JPS5927474A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5927474A
JPS5927474A JP57136310A JP13631082A JPS5927474A JP S5927474 A JPS5927474 A JP S5927474A JP 57136310 A JP57136310 A JP 57136310A JP 13631082 A JP13631082 A JP 13631082A JP S5927474 A JPS5927474 A JP S5927474A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel
gas
catalyst tower
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57136310A
Other languages
Japanese (ja)
Inventor
Michio Kobayashi
道夫 小林
Kinnosuke Koizumi
小泉 金之助
Taichi Takechi
武知 太一
Shuichi Yoshida
修一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57136310A priority Critical patent/JPS5927474A/en
Publication of JPS5927474A publication Critical patent/JPS5927474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To maintain pressure difference between the exhaust gases of fuel and an oxidant at within a given range by introducing them into an oxidizing catalyst tower, being followed by discharging part of the gases into the air and returning most part of the gases to the catalyst tower by means of a blower after moisture is separated from the gases by means of a cooling device. CONSTITUTION:Fuel gas is supplied into the fuel chamber 3 of a fuel cell 11, while oxidant gas is supplied into the oxidant chamber 3a of the fuel cell 1. The exhaust gas holes 6 and 6a of the fuel chamber 3 and the oxidant chamber 3a, are connected to the inlet part 32-1 of an oxidizing catalyst tower 32. The outlet part 32-2 of the catalyst tower 32 is connected to a control valve 35 which is regulated with a pressure gage 34. It is also connected to a cooling device 33, so that exhaust gas the moisture of which is removed is circulated by being fed back to the inlet 32-1 of the catalyst tower 32 through a recycle blower 36. As a result, the gas pressure of the cell 11 can be maintained at a given level, and pressure difference between the two systems can be eliminated by introducing both exhaust gases into areas with the same pressure. Consequently, stable operation of the fuel cell can be performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス供給及び排ガス処理装置を改良した燃料電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell with an improved gas supply and exhaust gas treatment device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池(以下電池と略記する)は燃料がもっているエ
ネルギーを直接電気エネルギーに変換する装置でろる。
A fuel cell (hereinafter abbreviated as battery) is a device that directly converts the energy contained in fuel into electrical energy.

電池は通常電解質を挾んで一対の多孔質電極を配置する
とともに、−万の電極の背面に水素などのような燃料ガ
スを接触させ、また他方の電極の背面に酸素などのよう
な酸化剤ガスを接触させる。このときに起る電気化学的
反応を利用して両を極間から電気エネルギーを取9出す
ように構成したものである。
Batteries usually have a pair of porous electrodes sandwiching an electrolyte, and a fuel gas such as hydrogen is brought into contact with the back of one electrode, and an oxidizing gas such as oxygen is brought into contact with the back of the other electrode. contact. The structure is such that electrical energy is extracted from between the two electrodes by utilizing the electrochemical reaction that occurs at this time.

電解質として溶融塩、アルカリ溶液及び酸浴液などがめ
るが、代表的なシん酸を電解質とする電池の原理につい
て説明する。第1図において、電解質層(1)は繊維質
シートや鉱物質粉末にりん酸を含浸しである。この電解
質層(1)の両側にはアノード電極(2)及びカンード
電極(2a)を配設する。これら両電極(2+ 、 (
2a)に炭素質部材からなる多孔性部材から形成される
。またこれら両電極(2J 、 (2a)の夫々電解質
層(11側には、通常は白金触媒を塗布している。アノ
ード電極(2)及びカンード電極(2a)U、夫々電解
質層(1)側と反対側は、燃料ガスが流れる燃料ガス室
(3)及び酸化剤ガスが流れる酸化剤ガス室(3a)と
が夫々設けられる。一般にりん酸形燃料電池においては
燃料ガスに水素ガスであり、また酸化剤ガスは空気であ
る。
Molten salts, alkaline solutions, acid baths, etc. are used as electrolytes, but the principle of a typical battery using cynic acid as an electrolyte will be explained. In FIG. 1, the electrolyte layer (1) is a fibrous sheet or mineral powder impregnated with phosphoric acid. An anode electrode (2) and a canned electrode (2a) are provided on both sides of this electrolyte layer (1). Both these electrodes (2+, (
2a) is formed from a porous member made of a carbonaceous member. In addition, a platinum catalyst is usually coated on the electrolyte layer (11 side) of these two electrodes (2J, (2a)). On the opposite side, a fuel gas chamber (3) through which the fuel gas flows and an oxidizing gas chamber (3a) through which the oxidizing gas flows are provided.In general, in a phosphoric acid fuel cell, the fuel gas is hydrogen gas; Further, the oxidant gas is air.

このようなりん酸形の電池について作用を説明する。燃
料ガス室(3)に流入したガス中の水素ガスは多孔質な
アノード電極(2)の空所に拡散して触媒に達する。セ
して触媒の作用によって水素ガスは水素イオンと電子と
に解離する。
The operation of such a phosphoric acid battery will be explained. Hydrogen gas in the gas that has flowed into the fuel gas chamber (3) diffuses into the cavity of the porous anode electrode (2) and reaches the catalyst. Then, the hydrogen gas is dissociated into hydrogen ions and electrons by the action of the catalyst.

すなわち、反応式U H2→2H+2eでめる。That is, the reaction formula U H2→2H+2e can be obtained.

次にこの水素イオンH+は電解質層(1)に入り、濃度
拡散によつ又カンード電極(2a)に向って泳動してゆ
く。−万電子eはアノード電極(2)に流れ込み、この
アノード電極(2+は負Vこ課電される。またカンード
電極(2a)においては、アノード電極(2)から泳動
してきた水素イオンH+と、酸化剤ガス室(3a)に゛
流入した空気中の酸素02が多孔質なカンード電極(2
a)の空所に拡散する。この拡散してきた酸素0゜と、
アノード電極(2)から外部の電気負荷を通って電池に
もどってきた′酸子eと、水素イオンH+との3者が触
媒表面で次のような反応を起す。
Next, this hydrogen ion H+ enters the electrolyte layer (1) and migrates toward the canned electrode (2a) due to concentration diffusion. - Ten thousand electrons e flow into the anode electrode (2), and this anode electrode (2+ is charged with negative V). In addition, in the cande electrode (2a), the hydrogen ions H+ migrating from the anode electrode (2), Oxygen 02 in the air that has flowed into the oxidant gas chamber (3a) is transferred to the porous canned electrode (2).
Diffusion into the void in a). This diffused oxygen 0° and
The following reaction occurs on the surface of the catalyst between the acid ions e that have returned to the battery from the anode electrode (2) through the external electrical load and the hydrogen ions H+.

すなわち、4H”+4e +02−+ 2)(20かく
して、水素が酸化されて水になる反応と、このときの化
学的エネルギーが電気エネルギーとなって、外部の電気
負荷中で電気エネルギーを与える電池としての全反応が
完成する。
In other words, 4H"+4e +02-+ 2) (20) Thus, the reaction in which hydrogen is oxidized to water, and the chemical energy at this time becomes electrical energy, serves as a battery that provides electrical energy under an external electrical load. The entire reaction is completed.

このとき電気エネルギーの一部は電解質層(1)の中で
電池の内部抵抗として消費される。従って電池の効率を
高めるために電解質層(11は極めて薄く設計され、水
素イオンの泳動距離を短くし、抵抗を小さくするように
形成される。
At this time, part of the electrical energy is consumed in the electrolyte layer (1) as internal resistance of the battery. Therefore, in order to increase the efficiency of the battery, the electrolyte layer (11) is designed to be extremely thin and formed to shorten the migration distance of hydrogen ions and reduce resistance.

又、原料として供給される水素ガス及び空気は数気圧に
加圧され1いるのが普通である。これは一般の化学反応
と同じに、反応速度を高める有効な手段として、反応に
関与する物質の濃度を上けるためでるる。
Further, hydrogen gas and air supplied as raw materials are usually pressurized to several atmospheres. As with general chemical reactions, this is done to increase the concentration of substances involved in the reaction as an effective means of increasing the reaction rate.

実際に電池にガスを供給する場合の問題点は、水素と酸
素の直接の接触、あるいは混合を防止しなければ1c−
)ないことでろる。第1図におい℃もわかるように、燃
料ガスと酸化剤ガスを隔離するものは、電解質層(1)
のみである。電解質層(11は前述の通り、線維質シー
トや鉱物性粉末にりん酸を含浸したもので、りん酸の表
面張力が両ガスの混合を防いておシ、またこの厚さは0
.1 mm程度で極めて薄いものである。従って電池を
安全に運転するには、両ガスを等しい圧力で供給しなけ
ればならない。しかしながら、負荷変動にともなう供給
ガスの流動変動や起動及び停止においても、両ガスの差
圧は水柱で数10ミリメートル以下の極めて僅少差にな
るように制御しlけれはならない。
The problem when actually supplying gas to batteries is that unless direct contact or mixing of hydrogen and oxygen is prevented, 1c-
) I'm sorry for not having it. As can be seen in Figure 1, the electrolyte layer (1) separates the fuel gas and oxidant gas.
Only. The electrolyte layer (11, as mentioned above, is a fibrous sheet or mineral powder impregnated with phosphoric acid, and the surface tension of the phosphoric acid prevents the mixing of both gases, and the thickness is 0.
.. It is extremely thin, approximately 1 mm. Therefore, to operate the battery safely, both gases must be supplied at equal pressures. However, even when the supply gas flow fluctuates due to load fluctuations and when starting and stopping, the differential pressure between the two gases must be controlled to an extremely small difference of several tens of millimeters or less in the water column.

燃料電池の実際のパワープラントにおけるガスの供給方
法は、特開昭54−82636号、 51−10454
1号。
The gas supply method in an actual fuel cell power plant is described in Japanese Patent Application Laid-open No. 54-82636 and 51-10454.
No. 1.

51−104540号、 5N−104539号などで
すでに公知となっている。燃料としては石油系燃料やア
ルコールなどを改質装置で水素に改質すること、改質装
置の熱源としては、電池の排ガスを利用すること、また
排ガスをターボコンプレッサに供給して空気を加圧して
電池の酸化剤として供給することなどの技術が実用化さ
れている。
It is already known in No. 51-104540, No. 5N-104539, etc. The fuel used is petroleum fuel or alcohol, which is reformed into hydrogen using a reformer. The heat source for the reformer is the exhaust gas from batteries, and the exhaust gas is supplied to a turbo compressor to pressurize the air. Technologies such as supplying it as an oxidizing agent for batteries have been put into practical use.

電池の試験装置は実用プラントにおける複雑なガス供給
系ではなく、燃料ボンベより供給し、空気はコンプレッ
サによ如供給することが普通に行われ1いる。なお、実
用電池では電極面積が広く、インターコネクタを介して
複数層に積層されているが、両ガスの圧力制御の説明に
は同じであるから、実用電池の図示は省略して、原理図
を用いる。
Instead of using a complicated gas supply system in a practical plant, battery test equipment is usually supplied from a fuel cylinder and air is supplied from a compressor. In addition, in a practical battery, the electrode area is large and the electrodes are laminated in multiple layers via an interconnector, but since the pressure control of both gases is the same, the illustration of the practical battery will be omitted and the principle diagram will be shown. use

次に従来の電池における水素ガス及び酸素ガスのフロー
図の一例を第2図に示す。電池←1)の燃料ガス供給側
は燃料ガスボンベαりと燃料ガス供給管(1□□□を介
して接続される°。そして燃料ガス供給管α騰には燃料
ガスボンベ(L21@から減圧弁α最、流量計aeと連
動した流量調節弁α力とを接続する。また空気供給側は
空気コンプレッサ0印と空気供給管(11を介して接続
される。そして空気コンプレッサ賭側から減圧弁(15
1L) 、流量計(16a)と連動した流量調節計(1
7m)とを接続する。
Next, FIG. 2 shows an example of a flow diagram of hydrogen gas and oxygen gas in a conventional battery. The fuel gas supply side of the battery←1) is connected to the fuel gas cylinder α through the fuel gas supply pipe (1 First, connect the flow meter ae and the interlocked flow rate adjustment valve α.The air supply side is connected to the air compressor marked 0 via the air supply pipe (11).Then, connect the air compressor side to the pressure reducing valve (15).
1L), a flow rate controller (1L) linked to a flowmeter (16a)
7m).

一方、電池α1)の燃料排ガス側には燃料排ガス管(社
)が接続され、また空気排ガス側にに空気排ガス管(2
I)が接続される。そして燃料排ガス管(2o)及び空
気排ガス管Cυには夫々圧力調節弁の、 (22a)を
接続する。圧力調節弁(、!21U電池(11)の燃料
排ガスの圧力を測定する圧力計(2東によって調節され
る。また圧力調節弁(22a) U電池θ1)の燃料排
ガス側と空気排ガス側との圧力差を検出する圧力計(2
51によって圧力差を許容値以内に保つようになってい
る。
On the other hand, a fuel exhaust gas pipe (Company) is connected to the fuel exhaust gas side of battery α1), and an air exhaust gas pipe (2) is connected to the air exhaust gas side.
I) is connected. Pressure regulating valves (22a) are connected to the fuel exhaust gas pipe (2o) and the air exhaust gas pipe Cυ, respectively. The pressure regulating valve (21A) is adjusted by the pressure gauge (2 East) that measures the pressure of the fuel exhaust gas of the U battery (11). Pressure gauge (2) to detect pressure difference
51 to keep the pressure difference within an allowable value.

しかし、圧力調節弁Q3 、 (22a)はその前後で
圧力を負担しながら、その圧力のi/zooo程度に相
当する水柱20 隨Zいし30朋の圧力差以下に燃料排
ガス側及び空気排ガス側の圧力を絶えず調節して維持す
ることは非常に困難であるという問題点がめった。
However, while the pressure regulating valve Q3 (22a) bears the pressure before and after it, it reduces the pressure difference between the fuel exhaust gas side and the air exhaust gas side to less than a pressure difference of 20 mm to 30 mm of water column, which corresponds to about i/zooo of that pressure. The problem has often been that it is very difficult to constantly adjust and maintain the pressure.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考慮してなされたもので、七の目的
とするところに、燃料排ガス側及び空気排ガス側の両者
の圧力差を選定された微細な圧力差値以内に絶えず維持
することのできる燃料電池を提供することにるる。
The present invention has been made in consideration of the above points, and has the seventh purpose of constantly maintaining the pressure difference between the fuel exhaust gas side and the air exhaust gas side within a selected minute pressure difference value. The goal is to provide fuel cells that can

〔発明の概要〕[Summary of the invention]

本発明は、燃料排ガスと酸化剤排ガスとを酸化触媒塔内
部に導入して混合ガスを生成し、この混合ガスの一部を
圧力計によって調節する圧力調整弁を介して大気に放出
し、大部分の混合排ガスを冷却装置を介して水分を分離
し、水分を除去した混合排ガスを再度リサイクルブロワ
−を介して酸化触媒塔にもどすことによって、燃料排ガ
スと酸化剤排ガスとの両系統の圧力差をす<シ、燃料電
池の安定した運転を継続できることをその特徴とする。
The present invention introduces fuel exhaust gas and oxidizer exhaust gas into an oxidation catalyst tower to generate a mixed gas, and releases a portion of this mixed gas to the atmosphere through a pressure regulating valve regulated by a pressure gauge. By separating the moisture from a portion of the mixed exhaust gas through a cooling device and returning the mixed exhaust gas from which moisture has been removed to the oxidation catalyst tower via a recycling blower, the pressure difference between the fuel exhaust gas and oxidizer exhaust gas is reduced. Its feature is that the fuel cell can continue to operate stably.

混合排ガスの水素濃度を2チ以下に調節するのが最適で
ある。
It is optimal to adjust the hydrogen concentration of the mixed exhaust gas to less than 2%.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の燃料電池の一実施例を図面を参照(1)の
両側に多孔質の電極(2)及び(2a)を配設する。
Hereinafter, referring to the drawings, an embodiment of the fuel cell of the present invention will be described in which porous electrodes (2) and (2a) are disposed on both sides of (1).

また両電極(2)及び(2a)の夫々の背面には燃料ガ
ス室(3)及び酸化剤ガス室(3a)を形成する。燃料
ガス’M (al o燃料ガスの供給口(5)側には燃
料ボンへa21カら燃料ガス供給管(13)を介して、
減圧弁α句、流量計叫によって調整される流量調節弁(
17)を接続する。
Furthermore, a fuel gas chamber (3) and an oxidant gas chamber (3a) are formed on the back surfaces of both electrodes (2) and (2a), respectively. Fuel gas 'M (alo) On the fuel gas supply port (5) side, from A21 to the fuel cylinder via the fuel gas supply pipe (13),
Pressure reducing valve α clause, flow rate regulating valve regulated by flow meter shout (
17) Connect.

また酸化剤ガス室(3&)の酸化剤ガス(以下空気とす
る)の供給口(5a)には空気コンプレッサ賭がら空気
供給管QSを介して減圧弁(l s a )e流量計(
16a)によって調整される流量調節弁(17m)を接
続する。
In addition, the oxidant gas (hereinafter referred to as air) supply port (5a) of the oxidant gas chamber (3&) is connected to an air compressor, an air supply pipe QS, a pressure reducing valve (l s a ), a flow meter (
Connect a flow control valve (17m) regulated by 16a).

燃料ガス室(3)の燃料排ガス口(6)に接続される燃
料排ガス全開と、酸化剤ガス室(3a)の空気排ガス口
(6a)に接続される空気排ガス管6υとを一括して酸
化触媒塔ゆの一方の流入口部(32−1)に接続する。
Fully open the fuel exhaust gas connected to the fuel exhaust gas port (6) of the fuel gas chamber (3) and oxidize the air exhaust gas pipe 6υ connected to the air exhaust gas port (6a) of the oxidizer gas chamber (3a) at once. Connected to one inlet port (32-1) of the catalyst tower.

また酸化触媒塔(321の流出口部(32−2)には冷
却装置(2)を接続するとともyc、圧力計(ロ)によ
って調整される圧力調節弁(至)を配設する。冷却装置
(ハ)の他方にはりサイクルブロワ−(ト)を接続し、
このリサイクルブロワ−(361を経て酸化触媒塔62
1の流入口部(32−1)に接続する。冷却装置i(至
)は冷却器(33−1)とドレーンバルブ(33−2)
 ゛を設けたドレーン(33−3)を備えている。上述
したようにして、燃料排ガス系及び酸化剤排ガス系に排
ガス処理装置を構成する。
In addition, a cooling device (2) is connected to the outlet (32-2) of the oxidation catalyst tower (321), and a pressure regulating valve (to) that is adjusted by a pressure gauge (b) is installed.Cooling device Connect the cycle blower (g) to the other side of (c),
This recycle blower (via 361, oxidation catalyst tower 62
It is connected to the inlet port (32-1) of No.1. Cooling device i (to) is a cooler (33-1) and a drain valve (33-2)
A drain (33-3) is provided. As described above, exhaust gas treatment devices are configured in the fuel exhaust gas system and the oxidizer exhaust gas system.

次に本発明の作用効果について説明する。電池01)の
燃料ガス室(3)から未反応水素を含む燃料排ガスは燃
料排ガス管l3Ie通り、リサイクルブロワ−関からの
リサイクルガスと合流するとともに、空気排ガス管OI
Jを通った空気排ガスと酸化触媒塔C12+に流入する
。この酸化触媒塔(32I内部において未反応の水素ガ
スは同じく未反応の酸素と化合して水を生成する。
Next, the effects of the present invention will be explained. The fuel exhaust gas containing unreacted hydrogen from the fuel gas chamber (3) of the battery 01) flows through the fuel exhaust gas pipe 13Ie, where it joins with the recycle gas from the recycle blower, and also flows through the air exhaust gas pipe OI.
The air exhaust gas passes through J and flows into the oxidation catalyst tower C12+. Inside this oxidation catalyst tower (32I), unreacted hydrogen gas combines with unreacted oxygen to produce water.

そして、水分を含む混合排ガスの一部は酸化触媒塔62
1から圧力計(2)によって調節される圧力調節弁C3
51によって大気に放出される。一方混合排ガスの大部
分は、冷却装置(ハ)内部で冷却器(33−1)によっ
て冷却された水を分離して、ドレーン(33−3)に溜
った水にドレーンバルブ(33−2)から排出される。
A part of the mixed exhaust gas containing moisture is transferred to the oxidation catalyst tower 62.
1 to pressure regulating valve C3 regulated by pressure gauge (2)
51 to the atmosphere. On the other hand, most of the mixed exhaust gas is separated from the water cooled by the cooler (33-1) inside the cooling device (c), and the water collected in the drain (33-3) is collected by the drain valve (33-2). is discharged from.

また冷却装置(至)内部の混合排ガスは再びリサイクル
ブロワ−関によって酸化触媒塔6々にもどされて混合排
ガスを循環させる。
Further, the mixed exhaust gas inside the cooling device (to) is returned to the oxidation catalyst towers 6 again by the recycle blower to circulate the mixed exhaust gas.

このようにリサイクルブロワ−cfi+によって循環さ
れる混合排ガスの風量は、水素排ガスと混合したときの
水素濃度が2%以下になるように調節する。それは水素
ガスの爆発限界が4チでるるがら、2%であれば爆発の
おそれがないとと、及び酸化によって発生する熱による
温度上昇が、はぼ200℃程度の温度上昇に抑えられる
からでるる。このように混合排ガスが爆発限界に入るこ
となく、また触媒が温度によって劣化するような高温度
を発生することなく、安全な運転を継続できる。
The air volume of the mixed exhaust gas thus circulated by the recycle blower-cfi+ is adjusted so that the hydrogen concentration when mixed with the hydrogen exhaust gas is 2% or less. This is because while the explosive limit of hydrogen gas is 4°C, there is no risk of explosion if it is 2%, and the temperature rise due to the heat generated by oxidation can be suppressed to about 200°C. Ruru. In this way, safe operation can be continued without the mixed exhaust gas reaching the explosive limit and without generating high temperatures that would degrade the catalyst.

さらにリサイクルブロワ−(支)jはリサイクル回路の
圧力降下のみを負担すれはよいので、僅少な動力しか消
賢しない。圧力調節弁0団は圧力計に4)により自動的
に調節され、電池←υのガス圧を希望の値に維持するこ
とができる。このように電池01)の燃料ガス及び酸化
剤ガスのガス圧は、同じ圧力の所へ、実用上殆んど圧力
降下を無視できる管で接続できるので、両排ガス系の圧
力差を生ずることがなくナシ、両排ガス系の圧力差を少
なくするためのコントロールの必要もすくする。なお、
このような排ガス処理は実際のパワープラントに適用で
きることは勿論である。
Furthermore, since the recycle blower (support) j only has to bear the pressure drop of the recycle circuit, only a small amount of power is wasted. The pressure regulating valve group 0 is automatically regulated by the pressure gauge 4), and the gas pressure of the battery ←υ can be maintained at a desired value. In this way, the gas pressures of the fuel gas and oxidant gas of battery 01) can be connected to a place with the same pressure using pipes where the pressure drop can be practically ignored, so there is no pressure difference between the two exhaust gas systems. This also reduces the need for controls to reduce the pressure difference between the two exhaust gas systems. In addition,
Of course, such exhaust gas treatment can be applied to actual power plants.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは、燃料排ガス及び酸
化剤排ガスとを酸化触媒塔に導入し、かつこの酸化触媒
塔から混合排ガスをリサイクルブロワ−を介して酸化触
媒塔に循環させることにより、混合排ガスの水素ガスa
度を2チ以下に保持することによって爆発及び温度上昇
を抑え、また両排ガスの圧力差をすくシ、長期間安定し
た運転を継続できる燃料電池を提供することができる。
As explained above, according to the present invention, the fuel exhaust gas and the oxidizer exhaust gas are introduced into the oxidation catalyst tower, and the mixed exhaust gas is circulated from the oxidation catalyst tower to the oxidation catalyst tower via the recycle blower. Mixed exhaust gas hydrogen gas a
By keeping the temperature below 2 degrees, it is possible to suppress explosions and temperature rises, reduce the pressure difference between both exhaust gases, and provide a fuel cell that can continue stable operation for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はりん酸形燃料電池の原理を示す説明図。 第2図は通常の燃料電池のフロー図、第3図は本発明の
燃料電池の70−図でおる。 覧 (1)・・・電解層      (21、(2a)・・
・電極(3)・・・燃料ガス室    (3a)・・・
酸化剤ガス室(ト))・・・燃料排ガス管   6υ・
・・空気排ガス管621・・・酸化触媒塔   C33
・・・冷却装置(財)・−・圧力計     (3ツ・
・・圧力調節弁μs)・・・リサイクルブロワ− 代理人 弁理士  井 上 −男
FIG. 1 is an explanatory diagram showing the principle of a phosphoric acid fuel cell. FIG. 2 is a flow diagram of a conventional fuel cell, and FIG. 3 is a diagram 70 of the fuel cell of the present invention. View (1)...Electrolytic layer (21, (2a)...
・Electrode (3)...Fuel gas chamber (3a)...
Oxidizer gas chamber (g)...Fuel exhaust gas pipe 6υ・
... Air exhaust gas pipe 621 ... Oxidation catalyst tower C33
...Cooling device (foundation) ---Pressure gauge (3 pieces)
...Pressure control valve μs) ...Recycle blower Agent Patent attorney Inoue - Male

Claims (2)

【特許請求の範囲】[Claims] (1)電解質層を挾んで一対の多孔質の電極を配設する
とともに、一方の電極の背面に燃料ガスを接触させ、ま
た他の電極の背面に酸化剤ガスを接触させることによっ
て起る電気化学的反応から前記両電極間に発生した電気
エネルギーを取出すようにしたものにおいて、燃料排ガ
スと酸化剤排ガスとを酸化触媒塔内部に導入し、一部を
圧力調節弁を介して大気に放出し、大部分の混合排ガス
を冷却装置を介して水分を分離し、水分を除いた前記混
合排ガスをリサイクルブロアーを介して前記酸化触媒塔
にもどして循環するように排ガス処理をすることを特徴
とする燃料電池。
(1) Electricity generated by arranging a pair of porous electrodes with an electrolyte layer in between, and bringing fuel gas into contact with the back surface of one electrode and oxidizing gas into contact with the back surface of the other electrode. In a system that extracts electrical energy generated between the two electrodes from a chemical reaction, fuel exhaust gas and oxidizer exhaust gas are introduced into the oxidation catalyst tower, and a portion is released to the atmosphere through a pressure control valve. , the exhaust gas is treated in such a way that moisture is separated from most of the mixed exhaust gas through a cooling device, and the mixed exhaust gas from which moisture is removed is returned to the oxidation catalyst tower and circulated through a recycling blower. Fuel cell.
(2)混合排ガスの水素濃度を2%以下に調節する特許
請求の範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein the hydrogen concentration of the mixed exhaust gas is adjusted to 2% or less.
JP57136310A 1982-08-06 1982-08-06 Fuel cell Pending JPS5927474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136310A JPS5927474A (en) 1982-08-06 1982-08-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136310A JPS5927474A (en) 1982-08-06 1982-08-06 Fuel cell

Publications (1)

Publication Number Publication Date
JPS5927474A true JPS5927474A (en) 1984-02-13

Family

ID=15172203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136310A Pending JPS5927474A (en) 1982-08-06 1982-08-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5927474A (en)

Similar Documents

Publication Publication Date Title
US6103410A (en) Start up of frozen fuel cell
EP1587157A2 (en) Fuel cell operation method
US20050069748A1 (en) Method of heating and humidifying at least an oxidant stream of a fuel cell
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
US6610434B1 (en) Segregated exhaust SOFC generator with high fuel utilization capability
US3711333A (en) Fuel cell battery
US20070154746A1 (en) Purging a fuel cell system
US20080014475A1 (en) Anode humidification
JPS5927474A (en) Fuel cell
JPS59149664A (en) Fuel-cell system
JP3575650B2 (en) Molten carbonate fuel cell
JPS59149665A (en) Fuel-cell system
JPH0654674B2 (en) Fuel cell power generator
JPS61269865A (en) Operation method of fuel cell
JPS5927475A (en) Fuel cell
JP4687867B2 (en) Cooling device for polymer electrolyte fuel cell
US20230022610A1 (en) Electricity production facility comprising a fuel cell and a chemical reactor suitable for producing fuel for said fuel cell using heat released by a battery associated process
JPS626309B2 (en)
JPH04115467A (en) Phosphate type fuel cell generating plant
JPS59149670A (en) Fuel battery power generating apparatus
JPS63207053A (en) Fuel cell power generation plant
JPH06188017A (en) Phosphoric acid type fuel battery power generation plant
KR20230074212A (en) Fuel cell power generation system and control method of fuel cell power generation system
JPS5973856A (en) Control method of fuel cell
JPS60208061A (en) Fuel cell power generating system