JPS592729B2 - Manufacturing method of cubic boron nitride solids - Google Patents

Manufacturing method of cubic boron nitride solids

Info

Publication number
JPS592729B2
JPS592729B2 JP56098266A JP9826681A JPS592729B2 JP S592729 B2 JPS592729 B2 JP S592729B2 JP 56098266 A JP56098266 A JP 56098266A JP 9826681 A JP9826681 A JP 9826681A JP S592729 B2 JPS592729 B2 JP S592729B2
Authority
JP
Japan
Prior art keywords
sintering
pressure
temperature
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56098266A
Other languages
Japanese (ja)
Other versions
JPS581002A (en
Inventor
龍郎 倉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56098266A priority Critical patent/JPS592729B2/en
Publication of JPS581002A publication Critical patent/JPS581002A/en
Publication of JPS592729B2 publication Critical patent/JPS592729B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、切削工具材として使用する立方晶窒化硼素固
結体を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cubic boron nitride solid for use as a cutting tool material.

本発明は、極めて高い硬度を有する立方晶窒化硼素粉末
または立方晶窒化硼素粉末に高い硬度を有する窒化チタ
ン粉末を加えた混合粉末を主材きし、加水分解し更に加
熱して発生期状態のアルミナ微粉末を生成するアルミニ
ウムエトキシド粉末またはアルミニウムメトキシド粉末
を結合材用素材きし、アルミニウム粉末を結合助材とし
て、これらの主材と結合材用素材き結合助材とを混合し
た混合物を基本原料として使用するものであって、其の
基本原料に水を添加し加熱して基本原料中のアルミニウ
ムエトキシド粉末またはアルミニウムメトキシド粉末を
変成して発生期状態のアルミナ微粉末を生成し、其の生
成したアルミナ微粉末がアルミニウムエトキシド粉末ま
たはアルミニウムメトキシド粉末に代って混合した状態
の混合粉末を直接原料として焼結作業を行って焼結体を
製造することを特徴とする硬質工具材として使用する立
方晶窒化硼素固結体の製造法であって、立方晶窒化硼素
粉末または立方晶窒化硼素粉末と窒化チタン粉末との混
合粉末を発生期状態のアルミナ微粉末とアルミニウム粉
末との混合粉末をもって結合することによって、生産性
の高い切削作業を行うことのできる切削工具材として使
用する立方晶窒化硼素固結体を製造する有効な方法を提
供することを目的きするものである。
The present invention uses cubic boron nitride powder with extremely high hardness or a mixed powder of cubic boron nitride powder and titanium nitride powder with high hardness as the main material, hydrolyzes it, and then heats it to form a nascent state. Aluminum ethoxide powder or aluminum methoxide powder, which produces fine alumina powder, is used as a binder material, and aluminum powder is used as a bonding aid, and a mixture of these main materials and the binder material and bonding aid is prepared. Used as a basic raw material, water is added to the basic raw material and heated to transform the aluminum ethoxide powder or aluminum methoxide powder in the basic raw material to produce fine alumina powder in a nascent state; A hard tool characterized in that a sintered body is produced by directly performing a sintering operation using a mixed powder in which the produced fine alumina powder is mixed instead of aluminum ethoxide powder or aluminum methoxide powder as a raw material. A method for producing cubic boron nitride solids to be used as a material, the method comprising combining cubic boron nitride powder or a mixed powder of cubic boron nitride powder and titanium nitride powder with nascent fine alumina powder and aluminum powder. The object of the present invention is to provide an effective method for manufacturing cubic boron nitride solids to be used as cutting tool materials that can perform cutting operations with high productivity by bonding together mixed powders.

次に、本発明の方法によって硬質工具材とする立方晶窒
化硼素固結体を製造する工程と作用きについて説明する
Next, the process and operation of manufacturing a cubic boron nitride solid body to be used as a hard tool material by the method of the present invention will be explained.

立方晶窒化硼素固結体を製造する方法に第1の方法と第
2の方法とがある。
There are a first method and a second method for manufacturing a cubic boron nitride solid body.

其の第1の方法によって製造を行う場合は、基本原料に
、立方晶窒化硼素粉末を40重量部乃至60重量部と、
アルミニウムエトキシド粉末を171重量部乃至102
重量マたはアルミニウムメトキシド粉末を125重量部
乃至74重量部と、アルミニウム粉末を10重量部との
割合範囲内より選定した割合にて混合した混合物を使用
し、其の基本原料に水を添加して基本原料中のアルミニ
ウムエトキシド粉末またはアルミニウムメトキシド粉末
を加水分解させ、続いて加熱して蒸発分を排除して発生
期状態のアルミナ微粉末を生成し、其の生成した発生期
状態のアルミナ微粉末が立方晶窒化硼素粉末きアルミニ
ウム粉末とに混合した状態を生成し、其の状態の混合物
を直接原料として使用する。
When manufacturing by the first method, 40 parts by weight to 60 parts by weight of cubic boron nitride powder is added to the basic raw materials,
171 parts by weight to 102 parts by weight of aluminum ethoxide powder
A mixture of 125 parts by weight to 74 parts by weight of aluminum methoxide powder and 10 parts by weight of aluminum powder is used, and water is added to the basic raw materials. to hydrolyze the aluminum ethoxide powder or aluminum methoxide powder in the basic raw material, and then heat to remove the evaporated content to produce fine alumina powder in the nascent state. A state in which fine alumina powder is mixed with cubic boron nitride powder and aluminum powder is produced, and the mixture in this state is directly used as a raw material.

其の第2の方法によって製造を行う場合は、其の基本原
料に、立方晶窒化硼素粉末を40重量部乃至60重量部
と窒化チタン粉末を30重量部乃至20重量部き、アル
ミニウムエトキシド粉末を68重量部乃至34重量部ま
たはアルミニウムメトキシド粉末を49重量部乃至25
重量部と、アルミニウム粉末を10重量部との割合範囲
内より選定した割合にて混合した混合物を使用し、其の
基本原料に水を添加して基本原料中のアルミニウムエト
キシド粉末またはアルミニウムメトキシド粉末を加水分
解させ、続いて加熱して、蒸発分を排除して発生期状態
のアルミナ微粉末を生成し、其の生成した発生期状態の
アルミナ微粉末が立方晶窒化硼素粉末と窒化チタン粉末
とアルミニウム粉末きに混合した状態を生成し、其の状
態の混合物を直接原料として使用する。
When manufacturing by the second method, the basic raw materials include 40 parts by weight to 60 parts by weight of cubic boron nitride powder, 30 parts by weight to 20 parts by weight of titanium nitride powder, and aluminum ethoxide powder. 68 parts by weight to 34 parts by weight or 49 parts by weight to 25 parts by weight of aluminum methoxide powder
parts by weight and 10 parts by weight of aluminum powder, and water is added to the basic raw material to form aluminum ethoxide powder or aluminum methoxide in the basic raw material. The powder is hydrolyzed and subsequently heated to eliminate the evaporated content to produce nascent alumina fine powder, and the resulting nascent alumina fine powder is transformed into cubic boron nitride powder and titanium nitride powder. A mixture of aluminum powder and aluminum powder is produced, and this mixture is used directly as a raw material.

上記した第1の方法において使用する直接原料を焼結す
る作業と第2の方法において使用する直接原料を焼結す
る作業とは同じ焼結作業により行う。
The operation of sintering the direct raw material used in the first method described above and the operation of sintering the direct raw material used in the second method are performed by the same sintering operation.

其の焼結作業は予備焼結作業と本焼結作業との2段階に
て行い、其の予備焼結作業において使用する予備焼結用
温度き予備焼結用温度吉1,200℃乃至1,400℃
の範囲内の温度と41,000℃kg/ffl乃至43
.000に9/に11tの範囲内の圧力とより選定し、
其の本焼結作業において使用する本焼結用温度と本焼結
用圧力とに1.400℃乃至1,600℃の範囲内の温
度と43.00 okg/=乃至50.000 kg/
iの範囲内の圧力とを選定し、しかも、立方晶窒化硼素
の安定なる温度圧力条件を満足する相関関係にある本焼
結用温度と本焼結用圧力とを選定する。
The sintering work is performed in two stages: preliminary sintering work and main sintering work, and the pre-sintering temperature used in the preliminary sintering work is 1,200℃ to 1. ,400℃
Temperature within the range of 41,000℃kg/ffl to 43
.. Pressure within the range of 000 to 9/to 11t,
The main sintering temperature and main sintering pressure used in the main sintering work are within the range of 1.400°C to 1,600°C and 43.00 ok/= to 50.000 kg/
In addition, the temperature for main sintering and the pressure for main sintering are selected in a correlation that satisfies the stable temperature and pressure conditions for cubic boron nitride.

次いで、高温高圧発生室内に装填した容器内の直接原料
を焼結する作業を始めるに邑り、先づ、その容器内の直
接原料に選定した予備焼結用圧力を加える。
Next, to start the work of sintering the direct raw material in the container loaded into the high temperature and high pressure generating chamber, first, the selected pre-sintering pressure is applied to the direct raw material in the container.

続いて、其の予備焼結用圧力を加えた状態にある直接原
料を徐々に加熱して選定した予備焼結用温度を保持する
ために必要な加熱を10分間乃至50分間持続する。
Subsequently, the raw material under presintering pressure is gradually heated and the heating necessary to maintain the selected presintering temperature is maintained for 10 to 50 minutes.

この予備焼結作業を加えられた直接原料においては、其
の直接原料中の酸化アルミニウム微粉末とアルミニウム
粉末との混合粉末または酸化アルミニウム微粉末と窒化
チタン粉末とアルミニウム粉末との混合粉末が立方晶窒
化硼素粒子の多数個より成る集合体における個々の立方
晶窒化硼素粒子の間に、海綿状構造を成した液相含有不
完全燃焼組織体が充塞した状態を生成する。
In the direct raw material that has been subjected to this preliminary sintering operation, the mixed powder of fine aluminum oxide powder and aluminum powder or the mixed powder of fine aluminum oxide powder, titanium nitride powder, and aluminum powder in the direct raw material has a cubic crystal structure. A state is created in which the individual cubic boron nitride particles in an aggregate consisting of a large number of boron nitride particles are filled with a liquid phase-containing incompletely combusted tissue having a spongy structure.

次いで、加えていた予備焼結用圧力を強めて選定した本
焼結用圧力にまで昇圧する。
Next, the pre-sintering pressure that had been applied is increased to the selected main sintering pressure.

続いて、予備焼結用温度を保持するために加えていた加
熱を強めて選定した本焼結用温度にまで昇温して、其の
本焼結用温度を10分間乃至50分間持続する。
Subsequently, the heating applied to maintain the preliminary sintering temperature is increased to the selected main sintering temperature, and the main sintering temperature is maintained for 10 to 50 minutes.

この本焼結作業を加えられた容器内においては、前工程
の予備焼結作業において生成した海綿状構造の液相含有
不完全焼結組織体が、本焼結用温度と本焼結用圧力きの
もとに曝らされて液相含有完全燃焼組織体を生成すると
共に其の生成した液相含有完全焼結組織体が、個々の立
方晶窒化硼素粒子に結合した状態を生成する。
In the container subjected to this main sintering operation, the incompletely sintered tissue containing a liquid phase with a spongy structure generated in the preliminary sintering operation in the previous step is heated at the main sintering temperature and the main sintering pressure. The liquid phase-containing completely sintered structure is exposed to heat to produce a liquid-phase-containing completely sintered structure, and the resulting liquid-phase-containing completely sintered structure is bonded to individual cubic boron nitride particles.

次いで、加えていた本焼結用圧力は保持したままで、加
熱のみを停止して、更に、高温高圧発生室を冷却して、
其の室内の温度を300℃にまで降温する。
Next, while maintaining the applied main sintering pressure, only the heating was stopped, and the high temperature and high pressure generation chamber was further cooled.
The temperature inside the room is lowered to 300°C.

この冷却作業によって容器内においては、立方晶窒化硼
素粒子の多数個より成る集合体における個々の立方晶窒
化硼素粒子の間に充塞していた海綿状構造の液相含有完
全焼結組織体が冷却されて、海綿状構造の固相完全焼結
組織体を生成すると共に其の固相完全焼結組織体が個々
の立方晶窒化硼素粒子に焼結した状態を生成する。
Through this cooling process, the completely sintered structure containing a liquid phase with a spongy structure, which was filled between the individual cubic boron nitride particles in the aggregate consisting of a large number of cubic boron nitride particles, is cooled inside the container. This produces a solid state fully sintered body with a spongy structure, and the solid state fully sintered body is sintered into individual cubic boron nitride particles.

この状態における固相完全焼結組織体は、第1の方法に
おける基本原料を使用した場合はアルミニウムエトキシ
ド粉末またはアルミニウムメトキシド粉末を加水分解し
て更に加熱して揮発分を排除して得られるアルミナ微粉
末とアルミニウム粉末より成る固相完全焼結組織体であ
って、第2の方法における基本原料を使用した場合は、
アルミニウムエトキシド粉末またはアルミニウムメトキ
シド粉末を加水分解して更に加熱して揮発分を排除して
得られるアルミナ微粉末と窒化チタン粉末とアルミニウ
ム粉末とより成る固相完全焼結組織体である。
A solid-phase completely sintered structure in this state can be obtained by hydrolyzing aluminum ethoxide powder or aluminum methoxide powder and further heating to remove volatile components when using the basic raw materials in the first method. In the case of a solid phase completely sintered structure consisting of fine alumina powder and aluminum powder, and using the basic raw materials in the second method,
It is a solid phase completely sintered structure consisting of fine alumina powder, titanium nitride powder, and aluminum powder obtained by hydrolyzing aluminum ethoxide powder or aluminum methoxide powder and further heating to remove volatile components.

次いで、保持していた本焼結用圧力を常圧にもどして、
高温高圧発生室内より容器を押し出して、其の容器内よ
り焼結体を取り出す。
Next, the main sintering pressure that had been maintained was returned to normal pressure,
The container is pushed out from inside the high temperature and high pressure generation chamber, and the sintered body is taken out from inside the container.

取り出、して得られる焼結体は、立方晶窒化硼素粒子の
多数個より成る集合体における個々の立方晶窒化硼素粒
子の間に、アルミナ微粉末とアルミニウム粉末との混合
粉末より生成した固相完全焼結組織体である結合材領域
またはアルミナ微粉末と窒化チタン粉末とアルミニウム
粉末との混合粉末より生成した固相完全焼結組織体であ
る結合材領域を備えていて、其の結合材領域である固相
完全焼結組織体が、立方晶窒化硼素粒子の多数個より成
る集合体における個個の立方晶窒化硼素粒子を結合して
構成した切削工具材として使用できる立方晶窒化硼素固
結体である。
The obtained sintered body contains solid particles formed from a mixed powder of fine alumina powder and aluminum powder between individual cubic boron nitride particles in an aggregate consisting of a large number of cubic boron nitride particles. A binder region is a phase completely sintered structure or a binder region is a solid phase completely sintered structure produced from a mixed powder of fine alumina powder, titanium nitride powder, and aluminum powder, A cubic boron nitride solid that can be used as a cutting tool material is formed by bonding individual cubic boron nitride particles in an aggregate consisting of a large number of cubic boron nitride particles. It is a body.

次に、本発明により立方晶窒化硼素固結体を製造する実
施例について説明する。
Next, an example of manufacturing a cubic boron nitride solid body according to the present invention will be described.

実施例 1 基本原料には、立方晶窒化硼素粉末を50重量部き、ア
ルミニウムエトキシド粉末を136重i部と、アルミニ
ウム粉末を10重量部との割合にて混合した混合粉末を
使用した。
Example 1 As a basic raw material, a mixed powder was used in which 50 parts by weight of cubic boron nitride powder, 136 parts by weight of aluminum ethoxide powder, and 10 parts by weight of aluminum powder were mixed.

其の基本原料である混合粉末に水を添加して其の混合粉
末中のアルミニウムエトキシドを加水分解させて水酸化
アルミニウムを生成し、次いで、其の生成した水酸化ア
ルミニウムが立方晶窒化硼素粉末きアルミニラム粉末と
に混合した状態を生成し、続いて、斯様な状態を成した
混合物を加熱して、水酸化アルミニウムを発生期状態の
微粉状アルミナと成すと共に其の加熱により水酸化アル
ミニウムより発生した水分と混合物中に混合していた水
分とを分離して、其の生成した発生期状態のアルミナ微
粉末が立方晶窒化硼素粉末とアルミニウム粉末とに混合
した状態を生成し、其の状態の混合物を焼結作業に使用
する直接原料とした。
Water is added to the mixed powder, which is its basic raw material, to hydrolyze the aluminum ethoxide in the mixed powder to produce aluminum hydroxide, and then the produced aluminum hydroxide is converted into cubic boron nitride powder. The resulting mixture is then heated to convert the aluminum hydroxide into nascent finely powdered alumina, and the heating further converts the aluminum hydroxide into finely powdered alumina. The generated moisture and the moisture mixed in the mixture are separated, and a state in which the generated alumina fine powder in a nascent state is mixed with cubic boron nitride powder and aluminum powder is produced, and that state is The mixture was used as the direct raw material used in the sintering operation.

斯様にして調製した直接原料を容器内に充填して、其の
容器を高温高圧発生装置における高温高圧発生室内に装
填した。
The raw material directly prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generation chamber in a high temperature and high pressure generation device.

次いで、其の容器内の原料を焼結する作業を予備焼結作
業七本焼結作業さの2段階にて行い、其の予備焼結作業
において使用する予備焼結用温度と予備焼結用圧力とに
1,200℃の温度と41,000kg/cviの圧力
とを選定し、其の本焼結作業において使用する本焼結用
温度と本焼結用圧力とに1.500℃の温度と48.0
00 kg/criの圧力とを選定した。
Next, the work of sintering the raw materials in the container is carried out in two stages: a preliminary sintering operation and a seven-sintering operation. A temperature of 1,200°C and a pressure of 41,000 kg/cvi were selected for the pressure, and a temperature of 1.500°C was selected for the main sintering temperature and the main sintering pressure used in the main sintering work. and 48.0
A pressure of 0.00 kg/cri was selected.

次いで、其の高温高圧発生室内に装填した容器内の直接
原料を焼結する作業を始めるに轟り、先づ、其の直接原
料に選定した予備焼結用圧力41.000 kg/CI
ILを加えた。
Next, the work of sintering the direct raw material in the container loaded into the high-temperature and high-pressure generation chamber started. First, the pre-sintering pressure selected for the direct raw material was 41.000 kg/CI.
Added IL.

続いて、予備焼結用圧力を加えた状態にある直接原料を
徐々に加熱して選定した予備焼結用温度1,200℃に
まで昇温しで、其の予備焼結用温度を保持するに必要な
加熱を25分間持続した。
Next, the direct raw material to which pre-sintering pressure is applied is gradually heated to the selected pre-sintering temperature of 1,200°C, and the pre-sintering temperature is maintained. The required heating was maintained for 25 minutes.

次いで、加えていた予備焼結用圧力を強めて選定した本
焼結用圧力48、000 kg/cvbにまで昇圧した
Next, the pre-sintering pressure that had been applied was increased to the selected main sintering pressure of 48,000 kg/cvb.

容器内の直接原料に加えていた予備焼結用温度における
加熱を強めて選定した本焼結用温度1,500℃にまで
昇温しで、其の本焼結用温度を保持するに必要な加熱を
30分間持続した。
The heating at the preliminary sintering temperature that had been added directly to the raw materials in the container was increased to the selected main sintering temperature of 1,500°C, and the temperature required to maintain the main sintering temperature was increased. Heating was continued for 30 minutes.

次いで、加えていた本焼結用圧力は保持したままで加熱
のみを停止して、更に、高温高圧発生室を外部より水冷
して、其の室内の温度を300℃にまで降温した。
Next, only heating was stopped while maintaining the main sintering pressure that had been applied, and the high temperature and high pressure generation chamber was cooled with water from the outside to lower the temperature inside the chamber to 300°C.

次いで、保持していた本焼結用圧力を常圧にもどして、
高温高圧発生室内より容器を押し出し、其の容器内より
焼結体を取り出した。
Next, the main sintering pressure that had been maintained was returned to normal pressure,
The container was pushed out of the high-temperature, high-pressure generation chamber, and the sintered body was taken out from inside the container.

得られた焼結体は、立方晶窒化硼素粒子の多数個より成
る集合体における個々の立方晶窒化硼素粒子の間に、ア
ルミナ微粉末とアルミニウム粉末との混合粉末より成る
海綿状構造の固相完全焼結組織体である結合材領域を備
えていて、其の結合材領域である海綿状構造の固相完全
焼結組織体が立方晶窒化硼素粒子の多数個より成る集合
体における個々の立方晶窒化硼素粒子を結合して構成し
た切削工具材として使用できる立方晶窒化硼素固結体で
あった。
The obtained sintered body has a solid phase with a spongy structure consisting of a mixed powder of fine alumina powder and aluminum powder between individual cubic boron nitride particles in an aggregate consisting of a large number of cubic boron nitride particles. It has a binder region that is a completely sintered structure, and the binder region, which is a solid state completely sintered structure with a spongy structure, is a solid-phase completely sintered structure having a spongy structure. It was a cubic boron nitride solid that could be used as a cutting tool material and was made by combining crystalline boron nitride particles.

其の組成において立方晶窒化硼素が50重量%とアルミ
ナが40重量%とアルミニウムが10重量%との割合を
成せる立方晶窒化硼素固結体であった。
It was a cubic boron nitride solid whose composition was 50% by weight of cubic boron nitride, 40% by weight of alumina, and 10% by weight of aluminum.

実施例 2 基本原料には、立方晶窒化硼素粉末を60重量部と、ア
ルミニウムメトキシド粉末を75重量部と、アルミニウ
ム粉末を10重量部との割合にて混合した混合粉末を使
用した。
Example 2 As the basic raw material, a mixed powder in which 60 parts by weight of cubic boron nitride powder, 75 parts by weight of aluminum methoxide powder, and 10 parts by weight of aluminum powder were mixed was used.

其の基本原料である混合粉末に水を添加して其の混合粉
末中のアルミニウムメトキシドを加水分解させて水酸化
アルミニウムを生成して、其の生成した水酸化アルミニ
ウムと水きが立方晶窒化硼素粉末とアルミニウム粉末と
に混合した状態を生成し、次いで、其の状態を成した混
合物を加熱して水酸化アルミニウムを発生期状態の微粉
状アルミナと成すと共に其の加熱により水酸化アルミニ
ウムより発生した水、分と混合物中に混合していた水分
とを分離して、其の生成した発生期状態のアルミナ微粉
末が立方晶窒化硼素粉末とアルミニウム粉末とに混合し
た状態を生成し其の状態の混合物を焼結作業に使用する
直接原料とした。
Water is added to the mixed powder, which is the basic raw material, and the aluminum methoxide in the mixed powder is hydrolyzed to generate aluminum hydroxide, and the resulting aluminum hydroxide and water are converted into cubic nitride. A mixed state of boron powder and aluminum powder is produced, and then the mixture formed in that state is heated to form aluminum hydroxide into fine powder alumina in a nascent state, and the heating generates aluminum hydroxide. The water mixed in the mixture is separated from the water mixed in the mixture to form a state in which fine alumina powder in a nascent state is mixed with cubic boron nitride powder and aluminum powder. The mixture was used as the direct raw material used in the sintering operation.

斯様にして調製した直接原料を容器内に充填して、其の
容器を高温高圧発生室内に装填した。
The raw material directly prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generating chamber.

其の高温高圧発生室内に装填した容器内の直接原料を焼
結する作業は実施例1の場合き同様にして行った。
The work of directly sintering the raw material in the container loaded into the high temperature and high pressure generating chamber was carried out in the same manner as in Example 1.

其の焼結作業を終えて得た焼結体は、実施例1において
製造した焼結体と同じ構成を成した切削工具材として使
用できる立方晶窒化硼素固結体であった。
The sintered body obtained after the sintering operation was a cubic boron nitride solid that had the same structure as the sintered body produced in Example 1 and could be used as a cutting tool material.

其の焼結体は立方晶窒化硼素粉末が60重量%とアルミ
ナが30重量%とアルミニウムが10重量%との割合を
成せる立方晶窒化硼素固結体であった。
The sintered body was a cubic boron nitride solid having a ratio of 60% by weight of cubic boron nitride powder, 30% by weight of alumina, and 10% by weight of aluminum.

実施例 3 基本原料には、立方晶窒化硼素粉末を50重量部と、窒
化チタン粉末を20重量部と、アルミニウムエトキシド
粉末を68重量部と、アルミニウム粉末を10重量%と
の割合にて混合した混合粉末を使用した。
Example 3 The basic raw materials were mixed at a ratio of 50 parts by weight of cubic boron nitride powder, 20 parts by weight of titanium nitride powder, 68 parts by weight of aluminum ethoxide powder, and 10% by weight of aluminum powder. A mixed powder was used.

其の基本原料である混合粉末に水を添加して其の基本原
料である混合粉末中のアルミニウムエトキシドを加水分
解させて、水酸化アルミニウムを生成して、其の生成し
た水酸化アルミニウムと水とが立方晶窒化硼素粉末と窒
化チタン粉末とアルミニウム粉末とに混合した状態を生
成し、次いで、其の状態を成した混合物を加熱して、水
酸化アルミニウムを発生期状態の微粉状アルミナと成す
と共に其の加熱により水酸化アルミニウムより発生した
水分と混合物中に混合していた水分とを蒸発分離して、
其の生成した発生期状態のアルミナ微粉末が立方晶窒化
硼素粉末と窒化チタン粉末きアルミニウム粉末とに混合
した状態を生成し其の状態の混合物を焼結作業に使用す
る直接原料きした。
Water is added to the mixed powder, which is the basic raw material, to hydrolyze the aluminum ethoxide in the mixed powder, which is the basic raw material, to generate aluminum hydroxide, and the resulting aluminum hydroxide and water are combined. and forming a mixture of cubic boron nitride powder, titanium nitride powder, and aluminum powder, and then heating the resulting mixture to form aluminum hydroxide into nascent finely powdered alumina. At the same time, the water generated from the aluminum hydroxide and the water mixed in the mixture are evaporated and separated by heating.
The resulting nascent fine alumina powder was mixed with cubic boron nitride powder, titanium nitride powder, and aluminum powder, and the mixture was used as a direct raw material for sintering.

斯様にして調製した直接原料を容器内に充填して、其の
容器を高温高圧発生室内に装填した。
The raw material directly prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generating chamber.

其の高温高圧発生室内に装填した容器内の原料を焼結す
る作業は実施例1の場合と同様にして行った。
The work of sintering the raw material in the container loaded into the high temperature and high pressure generating chamber was carried out in the same manner as in Example 1.

其の焼結作業を終えて得た焼結体は、立方晶窒化硼素粒
子の多数個より成る集合体における個々の立方晶窒化硼
素粒子の間に、窒化チタン粉末とアルミナ微粉末とアル
ミニウム粉末との混合粉末より成る海綿状構造の固相完
全焼結組織体である結合材領域を備えていて、其の結合
材領域である海綿状構造の固相完全焼結組織体が、立方
晶窒化硼素粒子の多数個より成る集合体における個々の
立方晶窒化硼素粒子を結合して構成した切削工具材とし
て使用できる立方晶窒化硼素固結体であった。
The sintered body obtained after completing the sintering process contains titanium nitride powder, fine alumina powder, and aluminum powder between the individual cubic boron nitride particles in an aggregate consisting of a large number of cubic boron nitride particles. The binder region is a solid-phase completely sintered tissue with a spongy structure made of a mixed powder of cubic boron nitride. It was a cubic boron nitride solid that could be used as a cutting tool material, and was made by combining individual cubic boron nitride particles in an aggregate consisting of a large number of particles.

其の組成において立方晶窒化硼素が50重量%と窒化チ
タンが20重量%とアルミナが20重量%とアルミニウ
ムが10重量%との割合を成せる立方晶窒化硼素固結体
であった。
It was a cubic boron nitride solid having a composition of 50% by weight of cubic boron nitride, 20% by weight of titanium nitride, 20% by weight of alumina, and 10% by weight of aluminum.

実施例 4 基本原料には、立方晶窒化硼素粉末を60重量部き、窒
化チタン粉末を20重量部と、アルミニウムメトキシド
粉末を25重量部さ、アルミニウム粉末を10重量部と
の割合にて混合した混合物を使用した。
Example 4 The basic raw materials were mixed at a ratio of 60 parts by weight of cubic boron nitride powder, 20 parts by weight of titanium nitride powder, 25 parts by weight of aluminum methoxide powder, and 10 parts by weight of aluminum powder. The mixture was used.

其の基本原料である混合粉末に水を添加して其の混合粉
末中のアルミニウムメトキシドを加水分解させて水酸化
アルミニウムを生成して、其の生成した水酸化アルミニ
ウムと水とが立方晶窒化硼素粉末と窒化チタン粉末とア
ルミニウム粉末とに混合した状態を生成し、次いで、其
の状態を成した混合物を加熱して、水酸化アルミニウム
を発生期状態の微粉状アルミナと成すと共に、其の加熱
により水酸化アルミニウムより発生した水分と混合物中
に混合していた水分とを分離して、其の生成した発生期
状態のアルミナ微粉末が立方晶窒化硼素粉末と窒化チタ
ン粉末とアルミニウム粉末とに混合した状態を生成し、
其の状態の混合物を焼結作業において使用する直接原料
とした。
Water is added to the mixed powder, which is the basic raw material, and aluminum methoxide in the mixed powder is hydrolyzed to produce aluminum hydroxide, and the resulting aluminum hydroxide and water form cubic nitridation. Producing a mixed state of boron powder, titanium nitride powder, and aluminum powder, and then heating the resulting mixture to form aluminum hydroxide into fine powder alumina in a nascent state, and heating it. The water generated from aluminum hydroxide and the water mixed in the mixture are separated, and the resulting fine alumina powder in a nascent state is mixed with cubic boron nitride powder, titanium nitride powder, and aluminum powder. generate the state,
The mixture in that state was used as the direct raw material used in the sintering operation.

斯様にして調製した直接原料を容器内に充填して其の容
器を高温高圧発生室内に装填した。
The raw material directly prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generation chamber.

其の高温高圧発生室内に装填した容器内の直接原料を焼
結する作業は実施例3の場合と同様にして行った。
The work of directly sintering the raw material in the container loaded into the high temperature and high pressure generating chamber was carried out in the same manner as in Example 3.

其の焼結作業を終えて得た焼結体は、実施例3において
製造した焼結体と同じ構成を成したが切削工具材として
使用できる立方晶窒化硼素固結体であった。
The sintered body obtained after the sintering operation had the same structure as the sintered body produced in Example 3, but was a cubic boron nitride solid that could be used as a cutting tool material.

其の焼結体は立方晶窒化硼素が60重量%と窒化チタン
が20重量%とアルミナが10重量%とアルミニウムが
10重量%七の割合を成せる立方晶窒化硼素固結体であ
った。
The sintered body was a cubic boron nitride solid containing 60% by weight of cubic boron nitride, 20% by weight of titanium nitride, 10% by weight of alumina, and 10% by weight of aluminum.

以上に説明した実施例により製造した立方晶窒化硼素固
結体より成るチップと、炭化タングステン粉末をコバル
トにて焼結した炭化タングステン焼結体より成るチップ
とを使用して切削作業を行った場合の実績は次の如くで
あった。
When cutting work is performed using a tip made of a cubic boron nitride solidified body manufactured according to the example described above and a tip made of a tungsten carbide sintered body made by sintering tungsten carbide powder with cobalt. The results were as follows.

クロム工具鋼材を成形加工して焼き入れした輪状体を外
径52ミリ、幅15ミリのコロ軸受用外輪に切削する作
業において、炭化タングステン焼結体より成るチップを
使用した場合は、一回の研磨にて26個切削できたのに
対し、立方晶窒化硼素固結体より成るチップを使用した
場合は、一回の研磨にて、実施例1の場合のチップでは
1,728個切削でき、実施例2の場合のチップでは1
,762個切削でき、実施例3の場合のチップでは1,
710個切削でき、実施例4の場合のチップでは1,7
45個切削できた。
When cutting a ring-shaped body formed and hardened from chrome tool steel into an outer ring for a roller bearing with an outer diameter of 52 mm and a width of 15 mm, if a tip made of sintered tungsten carbide is used, While 26 pieces could be cut by polishing, when a tip made of cubic boron nitride solids was used, 1,728 pieces could be cut with the tip of Example 1 in one polishing. In the case of the chip in Example 2, 1
, 762 pieces can be cut, and the tip of Example 3 can cut 1,
It is possible to cut 710 pieces, and the tip of Example 4 can cut 1.7 pieces.
I was able to cut 45 pieces.

この切削実験により明らかなように、炭化タングステン
焼結体より成るチップに比較して立方晶窒化硼素固結体
より成るチップは著しく高い生産性を実現することがで
きた。
As is clear from this cutting experiment, compared to chips made of sintered tungsten carbide, chips made of cubic boron nitride solids were able to achieve significantly higher productivity.

Claims (1)

【特許請求の範囲】 1 立方晶窒化硼素粉末を40重量部乃至60重量部ト
、アルミニウムエトキシド粉末を171重量部乃至10
2重量部または、アルミニウムメトキシド粉末を125
重量部乃至74重量部と、アルミニウム粉末を10重量
部との割合範囲内より選定した割合にて混合した混合物
を基本原料とし、其の基本原料に水を添加し、続いて、
加熱して其の基本原料中のアルミニウムエトキシドまた
はアルミニウムメトキシドを変成して生成したアルミナ
粉末が、立方晶窒化硼素粉末さアルミニウム粉末とに混
合した状態を形成させ、その状態の混合物を直接原料と
し、其の直接原料を容器内に充填し、其の容器を高温高
圧発生室内に装填し、次いで、其の容器内に充填した直
接原料を焼結する作業を予備焼結作業と本焼結作業との
2段階にて行い、其の予備焼結作業において使用する予
備焼結用温度と予備焼結用圧力とに1,200℃乃至1
.400℃の範囲内の温度と41.000 kg/cI
IL乃至43,000kg/cviとの範囲内の圧力と
を選定し、其の本焼結作業において使用する本焼結用温
度と本焼結用圧力とに1,400℃乃至1,600℃の
範囲内の温度と43.000 kg/C11を乃至50
,000kg /crAの範囲内の圧力きを選定し、し
かも、立方晶窒化硼素の安定なる温度圧力条件を満足す
る相関関係にある本焼結用温度と本焼結用圧力とを選定
し、次いで、高温高圧発生室内に装填した容器内の直接
原料を焼結する作業を始めるに当り、先づ、選定した予
備焼結用圧力を加え、続いて、其の予備焼結用圧力を加
えた状態にある直接原料を徐々に加熱して選定した予備
焼結用温度にまで昇温し、其の予備焼結用温度を保持す
るに必要な加熱を10分間乃至50分間持続し、次いで
、加えていた圧力を強めて選定した本焼結用圧力にまで
昇圧し、続いて、予備焼結用温度を保持するために加え
ていた加熱を強めて選定した本焼結用温度にまで昇温し
、其の本焼結用温度を保持するために必要な加熱を10
分間乃至50分間持続し、次いで、加えていた本焼結用
圧力は保持したままで、加熱のみを停止し、更に、高温
高圧発生室を冷却して、其の室内の温度を300℃にま
で降温し、次いで、保持していた本焼結用圧力を常圧に
までもどし、次いで、高温高圧発生室内より焼結体を取
り出すことを特徴とする立方晶窒化硼素固結体の製造法
。 2 立方晶窒化硼素粉末を40重量部乃至60重量部と
、窒化チタン粉末を30重量部乃至20重量部ト、アル
ミニウムエトキシド粉末を68重量部乃至34重量部ま
たはアルミニウムメトキシド粉末を49重量部乃至25
重量部とアルミニウム粉末を10重量部との割合範囲内
より選定した場合にて混合した混合物を基本原料とし、
其の基本原料に水を添加し、続いて、加熱して、其の基
本原料中のアルミニウムエトキシドまたはアルミニウム
メトキシドが変成して生成したアルミナ粉末が立方晶窒
化硼素粉末と窒化チタン粉末とアルミニウム粉末とに混
合した状態を生成させ、其の状態の混合物を直接原料と
し、其の直接原料を容器内に充填し、其の容器を高温高
圧発生室内に装填し、次いで其の容器内に充填した直接
原料を焼結する作業を予備焼結作業と本焼結作業との2
段階にて行い、其の予備焼結作業において使用する予備
焼結用温度と予備焼結用圧力とを1,200乃至1.4
00℃の範囲内の温度き41.000 ky/i乃至4
3.000 kg/antの範囲内の圧力とより選定し
、其の本焼結作業において使用する本焼結用温度と本焼
結用圧力とを1.400℃乃至1,600℃の範囲内の
温度と43,000に、p/cI?L乃至50,000
kg/cyyYの範囲内の圧力とより選定し、しかも、
立方晶窒化硼素の安定なる温度圧力条件を満足する相関
関係にある本焼結用温度と本焼結用圧力きを選定し、次
いで、高温高圧発生室内に装填した容器内の直接原料を
焼結する作業を始めるに肖り、先づ、選定した予備焼結
用圧力を加え、続いて、予備焼結用圧力を加えた状態に
ある直接原料を除徐に加熱して選定した予備焼結用温度
にまで昇温し、其の予備焼結用温度を保持するに必要な
加熱を10分間乃至50分間持続し、次いで、加えてい
た圧力を強めて選定した本焼結用圧力にまで昇圧し、続
いて、予備焼結用温度を保持するために加えていた加熱
を強めて選定した本焼結用温度にまで昇温し、其の本焼
結用温度を保持するために必要な加熱を10分間乃至5
0分間持続し、次いで、加えていた本焼結用圧力は保持
したままで加熱のみを停止し、更に、高温高圧発生室を
冷却して其の室内の温度を300℃にまで降温し、次い
で、保持していた本焼結用圧力を常圧にもどし、次いで
、高温高圧発生室内より焼結体を取り出すことを特徴と
する立方晶窒化硼素固結体の製造法。
[Claims] 1. 40 to 60 parts by weight of cubic boron nitride powder and 171 to 10 parts by weight of aluminum ethoxide powder.
2 parts by weight or 125 parts of aluminum methoxide powder
The basic raw material is a mixture of 74 parts by weight and 10 parts by weight of aluminum powder, water is added to the basic raw material, and then,
The alumina powder produced by heating and modifying the aluminum ethoxide or aluminum methoxide in the basic raw material is mixed with the cubic boron nitride powder and the aluminum powder, and the mixture in this state is directly used as the raw material. The process of filling the raw material directly into a container, loading the container into a high-temperature and high-pressure generation chamber, and then sintering the raw material filled in the container is called preliminary sintering and main sintering. The temperature and pressure for pre-sintering used in the pre-sintering work are 1,200°C to 1,200°C.
.. Temperature within the range of 400℃ and 41.000 kg/cI
The pressure within the range of IL to 43,000 kg/cvi was selected, and the main sintering temperature and pressure used in the main sintering work were 1,400°C to 1,600°C. Temperature within the range 43,000 kg/C11 to 50
,000 kg/crA, and also selected the main sintering temperature and main sintering pressure that have a correlation that satisfies the stable temperature and pressure conditions for cubic boron nitride. When starting the work of directly sintering the raw materials in the container loaded into the high-temperature and high-pressure generation chamber, first apply the selected pre-sintering pressure, and then apply the pre-sintering pressure. Gradually heat the direct raw material in the container to the selected presintering temperature, maintain the heating necessary to maintain the presintering temperature for 10 to 50 minutes, and then add The pressure was increased to the selected main sintering pressure, and then the heating that had been applied to maintain the preliminary sintering temperature was increased to the selected main sintering temperature. The heating required to maintain the main sintering temperature is 10
This lasts for 50 minutes, then only the heating is stopped while maintaining the applied main sintering pressure, and the high temperature and high pressure generation chamber is further cooled to bring the temperature inside the chamber to 300°C. A method for producing a cubic boron nitride solid body, which comprises lowering the temperature, then returning the main sintering pressure to normal pressure, and then taking out the sintered body from a high temperature and high pressure generating chamber. 2 40 to 60 parts by weight of cubic boron nitride powder, 30 to 20 parts by weight of titanium nitride powder, 68 to 34 parts by weight of aluminum ethoxide powder, or 49 parts by weight of aluminum methoxide powder. ~25
The basic raw material is a mixture of parts by weight and aluminum powder selected from within the ratio range of 10 parts by weight,
Water is added to the basic raw material, followed by heating, and the aluminum ethoxide or aluminum methoxide in the basic raw material is transformed and the alumina powder produced becomes cubic boron nitride powder, titanium nitride powder, and aluminum. A state mixed with powder is generated, the mixture in that state is used as a direct raw material, the direct raw material is filled into a container, the container is loaded into a high temperature and high pressure generation chamber, and then the container is filled. The work of sintering the raw material directly is divided into preliminary sintering work and main sintering work.
The pre-sintering temperature and pre-sintering pressure used in the pre-sintering process are set at 1,200 to 1.4.
Temperature within the range of 00℃ 41.000 ky/i to 4
3. Select the pressure within the range of 000 kg/ant, and set the main sintering temperature and pressure used in the main sintering work within the range of 1.400°C to 1,600°C. At a temperature of 43,000 p/cI? L~50,000
The pressure is within the range of kg/cyyY, and
Select the main sintering temperature and main sintering pressure that have a correlation that satisfies the stable temperature and pressure conditions for cubic boron nitride, and then sinter the raw materials directly in the container loaded into the high temperature and high pressure generation chamber. At the beginning of the process, first apply the selected pre-sintering pressure, then gradually heat the direct raw material to which the pre-sintering pressure is applied to the selected pre-sintering pressure. The heating required to maintain the preliminary sintering temperature is continued for 10 to 50 minutes, and then the applied pressure is increased to the selected main sintering pressure. Next, the heating that had been applied to maintain the preliminary sintering temperature was increased to the selected main sintering temperature, and then the heating necessary to maintain the main sintering temperature was increased. 10 minutes to 5
The heating continued for 0 minutes, then the heating was stopped while maintaining the applied main sintering pressure, and the high temperature and high pressure generation chamber was further cooled down to 300°C, and then A method for producing a cubic boron nitride solid body, which comprises returning the main sintering pressure to normal pressure, and then taking out the sintered body from a high-temperature, high-pressure generation chamber.
JP56098266A 1981-06-26 1981-06-26 Manufacturing method of cubic boron nitride solids Expired JPS592729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098266A JPS592729B2 (en) 1981-06-26 1981-06-26 Manufacturing method of cubic boron nitride solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098266A JPS592729B2 (en) 1981-06-26 1981-06-26 Manufacturing method of cubic boron nitride solids

Publications (2)

Publication Number Publication Date
JPS581002A JPS581002A (en) 1983-01-06
JPS592729B2 true JPS592729B2 (en) 1984-01-20

Family

ID=14215136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098266A Expired JPS592729B2 (en) 1981-06-26 1981-06-26 Manufacturing method of cubic boron nitride solids

Country Status (1)

Country Link
JP (1) JPS592729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200836U (en) * 1985-06-03 1986-12-16

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136015A (en) * 1977-05-04 1978-11-28 Sumitomo Electric Industries Sintered high hardness object for tool making and method of its manufacture
JPS55130859A (en) * 1979-04-02 1980-10-11 Sumitomo Electric Industries Sintered body with high hardness for cuttinggworking cast iron and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136015A (en) * 1977-05-04 1978-11-28 Sumitomo Electric Industries Sintered high hardness object for tool making and method of its manufacture
JPS55130859A (en) * 1979-04-02 1980-10-11 Sumitomo Electric Industries Sintered body with high hardness for cuttinggworking cast iron and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200836U (en) * 1985-06-03 1986-12-16

Also Published As

Publication number Publication date
JPS581002A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
JP2001504433A (en) Manufacturing method of dense ceramic workpiece
KR20030040386A (en) Method of producing an abrasive product containing cubic boron nitride
CN112500178A (en) ZrB is generated to normal position2-SiC toughened PcBN cutter and preparation method thereof
JPH01212279A (en) Production of silicon nitride product
JPH06506187A (en) Method of manufacturing ceramic bodies
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JPS592729B2 (en) Manufacturing method of cubic boron nitride solids
JPS627149B2 (en)
JPS6132275B2 (en)
JPH05509074A (en) Method for manufacturing silicon nitride articles
JP3230055B2 (en) Ceramic phase in silicon nitride containing cerium
JPS5852950B2 (en) Method for manufacturing silicon nitride sintered body
JPS59153851A (en) Production of sintered body of cubic boron nitride combining alumina and titanium nitride
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPS61117107A (en) Amorphous boron niride powder and its preparation
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS6213311B2 (en)
CN105776156A (en) Synthetic method for tantalum-nitrogen compound beta-Ta2N
CN1179917C (en) Method for preparing single-phase compact titanium aluminium carbon block material by using Al as adjuvant through discharge plasma agglomeration process
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS6335591B2 (en)
JP7473149B2 (en) High-hardness diamond-based block tool material and its manufacturing method
WO1990002715A1 (en) Novel method for producing ceramic bodies
JPS5812322B2 (en) Manufacturing method of cubic boron nitride solids
JPS58107434A (en) Preparation of cubic boron nitride-type tool material