) * 1984-02-20 1985-09-07 キヤノン株式会社 Optical apparatus having light measuring function
JPH0675140B2 (en) * 1984-04-05 1994-09-21 オリンパス光学工業株式会社 Display device for microscope photography
JP4825542B2 (en) * 2006-02-23 2011-11-30 富士フイルム株式会社 Manufacturing method of solid-state imaging device

Also Published As

Publication number Publication date
JPS5646568A (en) 1981-04-27

Similar Documents

Publication Publication Date Title
US5408121A (en) Semiconductor device, an image sensor device, and methods for producing the same
TWI267150B (en) Cavity structure for semiconductor structure
JPH09152486A (en) Image pick-up device
US4345021A (en) Solid-state image pickup element and process for fabricating the same
US4447720A (en) Solid-state image pickup element and process for fabricating the same
JP3964017B2 (en) Contact pads for radiation imaging equipment
JPS5928063B2 (en) Manufacturing method of solid-state image sensor
JPS622463B2 (en)
JPS5846183B2 (en) Manufacturing method of solid-state image sensor
JP4478215B2 (en) Corrosion resistant imaging device
KR100549324B1 (en) Fabricating method for image sensor with pad open photoresist
JPS5928065B2 (en) Manufacturing method of solid-state image sensor
JPH05144938A (en) Manufacture of solid-state image sensing device
JP4521938B2 (en) Imaging device
US7129459B2 (en) Wire-bondable image sensor having integral contaminant shadowing reduction structure
JPH0531864B2 (en)
JPS5999763A (en) Solid-state image-pickup device
JP2000114531A (en) Manufacture of semiconductor device
KR100886973B1 (en) Digital x-ray detector and method for fabricating it
JPS6041874B2 (en) Manufacturing method of solid-state image sensor
KR20010010311A (en) Method for protecting microlens of solid static pick-up device during assembling
JPH05299625A (en) Solid-state image sensing element and manufacture thereof
JP3022818B2 (en) Solid-state imaging device and method of manufacturing the same
JPS60217671A (en) Manufacture of semiconductor radiation detector
JP2003258227A (en) Radiation detector and its fabricating method