JPS5812322B2 - Manufacturing method of cubic boron nitride solids - Google Patents

Manufacturing method of cubic boron nitride solids

Info

Publication number
JPS5812322B2
JPS5812322B2 JP55182119A JP18211980A JPS5812322B2 JP S5812322 B2 JPS5812322 B2 JP S5812322B2 JP 55182119 A JP55182119 A JP 55182119A JP 18211980 A JP18211980 A JP 18211980A JP S5812322 B2 JPS5812322 B2 JP S5812322B2
Authority
JP
Japan
Prior art keywords
sintering
temperature
boron nitride
powder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182119A
Other languages
Japanese (ja)
Other versions
JPS57108229A (en
Inventor
倉富龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55182119A priority Critical patent/JPS5812322B2/en
Publication of JPS57108229A publication Critical patent/JPS57108229A/en
Publication of JPS5812322B2 publication Critical patent/JPS5812322B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、硬質工具材として使用する立方晶窒化硼素固
結体を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cubic boron nitride solid for use as a hard tool material.

本発明は、硬質工具材として使用する立方晶窒化硼素固
結体を製造するに当って使用する原料において、硬質主
材とする立方晶窒化硼素粉末に、硬質副材とする窒化珪
素粉末を、添加した混合粉末を硬質材として使用し、其
の硬質材として使用する混合粉末を焼結作業において、
焼結し結合する結合材としてマグネシウム粉末と珪素粉
末との混合粉末またはマグネシウムと珪素との合金の粉
末を使用することを特徴とするものである。
In the raw materials used in manufacturing cubic boron nitride solids used as hard tool materials, the present invention includes cubic boron nitride powder as a hard main material and silicon nitride powder as a hard sub-material. The added mixed powder is used as a hard material, and the mixed powder used as the hard material is sintered.
The present invention is characterized in that a mixed powder of magnesium powder and silicon powder or a powder of an alloy of magnesium and silicon is used as a binding material for sintering and bonding.

本発明は、上記したように、硬質主材とする立方晶窒化
硼素粉末に硬質副材とする窒化珪素粉末を添加した混合
粉末に、マグネシウム粉末と珪素粉末との混合粉末また
はマグネシウムと珪素との合金の粉末を結合材として加
えた混合物を原料として使用し、斯様に調製した原料を
、立方晶窒化硼素の安定なる温度圧力条件を満足すると
同時に液相焼結を行うに必要な焼結用温度と焼結用圧力
とのもとで焼結して、硬質工具材として使用する立方晶
窒化硼素固結体を製造する工業的に有効な方法を提供す
ることを目的とするものである。
As described above, the present invention provides a mixed powder of cubic boron nitride powder as a hard main material and silicon nitride powder as a hard sub-material, and a mixed powder of magnesium powder and silicon powder or a combination of magnesium and silicon powder. A mixture containing alloy powder as a binder is used as a raw material, and the raw material prepared in this way is used for sintering, which is necessary to satisfy the stable temperature and pressure conditions of cubic boron nitride and at the same time perform liquid phase sintering. The object of the present invention is to provide an industrially effective method for producing cubic boron nitride solids for use as hard tool materials by sintering them at high temperatures and sintering pressures.

次に、本発明の方法によって硬質工具材とする立方晶窒
化硼素固結体を製造する工程および作用について説明す
る。
Next, the process and operation of manufacturing a cubic boron nitride solid body to be used as a hard tool material by the method of the present invention will be explained.

硬質工具材として使用できる立方晶窒化硼素固結体を製
造する原料には、立方晶窒化硼素粉末を40重量係乃至
80重量係と、窒化珪素粉末を35重量係乃至10重量
係と、マグネシウム粉末が12重量係乃至65重量係と
珪素粉末が88重量係乃至35重量係との割合範囲内よ
り選定した割合にて混合したマグネシウム珪素混合粉末
または其の選定した割合の組成を成せるマグネシウム珪
素合金の粉末を25重量多々*10重量係と、の割合範
囲内より選定した割合にて混合した混合物を使用するも
のである。
The raw materials for producing cubic boron nitride solids that can be used as hard tool materials include cubic boron nitride powder in an amount of 40% to 80% by weight, silicon nitride powder in an amount of 35% to 10% by weight, and magnesium powder. Magnesium-silicon mixed powder mixed in a ratio selected from within the ratio range of 12 weight ratio to 65 weight ratio and silicon powder 88 weight ratio to 35 weight ratio, or a magnesium silicon alloy capable of forming a composition in the selected ratio. A mixture of 25 parts by weight * 10 parts by weight of powder is mixed in a ratio selected from within the ratio range.

斯様に調製した原料を容器内に充填し、其の容器を高温
高圧発生装置における高温高圧発生室内に装填する。
The raw material prepared in this manner is filled into a container, and the container is loaded into a high temperature and high pressure generation chamber in a high temperature and high pressure generation device.

次いで、高温高圧発生室内に装填した容器内の原料を焼
結する作業を立方晶窒化硼素の安定なる温度圧力条件を
満足すると同時に液相焼結を行うに必要な焼結用温度と
焼結用圧力とを1,400℃乃至1,600℃の範囲内
の温度と43,000kg/im2乃至55,000k
g/cy2の範囲内の圧力とより選定し、次いで、容器
内に充填した焼結用原料に選定した焼結用圧力を加え、
続いて、其の焼結用圧力を加えた状態にある焼結用原料
を徐々に加熱して選定した焼結用温度にまで昇温しで、
其の焼結用温度を保持するに必要な加熱を20分間乃至
60分間持続する。
Next, the work of sintering the raw materials in the container loaded into the high-temperature, high-pressure generating chamber is carried out at the sintering temperature and sintering temperature necessary to satisfy the stable temperature and pressure conditions for cubic boron nitride, and at the same time to perform liquid phase sintering. pressure and temperature within the range of 1,400℃ to 1,600℃ and 43,000kg/im2 to 55,000k
g/cy2, and then applying the selected sintering pressure to the sintering raw material filled in the container,
Next, the raw material for sintering with the sintering pressure applied is gradually heated to the selected sintering temperature.
The heating necessary to maintain the sintering temperature is maintained for 20 to 60 minutes.

この焼結用温度と焼結用圧力とのもとに20分間乃至6
0分間曝らされた焼結用原料においては、立方晶窒化硼
素粒子の多数個と窒化硼素粒子の多数個とが混合して成
る集合体における個々の粒子の間の間隙に、マグネシウ
ムと珪素とが溶融して海綿状を成せる合金溶融組織を生
成して、其の海綿状を成せる合金溶融組織が個々の立方
晶窒化硼素粒子および個々の窒化珪素粒子を液相焼結し
た状態を生成する。
Under this sintering temperature and sintering pressure, for 20 minutes to 60 minutes.
In the sintering raw material exposed for 0 minutes, magnesium and silicon were present in the gaps between the individual particles in the aggregate formed by mixing a large number of cubic boron nitride particles and a large number of boron nitride particles. melts to produce a spongy alloy melt structure, and the spongy alloy melt structure produces a state in which individual cubic boron nitride particles and individual silicon nitride particles are liquid-phase sintered. do.

次いで、加えていた焼結用圧力は保持したままで加熱の
みを停止して、更に高温高圧発生室を冷却して、其の室
内の温度を300℃にまで降温する。
Next, only the heating is stopped while maintaining the applied sintering pressure, and the high temperature/high pressure generation chamber is further cooled to lower the temperature in the chamber to 300°C.

この焼結用圧力を加えた状態においての冷却作業によっ
て個々の粒子の間の間隙に海綿状を成して充塞していた
合金溶融組織が凝固して海綿状構造の合金組織を生成し
、其の生成した海綿状構造の合金組織が個々の立方晶窒
化硼素粒子および個々の窒化硼素粒子を焼結し結合した
固相焼結状態を生成する。
As a result of the cooling operation under this sintering pressure, the molten alloy structure that had formed a spongy shape and filled the gaps between the individual particles solidified, producing an alloy structure with a spongy structure. The resulting spongy alloy structure sinters and bonds individual cubic boron nitride particles and individual boron nitride particles to produce a solid-phase sintered state.

次いで、保持していた本焼結用圧力を常圧にもどして、
高温高圧発生室内より容器を押し出し、其の容器内より
焼結体を取り出す。
Next, the main sintering pressure that had been maintained was returned to normal pressure,
The container is pushed out from inside the high temperature and high pressure generation chamber, and the sintered body is taken out from inside the container.

取り出して得られる焼結体は、立方晶窒化硼素粒子の多
数個と窒化珪素粒子の多数個とが混合した集合体におけ
る個々の粒子の間に、マグネシウム珪素合金より成る海
綿状構造の合金組織体である結合材領域を備えていて、
其の結合材領域であるマグネシウム珪素合金より成る海
綿状構造の合金組織体が、立方晶窒化硼素粒子の多数個
と窒化珪素粒子の多数個とが混合した集合体における個
々の立方晶窒化硼素粒子および個々の窒化珪素粒子を結
合して!成した硬質工具材として使用できる立方晶窒化
硼素固結体七ある。
The obtained sintered body contains an alloy structure with a spongy structure made of a magnesium silicon alloy between individual particles in an aggregate of a large number of cubic boron nitride particles and a large number of silicon nitride particles. comprising a binder region that is
The alloy structure having a spongy structure made of a magnesium silicon alloy, which is the binder region, is a composite of individual cubic boron nitride particles in an aggregate in which a large number of cubic boron nitride particles and a large number of silicon nitride particles are mixed. And by combining individual silicon nitride particles! There are seven cubic boron nitride solids that can be used as hard tool materials.

次に、本発明の方法により硬質工具材として使用する立
方晶窒化硼素固結体を製造する方法を実施例によって説
明する。
Next, a method for producing a cubic boron nitride solid body used as a hard tool material by the method of the present invention will be described with reference to examples.

実施例 1 原料には、立方晶窒化硼素粉末を50重量係と、窒化珪
素粉末を25重量係と、マグネシウムが20重量係と珪
素が80重量係との割合の組成を成しているマグネシウ
ム珪素合金の粉末を25重量係と、の割合にて混合した
混合物を使用した。
Example 1 The raw materials include magnesium silicon having a composition of 50 parts by weight of cubic boron nitride powder, 25 parts by weight of silicon nitride powder, 20 parts by weight of magnesium and 80 parts by weight of silicon. A mixture was used in which alloy powder was mixed at a ratio of 25% by weight.

斯様に調整した原料を容器内に充填し、其の容器を高温
高圧発生装置における高温高圧発生室内に装填した。
The raw material prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generation chamber of a high temperature and high pressure generation device.

次いで、容器内に充填した原料を焼結する作業において
使用する焼結用温度と焼結用圧力とに1,500℃の温
度と50,000kg/cr2の圧力とを選定した。
Next, a temperature of 1,500°C and a pressure of 50,000 kg/cr2 were selected as the sintering temperature and pressure used in the operation of sintering the raw materials filled in the container.

次いで、高温高圧発生室内に装填した容器内の焼結用原
料に選定した焼結用圧力50,00oky/crtを加
えた。
Next, a selected sintering pressure of 50,00oky/crt was applied to the sintering raw material in the container loaded into the high temperature and high pressure generating chamber.

続いて、其の焼結用圧力を加えた状態にある焼結用原料
を徐々に加熱して選定した焼結用温度1,500℃こま
で昇温しで、其の焼結用温度1,500Cを保持するに
必要な加熱を55分間持続した。
Next, the raw material for sintering with the sintering pressure applied was gradually heated to a selected sintering temperature of 1,500°C, and the sintering temperature was increased to 1,500°C. The heating required to maintain 500C was maintained for 55 minutes.

次いで、保持していた本焼結用圧力を保持したままで、
加熱のみを停止し、更に、高温高圧発生室を外部より水
冷した。
Next, while maintaining the main sintering pressure,
Only the heating was stopped, and the high temperature and high pressure generation chamber was water cooled from the outside.

其の室内の温度が300℃に降温した後に、加えていた
本焼結用圧力を常庄にもどした。
After the temperature in the chamber fell to 300° C., the main sintering pressure that had been applied was returned to Josho.

次いで、高温高圧発生室内より容器を押し中し其の容器
内より焼結体を取り出した。
Next, the container was pushed inside the high temperature and high pressure generating chamber, and the sintered body was taken out from inside the container.

取り出して得られた焼結体は、立方晶窒化硼素粒子の多
数個と窒化珪素粒子の多数個とが混合した集合体におけ
る個々の粒子の間に、マグネシウム珪素合金より成る海
綿状構造の合金組織体である。
The obtained sintered body has an alloy structure with a spongy structure made of a magnesium-silicon alloy between the individual particles in an aggregate in which a large number of cubic boron nitride particles and a large number of silicon nitride particles are mixed. It is the body.

結合材領域を備えていて、其の結合材領域であるマグネ
シウム珪素合金より成る海綿状構造の合金組織体が、立
方晶窒化硼素粒子の多数個と窒化珪素粒子の多数個とが
混合した集合体における個々の立方晶窒化硼素粒子と個
々の窒化珪素粒子とを結合して構成した硬質工具材とし
て使用できる立方晶窒化硼素固結体であった。
A spongy-structured alloy structure made of a magnesium-silicon alloy, which is a binder region, is an aggregate of a large number of cubic boron nitride particles and a large number of silicon nitride particles. This is a cubic boron nitride solid that can be used as a hard tool material and is made by combining individual cubic boron nitride particles and individual silicon nitride particles.

実施例 2 原料には、立方晶窒化硼素粉末を60重量係と、窒化珪
素粉末を20重量係と、マグネシウム粉末が24重量係
と珪素粉末が76重量係との割合のマグネシウム珪素混
合粉末を20重量係と、の割合にて混合した混合物を使
用した。
Example 2 The raw materials include 60 parts by weight of cubic boron nitride powder, 20 parts by weight of silicon nitride powder, 20 parts by weight of magnesium silicon mixed powder with a ratio of 24 parts by weight of magnesium powder and 76 parts by weight of silicon powder. A mixture was used which was mixed in the proportions of .

斯様に調製した原料を容器内に充填し、其の容器を高温
高圧発生室内に装填した。
The raw material prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generating chamber.

次いで、高温高圧発生室内に装填した容器内の原料を焼
結する作業は実施例1の場合と同様にして行った。
Next, the work of sintering the raw materials in the container loaded into the high temperature and high pressure generating chamber was carried out in the same manner as in Example 1.

焼結作業を終えて得られた焼結体は、実施例1の場合に
得られた焼結体と同様に、立方晶窒化硼素粒子の多数個
と窒化珪素粒子の多数個とが混合した集合体における個
々の粒子の間に、マグネシウム珪素合金より成る海綿状
構造の合金組織体である結合材領域を備えていて、其の
結合材領域であるマグネシウム珪素合金より成る海綿状
構造の合金組織体が、立方晶窒化硼素粒子の多数個と窒
化珪素粒子の多数個とが混合した集合体における個々の
立方晶窒化硼素粒子と個々の窒化珪素粒子とを結合して
構成した硬質工具材として使用できる立方晶窒化硼素固
結体であった。
Similar to the sintered body obtained in Example 1, the sintered body obtained after the sintering process is a mixture of a large number of cubic boron nitride particles and a large number of silicon nitride particles. The bonding material region is a spongy-structured alloy tissue made of a magnesium-silicon alloy between individual particles in the body, and the binder region is a spongy-structured alloy tissue made of a magnesium-silicon alloy. However, it can be used as a hard tool material made by combining individual cubic boron nitride particles and individual silicon nitride particles in a mixed aggregate of many cubic boron nitride particles and many silicon nitride particles. It was a cubic boron nitride solid.

実施例 3 原料には、立方晶窒化硼素粉末を70重量係と、窒化珪
素粉末を15重量係と、マグネシウム粉末が37重量係
と珪素粉末が63重量係との割合のマグネシウム珪素混
合粉末を15重量係と、の割合にて混合した混合物を使
用した。
Example 3 Raw materials include cubic boron nitride powder in a proportion of 70 parts by weight, silicon nitride powder in a proportion of 15 parts by weight, magnesium powder in a ratio of 37 parts by weight and silicon powder in a ratio of 15 parts by weight. A mixture was used which was mixed in the proportions of .

斯様に調整した原料を容器内に充填し、其の容器を高温
高圧発生室内に装填した。
The raw material prepared in this manner was filled into a container, and the container was loaded into a high temperature and high pressure generation chamber.

次いで高温高圧発生室内に装填した容器内の原料を焼結
する作業は実施例1の場合と同様にして行った。
Next, the work of sintering the raw materials in the container loaded into the high temperature and high pressure generating chamber was carried out in the same manner as in Example 1.

焼結作業を終えて得られた焼結体は、実施例1の場合に
得られた焼結体と同様に、立方晶窒化硼素粒子の多数個
と窒化珪素粒子の多数個とが混合した集合体における個
々の粒子の間に、マグネシウム珪素合金より成る海綿状
構造の合金組織体である結合材領域を備えていて、其の
結合材領域であるマグネシウム珪素合金より成る海綿状
構造の合金組織体が、立方晶窒化硼素粒子の多数個と窒
化珪素粒子の多数個とが混合した集合体における個々の
立方晶窒化硼素粒子および個々の窒化珪素粒子を結合し
て構成した硬質工具材として使用できる立方晶窒化硼素
固結体であった。
Similar to the sintered body obtained in Example 1, the sintered body obtained after the sintering process is a mixture of a large number of cubic boron nitride particles and a large number of silicon nitride particles. The bonding material region is a spongy-structured alloy tissue made of a magnesium-silicon alloy between individual particles in the body, and the binder region is a spongy-structured alloy tissue made of a magnesium-silicon alloy. However, a cubic boron nitride particle that can be used as a hard tool material is made by combining individual cubic boron nitride particles and individual silicon nitride particles in an aggregate in which a large number of cubic boron nitride particles and a large number of silicon nitride particles are mixed. It was a crystalline boron nitride solid.

以上に説明した実施例にて製造した立方晶窒化硼素固結
体より成るチップと、炭化タングステン粉末をコバルト
にて焼結した炭化タングステン焼結体より成るチップと
、を使用して切削作業を行った場合の実積は次の如くで
あった。
Cutting work was carried out using a tip made of a cubic boron nitride solid body manufactured in the example described above and a tip made of a tungsten carbide sintered body made by sintering tungsten carbide powder with cobalt. The actual results were as follows.

クロム工具鋼材を成形加工して焼き入れした輪状体を外
径52ミリ幅15ミリのコロ軸受用外輪に切削する作業
において、炭化タングステン焼結体より成るチップを使
用した場合は、一回の研摩にて連続して26個切削でき
たのに対し、立方晶窒化硼素固結体より成るチップを使
用した場合は、一回の研摩にて連続して1,720個乃
至1,760個切削できた。
If a tip made of sintered tungsten carbide is used to cut a ring-shaped body formed and hardened from chrome tool steel into an outer ring for a roller bearing with an outer diameter of 52 mm and a width of 15 mm, only one polishing is required. In contrast, when using a tip made of cubic boron nitride solids, it was possible to cut 1,720 to 1,760 pieces in a row in one polishing. Ta.

この切削実験により明かなように、炭化タングステン焼
結体より成るチップに比較して立方晶窒化硼素固結体よ
り成るチップは著しく高い生産性を実現することができ
た。
As is clear from this cutting experiment, compared to chips made of sintered tungsten carbide, chips made of cubic boron nitride solids were able to achieve significantly higher productivity.

Claims (1)

【特許請求の範囲】[Claims] 1 立方晶窒化硼素粉末を40重量係乃至80重量係と
、窒化珪素粉末を35重量係乃至10重量係と、マグネ
シウム粉末が12重量係乃至65重量係と珪素粉末が8
8重量係乃至35重量%との割合範囲内より選定した割
合のマグネシウム珪素混合粉末または其の選定した割合
の組成を成せるマグネシウム珪素合金の粉末を25重量
係乃至10重量%と、の割合範囲内より選定した割合に
て混合した混合物を原料とし、其の原料を容器内に充填
し、其の容器を高温高圧発生室内に装填し、次いで、容
器内に充填した原料を焼結する立方晶窒化硼素の安定な
る温度圧力条件を満足すると同時に液相焼結を行うに必
要な焼結用温度と焼結用圧力とを1,400℃乃至1,
600℃の範囲内の温度と43,000kg/crl乃
至55,OOOkg/airの範囲内の圧力とより選定
し、次いで高温高圧発生室内に装填した容器内の焼結用
原料に選定した焼結用圧力を加え、続いて、其の焼結用
圧力を加えた状態にある焼結用原料を徐々に加熱して遺
定した焼結用温度にまで昇温し、続いて、其の焼結用温
度を保持するに必要な加熱を20分間乃至60分間持続
し、次いで、加えていた焼結用圧力は保持したままで加
熱のみを停止し、更に、高温高圧発生室を冷却し、次い
で、其の室内の温度が300℃に降温した後に、保持し
ていた本焼結用圧力を常圧にもどして、高温高圧発生室
内より焼結体を取り出すことを特徴とする立方晶窒化硼
素固結体の製造法。
1 Cubic boron nitride powder is 40 to 80 weight, silicon nitride powder is 35 to 10, magnesium powder is 12 to 65, and silicon powder is 8.
8% by weight to 35% by weight of a magnesium-silicon mixed powder or a magnesium-silicon alloy powder capable of forming a composition of the selected proportion to a proportion range of 25% by weight to 10% by weight. A cubic crystal is produced by using a mixture mixed in a proportion selected from the above as raw materials, filling the raw materials into a container, loading the container into a high temperature and high pressure generating chamber, and then sintering the raw materials filled in the container. The sintering temperature and sintering pressure necessary to satisfy the stable temperature and pressure conditions for boron nitride and at the same time perform liquid phase sintering are set at 1,400°C to 1,400°C.
The sintering material was selected based on the temperature within the range of 600°C and the pressure within the range of 43,000 kg/crl to 55,000 kg/air, and then the material for sintering was selected as the raw material for sintering in the container loaded into the high temperature and high pressure generation chamber. Then, the sintering material under the sintering pressure is gradually heated to the predetermined sintering temperature, and then the sintering material is heated to the predetermined sintering temperature. The heating necessary to maintain the temperature is maintained for 20 to 60 minutes, then only the heating is stopped while maintaining the applied sintering pressure, the high temperature and high pressure generation chamber is further cooled, and then the high temperature and high pressure generation chamber is cooled. A cubic boron nitride solid body, characterized in that after the temperature in the chamber drops to 300°C, the main sintering pressure maintained is returned to normal pressure and the sintered body is taken out from the high temperature and high pressure generation chamber. manufacturing method.
JP55182119A 1980-12-24 1980-12-24 Manufacturing method of cubic boron nitride solids Expired JPS5812322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55182119A JPS5812322B2 (en) 1980-12-24 1980-12-24 Manufacturing method of cubic boron nitride solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55182119A JPS5812322B2 (en) 1980-12-24 1980-12-24 Manufacturing method of cubic boron nitride solids

Publications (2)

Publication Number Publication Date
JPS57108229A JPS57108229A (en) 1982-07-06
JPS5812322B2 true JPS5812322B2 (en) 1983-03-08

Family

ID=16112655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55182119A Expired JPS5812322B2 (en) 1980-12-24 1980-12-24 Manufacturing method of cubic boron nitride solids

Country Status (1)

Country Link
JP (1) JPS5812322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294148A (en) * 1986-06-13 1987-12-21 Tatsuro Kuratomi Cubic boron nitride composite sintered compact and its production
CN110257681B (en) * 2019-06-20 2020-05-19 中国有色桂林矿产地质研究院有限公司 Polycrystalline cubic boron nitride composite sheet and preparation method thereof

Also Published As

Publication number Publication date
JPS57108229A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
US2929126A (en) Process of making molded aluminum nitride articles
US4643741A (en) Thermostable polycrystalline diamond body, method and mold for producing same
US4024675A (en) Method of producing aggregated abrasive grains
KR100823760B1 (en) Method of producing an abrasive product containing cubic boron nitride
US3944398A (en) Method of forming an abrasive compact of cubic boron nitride
JPH0231031B2 (en)
JP5456948B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
JP2019077942A (en) Pcbn compact for machining of ferrous alloys
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
WO2005056238A1 (en) Manufacture method of super-hard grinding tool containing metallic or ceramic binder
JPS627149B2 (en)
US2200258A (en) Boron carbide composition and method of making the same
US2561709A (en) Diamond-set tool
JPS5812322B2 (en) Manufacturing method of cubic boron nitride solids
JPS58130203A (en) Production of composite material dispersed with aluminum particles
JPS62105911A (en) Hard diamond mass and production thereof
JPS59153851A (en) Production of sintered body of cubic boron nitride combining alumina and titanium nitride
RU2184644C2 (en) Diamond-containing laminate composition material and method for making such material
JPS5969472A (en) Manufacture of diamond composite sintered body
RU2032496C1 (en) Method of obtaining aluminides of transition metals
JPS6311414B2 (en)
JPS6137221B2 (en)
US2173835A (en) Metallic article and its manufacture
RU2148490C1 (en) Method of diamond tool manufacture
USRE22073E (en) Hard metal tool allot