JPS5927470A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5927470A
JPS5927470A JP57136315A JP13631582A JPS5927470A JP S5927470 A JPS5927470 A JP S5927470A JP 57136315 A JP57136315 A JP 57136315A JP 13631582 A JP13631582 A JP 13631582A JP S5927470 A JPS5927470 A JP S5927470A
Authority
JP
Japan
Prior art keywords
manifold
airtightness
insulator
fuel cell
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57136315A
Other languages
Japanese (ja)
Other versions
JPH0160901B2 (en
Inventor
Michio Kobayashi
道夫 小林
Kinnosuke Koizumi
小泉 金之助
Mitsuru Kono
河野 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57136315A priority Critical patent/JPS5927470A/en
Publication of JPS5927470A publication Critical patent/JPS5927470A/en
Publication of JPH0160901B2 publication Critical patent/JPH0160901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase insulation and airtightness by bonding the first insulator having a projection to the end surface of a manifold which faces the side surface of a cell stack and by bringing in airtightness it into contact with the side surface of the cell stack via the second insulator. CONSTITUTION:A unit cell is constructed with a matrix, two electrodes, and an interconnector having fuel gas and oxidizing gas supply grooves. A plurality of unit cells are stacked and they are fastened with a fastening plates 22 via current collecting plates 19 and insulators 21 to form a fuel cell stack 20. A manifold 23 for reaction gas supply is installed on the side of the fuel cell stack in such a way that an insulator 25 having a projection 25a and also having good heat resistance and chemical resistance is bonded to the side surface 28 of the manifold 23, and the insulator 25 is brought in airtightness into contact with a sheet-shaped insulating packing 26 on the side of the cell. Therefore, decrease of insulation and airtightness caused by heat expansion and shrinkage at high temperature is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電池′積層体と反応ガス供給容器との絶縁及び
気密構造を改良した燃料電池(−関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell with improved insulation and airtight structure between a battery stack and a reactant gas supply container.

〔発明の技術的背景〕[Technical background of the invention]

従来、燃料の有している化学エネルギーを直接電気エネ
ルギーl二変換する装置として燃料電池(以下電池と記
す)が知られている。この燃料電池は通常を解質な挾ん
で一対の多孔質の電極を配置するとともに、一方の電極
の背面に水素ガスを含む燃料ガスを接触させ、他方の電
極の背面g二空気などの酸素ガスを含む酸化剤ガスを接
触させ、この時に起る電気化学的反応を利用して両電極
間から電気エネルギーを椴出すことができるものでおる
2. Description of the Related Art Conventionally, a fuel cell (hereinafter referred to as a battery) is known as a device that directly converts chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiched between them, and a fuel gas containing hydrogen gas is brought into contact with the back surface of one electrode, and an oxygen gas such as air is brought into contact with the back surface of the other electrode. It is possible to generate electrical energy from between the two electrodes by bringing an oxidizing gas containing the two electrodes into contact with each other and utilizing the electrochemical reaction that occurs at this time.

ところで、上記の原理6二もとずく、特にりん酸(H8
PO4)を電解質とした電池は、電解質を含浸したマト
リックスを中央(二挾むようにして両11N=多孔質の
電極を配設する。またこれら両電極のマトリックスに接
する側C二は夫々触媒I−が形成されて素電池を構成す
る。この素電池の両電極の背面に配置され、燃料ガス及
び酸化剤ガスの夫々の流路をもつリブ付きプレート(以
下インターコネクタと記す)がある。このインターコネ
クタのリプ加工は両面ロ互1′″−直交するよう1二形
成されている。
By the way, the above principle 62 is based on, especially phosphoric acid (H8
In a battery using PO4) as an electrolyte, a matrix impregnated with an electrolyte is placed in the center (both 11N = porous electrodes are placed in between them. In addition, the sides C2 of these electrodes that are in contact with the matrix are each formed with a catalyst I-. This unit cell has a ribbed plate (hereinafter referred to as an interconnector) that is placed on the back side of both electrodes and has flow paths for fuel gas and oxidizing gas. The lip processing is performed on both sides so that they are perpendicular to each other.

そして素電池の両側1ニインターコネクタを配置(−て
単位電池が形成される。この単位電池を複数個積層して
一体として電池積層体が形成される。この電池積層体の
側面Cは夫々対向して絶縁及び気密を保持した状態で反
応ガス供給容器(以下マニホールドと記す)が取付けら
れる。
A unit battery is formed by arranging one interconnector on both sides of the unit battery.A battery stack is formed by stacking a plurality of these unit batteries.The side faces C of this battery stack are opposite to each other. A reaction gas supply container (hereinafter referred to as a manifold) is attached while maintaining insulation and airtightness.

〔背景技術の間組点〕[Background technology interset]

従来の電池積層体の側面とマニホールドとの接合部分は
第1図(二示す通りである。金属部材によって形成され
たマニホールド(1)の端部周辺に突起5(2)を一体
(二形成する。この突起5(2)はシート状の絶縁バッ
キング(81を介して電池棟)一体(5)の側面に当接
して、マニホールド(1)と電池積J一体(5)との絶
縁及び気管を保持するようC二構成される。
The joint between the side surface of a conventional battery stack and the manifold is as shown in Figure 1 (2).Protrusions 5 (2) are integrally formed (2) around the end of the manifold (1) formed of a metal member. This protrusion 5 (2) comes into contact with the side surface of the sheet-like insulating backing (through 81 to the battery building) unit (5), insulating the manifold (1) and the battery unit J unit (5) and protecting the trachea. C2 is configured to hold.

電池は運転温Kが170℃ないし200℃の高温になる
ので、絶縁バッキング(8)と金属部材からなるマニホ
ールド(1)の突起部(2)との材質的な熱膨張係数の
相異≦二よって、突起部(2)と絶縁バッキング(3)
との当接する部分において、すれ合いが起り、紅時変化
(二より絶縁バッキング(8)口亀裂が入り、そのため
C−気密性及び絶縁性が保持できなくなる。
Since the battery operates at a high operating temperature K of 170°C to 200°C, the difference in material thermal expansion coefficient between the insulating backing (8) and the protrusion (2) of the manifold (1) made of a metal member is ≦2. Therefore, the protrusion (2) and the insulating backing (3)
Scraping occurs at the part where it comes into contact with the insulating backing (8), causing cracks in the insulation backing (8), making it impossible to maintain C-airtightness and insulation.

また、電解質がりん酸(H1lPO4)であるため、反
応発生水分がマニホールド(1)の内面に付着し、この
反応発生水分中1ニりん酸の蒸気が少量含゛まれている
。このためマニホールド(1)の内面が酸性で何時もぬ
れており、また高温状態と寿す、内面腐食を発生し、さ
らには絶縁低下(二より腐食が促進され、かつ電気的短
絡などの危険性を増すおそれがあった0 〔発明の目的〕 本発明は上記の点を考慮してなされたもので、その目的
とするところは、電池積層体とマニホールドとの絶縁及
び気密を長期にわたり保持し、またマニホールド内面の
腐食を防止する信頼性の高い燃料電池を提供することに
ある。
Furthermore, since the electrolyte is phosphoric acid (H11PO4), reaction generated water adheres to the inner surface of the manifold (1), and this reaction generated water contains a small amount of 1-diphosphoric acid vapor. As a result, the inner surface of the manifold (1) is constantly wet due to acidity and remains at high temperatures, leading to inner corrosion, and even lower insulation (secondarily, corrosion is accelerated, and there is a risk of electrical short circuits). 0 [Object of the Invention] The present invention has been made in consideration of the above points, and its purpose is to maintain the insulation and airtightness between the battery stack and the manifold for a long period of time, and to The object of the present invention is to provide a highly reliable fuel cell that prevents corrosion on the inner surface of the manifold.

〔発明の概要〕[Summary of the invention]

か\る目的を達成するため、本発明は電池積層体側面と
当接するマニホールドの端部面I:耐熱性及び耐薬品性
の優れた突起部を有する第1の絶縁部材を固着して一体
とし、この突起部を第2の絶縁部材を介して電池積層体
側面に当接することをその特徴とする。尚、マニホール
ド内面C二側熱性及び耐薬品性の優れた第3の絶縁部材
を被覆するとさら5二好適である。
In order to achieve the above object, the present invention provides an integral structure in which a first insulating member having a protrusion having excellent heat resistance and chemical resistance is fixed to the end face I of the manifold that comes into contact with the side surface of the battery stack. , is characterized in that the protrusion is brought into contact with the side surface of the battery stack via the second insulating member. In addition, it is more preferable to cover the inner surface of the manifold with a third insulating member having excellent heat resistance and chemical resistance.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の燃料電池の一実施例を図面を参照して説明
する。第2図において、単位電池叫は電解質を含浸した
マトリックスC11)を境にして、この両側にアノード
′電極及びカンード電極に相当する多孔質の電極(燭、
  (12a)を夫々配設する。これら両電極(12J
、(12a)は多孔質な炭素部材から形成され、マトリ
ックス(11)に接する側に触媒層が形成されている0
まだ両電極(la、  (12a)の夫々マトリックス
(11)側と反対側には夫々リプ(ロ)、  (15a
)を有するプレート状g二形成されたインターコネクタ
(ホ)を配設する。そして、インターコネクタ(至)の
夫々電極(満+  (12a) l二接する側5二はリ
ブ邸)、 (15a)が互8二直交するように形成され
るととも(二、これらのリプ(15) +  (15a
 )の夫々の間(二tri#’j07)、  (17a
)が形成される0これらの!(17)、  (17a)
は夫々燃料ガス及び酸化剤ガスを供給するための通路と
なっている。このようにして形成された単位電池叫を必
要な個数だけ積場し、上部及び下部には電力をとり出す
端子となる集電板(至)を配置し、これを史6二図示し
ない締付板で適当な圧力を二締付けて電池積層体−を形
成する。なお集電板Hca接しているインターコネクタ
@)櫨二はリブに)及び溝(17)だけ形成されている
An embodiment of the fuel cell of the present invention will be described below with reference to the drawings. In FIG. 2, the unit cell has an electrolyte-impregnated matrix C11) as its boundary, and porous electrodes (candles,
(12a) are respectively arranged. Both electrodes (12J
, (12a) is formed from a porous carbon member, and a catalyst layer is formed on the side in contact with the matrix (11).
There are still electrodes (la) and (15a) respectively on the matrix (11) side and the opposite side of both electrodes (la, (12a)).
) A plate-shaped interconnector (e) is provided. Then, each electrode of the interconnector (12a) and (15a) are formed so that they are perpendicular to each other (2). 15) + (15a
) between each of (two tri#'j07), (17a
) are formed 0 these! (17), (17a)
serve as passages for supplying fuel gas and oxidant gas, respectively. The necessary number of unit batteries formed in this way are placed in a storage area, and current collector plates (to) that serve as terminals for extracting electric power are placed at the top and bottom, and these are tightened with screws (not shown). Tighten the plates with appropriate pressure to form a battery stack. Note that only the interconnector in contact with the current collector plate (Hca) and the groove (17) are formed in the rib.

第3図において、電池積ノ一体(社)は、両端の集電板
(1呻に夫々絶縁板1211を介して締付板(財)を締
付部材(図示しない)によって適当な押圧力となるよう
に締付けて一体C二形成される。また、図示しないが電
池積層体(財)の側面5二夫々対向してマニホールド劉
が取付けられ、一方供給されてインターコネクターの溝
を通った燃料ガスは対向した側のマニホールドから排出
される。酸化剤ガス側についても同様である。
In Fig. 3, Battery Manufacturing Co., Ltd. applies an appropriate pressing force to the current collector plates (1211) at both ends using a tightening member (not shown) via an insulating plate 1211, respectively. They are tightened so that the two are integrally formed.Furthermore, although not shown, manifolds are attached to face each side of the battery stack (goods), and the fuel gas that is supplied and passed through the grooves of the interconnector is attached. is discharged from the opposite manifold. The same goes for the oxidant gas side.

再び第3図において、何れか一方のマニホールド188
)が電池積層体(社)の一方の側面(二当接し、図面の
正面側のマニホールドは除去した状態を示している。こ
のマニホールド(財))の端部周辺1−設けられる絶縁
部材(財)は絶縁バッキングvJ+と当接して絶縁及び
気密を保持している。なおマニホールド−)に′#4斜
して取付られた紬旬部材僻)は図示しない互(二隣接し
たマニホールドの締付部材と夫々の孔(27a)に例え
ばスタッドを挿入して締付けることによって、電池槓J
一体(ロ))の全側面にマニホールドを押圧するよう5
二して固着している。なお、マニホールド−)の頂部に
ガスを供給あるいは排出するパイプの取付口(23a)
が設けられている。
Referring again to FIG. 3, either one of the manifolds 188
) is in contact with one side (2) of the battery stack (incorporated), and the manifold on the front side of the drawing has been removed. ) is in contact with the insulating backing vJ+ to maintain insulation and airtightness. It should be noted that the slanting member (not shown) attached to the manifold (2) can be tightened with the tightening member (not shown) of two adjacent manifolds by inserting, for example, a stud into each hole (27a) and tightening. Battery hammer J
5. Press the manifold against all sides of the unit (b)).
Second, it is stuck. In addition, the installation port (23a) of the pipe that supplies or discharges gas to the top of the manifold (23a)
is provided.

#g4図において、マニホールド(財))は金属部材例
えばステンレス部拐からなり、中央(二四部を、また周
辺を内側に折り返えし端部−)を形成し、頂部にはバイ
ブの取付口(23a)を設ける。端部(財))の電池積
層体に))と対向する面fニテフロン樹脂(商品名)の
ような耐熱性及び耐薬品性1優れた絶縁部材から形成さ
れた突起部(25a)を有する絶縁部材に)を固着する
。そして、この絶縁部材(財))に対向して位置するよ
う(二電池積層体(財))の側面全周f二わたりシート
状の絶縁バッキング@)を装着する。この絶縁バッキン
グ@Ijに絶縁部材(ロ))の突起部(25a)を当接
し、前述のよう1ユしてマニホールド(28)を締付は
押圧して電池積層体(社)f二接合させる。
In Figure #g4, the manifold (Incorporated) is made of a metal member, such as a stainless steel part, and has a central part (24 parts, and an end part by folding the periphery inward), and a vibrator is attached to the top part. A mouth (23a) is provided. An insulator having protrusions (25a) formed from an insulating material with excellent heat resistance and chemical resistance 1 such as Niteflon resin (trade name) such as Niteflon resin (trade name) ) to the member. Then, a sheet-like insulating backing @) is attached to the entire side surface f of the two-battery laminate (product) so as to be located opposite to this insulating member (product). The protrusion (25a) of the insulating member (b) is brought into contact with this insulating backing @Ij, and the manifold (28) is tightened and pressed as described above to join the battery laminate (F). .

このようf二絶縁部材(25)を配設すること11より
、電池の運転温度である170℃ないし200℃のよう
な高温度においても、絶縁部材(25)と絶縁バッキン
グ(財))との当接部分において、両者の熱膨張係数の
相異は極めて少ないため、熱膨張収縮に伴なう従来のよ
うな不具合いは発生しない。したがって経時変化口伴う
従来のような絶縁バッキングの損傷を防ぎ、絶縁性及び
気密性が低下するというおそれを全く除くことができる
By arranging the insulating member (25) in this way, even at high temperatures such as 170°C to 200°C, which is the operating temperature of the battery, the insulating member (25) and the insulating backing Since there is very little difference in the coefficient of thermal expansion between the two in the abutting portion, the problems that occur in the conventional case due to thermal expansion and contraction do not occur. Therefore, it is possible to prevent the conventional insulating backing from being damaged due to deterioration over time, and to completely eliminate the risk of deterioration in insulation and airtightness.

さらC二、マニホールド(財))の凹部内壁全面(二わ
たり、耐熱性及び耐薬品性の優れた絶縁部材−、例えば
テフロンコーティングを被接する。このよう1ニマニホ
ールド■)の内壁にテフロンコーティングを施すことじ
よって、りん酸蒸気によるマニホールド−)内壁の腐食
を防止することができる。
Furthermore, C2, apply Teflon coating to the entire inner wall of the concave part of the manifold (Insulating material with excellent heat resistance and chemical resistance, for example, Teflon coating. In this way, apply Teflon coating to the inner wall of the concave part of the manifold (I)). By doing so, corrosion of the inner wall of the manifold due to phosphoric acid vapor can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上欧明したように本発明の燃料電池によれば、マニホ
ールドと電池積層体との接合部分において、絶縁バッキ
ングを損傷することなく、またマニホールド内壁の腐食
を防止して長期(二わたり信頼性を向上させることがで
きる。
As explained above, according to the fuel cell of the present invention, the insulating backing is not damaged at the joint between the manifold and the cell stack, and corrosion of the manifold inner wall is prevented, thereby achieving long-term reliability. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池i二おけるマニホールドの接合
状態を示す部分断面図。 第2図は通常の燃料’に池の単位電池を積層した状態を
示す斜視図。 第3図は本発明の燃料電池のマニホールドを取付けた状
態を示す9111面図。 P、4図は第3図のマニホールドの接合状態を示す部分
断面図、 である。 翰・・・単位電池    (11)・・・マトリックス
(胸、  (12a)・・・1を極  (財)八 (1
5a)・・・リブQηt  (17a)・・・溝   
(至)・・・集電板(財)・・・電池積層体   (財
))・・・マニホールド(財)、(2)j・・・絶縁部
材  (25a)・・・突起部(財)・・・絶縁バッキ
ング (至))用端部第  1 図
FIG. 1 is a partial cross-sectional view showing how the manifolds are connected in a conventional fuel cell. FIG. 2 is a perspective view showing a state in which a pond unit cell is stacked on a normal fuel. FIG. 3 is a 9111 side view showing the state in which the manifold of the fuel cell of the present invention is attached. FIG. 4 is a partial sectional view showing the joined state of the manifold in FIG. 3. Kan... Unit battery (11)... Matrix (chest, (12a)... 1 as pole (goods) 8 (1
5a)...Rib Qηt (17a)...Groove
(To)...Current plate (goods)...Battery laminate (goods))...Manifold (goods), (2)j...Insulating member (25a)...Protrusions (goods)・・・End part for insulation backing (to) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)  i数個の単位電池を積lねて形成した電池積
層体の側面にマニホールドを絶縁及び気密を保持して装
着してなるものにおいて、前記電池積層体側面と対向す
る前記マニホールド端@を面に突起部を有する耐熱性及
び耐薬品性の優れた第1の絶縁部材を固着するとともに
、第2の絶縁部材を介して前記電池積層体側面(二気密
に当接するようにしたことを特徴とする燃料電池。
(1) In a device in which a manifold is insulated and airtightly attached to the side surface of a battery stack formed by stacking several unit batteries, the manifold end facing the side surface of the battery stack A first insulating member with excellent heat resistance and chemical resistance having a protrusion on the surface is fixed, and a second insulating member is interposed between the sides of the battery stack (the two are in airtight contact with each other). Characteristic fuel cells.
(2)マニホールドの内面(1耐熱性及び耐薬品性の優
れた絶縁部材を被覆した特許請求の範囲第1項記載の燃
料電池。
(2) The inner surface of the manifold (1) The fuel cell according to claim 1, which is coated with an insulating member having excellent heat resistance and chemical resistance.
JP57136315A 1982-08-06 1982-08-06 Fuel cell Granted JPS5927470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136315A JPS5927470A (en) 1982-08-06 1982-08-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136315A JPS5927470A (en) 1982-08-06 1982-08-06 Fuel cell

Publications (2)

Publication Number Publication Date
JPS5927470A true JPS5927470A (en) 1984-02-13
JPH0160901B2 JPH0160901B2 (en) 1989-12-26

Family

ID=15172330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136315A Granted JPS5927470A (en) 1982-08-06 1982-08-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5927470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985300B2 (en) 2014-11-05 2018-05-29 Toyota Jidosha Kabushiki Kaisha Insulator and fuel cell device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985300B2 (en) 2014-11-05 2018-05-29 Toyota Jidosha Kabushiki Kaisha Insulator and fuel cell device

Also Published As

Publication number Publication date
JPH0160901B2 (en) 1989-12-26

Similar Documents

Publication Publication Date Title
US6946212B2 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
JP3465379B2 (en) Solid polymer electrolyte fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
US5858569A (en) Low cost fuel cell stack design
US6322919B1 (en) Fuel cell and bipolar plate for use with same
JP3460346B2 (en) Solid polymer electrolyte fuel cell
US8105731B2 (en) Fuel cell system
JPH08167424A (en) Solid high polymer electrolyte fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JPH1012262A (en) Solid high polymer electrolyte fuel cell
JP2001202984A (en) Solid-polymer fuel cell stack
JPH08185875A (en) Sealing method for solid high molecular fuel cell
JPS5927470A (en) Fuel cell
JPH10270066A (en) Fuel cell
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPS63128562A (en) Fuel cell
JPS6398965A (en) Fuel cell
JP2021514522A (en) Fuel cell cell and fuel cell stack containing it
JPH06333581A (en) Solid poly electrolyte fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH06196198A (en) Solid electrolyte type fuel cell
US20240136542A1 (en) Graphite metal composites for fuel cell bipolar plates
JP3496819B2 (en) Polymer electrolyte fuel cell