JPS5927232A - Optical fiber pressure sensor - Google Patents

Optical fiber pressure sensor

Info

Publication number
JPS5927232A
JPS5927232A JP13576882A JP13576882A JPS5927232A JP S5927232 A JPS5927232 A JP S5927232A JP 13576882 A JP13576882 A JP 13576882A JP 13576882 A JP13576882 A JP 13576882A JP S5927232 A JPS5927232 A JP S5927232A
Authority
JP
Japan
Prior art keywords
polarization
optical fiber
light
pressure
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13576882A
Other languages
Japanese (ja)
Other versions
JPH056127B2 (en
Inventor
Yoshitaka Namihira
宜敬 波平
Kiyobumi Mochizuki
望月 清文
Yoshihiro Ejiri
江尻 義廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP13576882A priority Critical patent/JPS5927232A/en
Publication of JPS5927232A publication Critical patent/JPS5927232A/en
Publication of JPH056127B2 publication Critical patent/JPH056127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make it possible to simply measure the change of pressure by using one optical fiber. CONSTITUTION:Light emitted from a light source 1 is passed through a polarizer to be converted to linear polarized light and a lambda/2 plate 33 is rotated to align an incident polarization angle theta130 to a desired value (usually 45 deg.). In this case, the change of light output generated when external force F27 is added to a pressure sensitive part 37 with a length L is measured by an analyser 38 by a motor 39. A polarization degree E129 is shown by a formula I from the max. output¦EM¦<2> and the min. light receiving power¦Em¦<2> of light output. The linear polarization E129 obtained by projecting the polarization angle thetai30 to an angle other than 0 deg. or 90 deg. is represented by the vector sum of linear polarization components¦Ex¦<2>,¦Ey¦<2> in two axes X, Y crossing at right angles. When the phase difference of both of them is phi, the polarization degree P is shown by a formula II. Especially, when thetai is 45 deg., the polarization degree P is shown by a formula III. Therefore, the phase difference between polarization components in an optical fiber 35 is calculated.

Description

【発明の詳細な説明】 本発明は、光ファイ・ミを利用した高精度の圧力センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly accurate pressure sensor using optical fiber.

従来、光ファイバを用いた圧力センサとし、て図1に示
すようなものが提案されていた。図1において、光源1
1からの光はビームスプリッタI2で2分岐され、それ
ぞれ感圧部15を含む光ファイバ13及びレファレンス
用光ファイバ14に入射され、二つの直線偏波の干渉を
利用する方法である。同一方向に偏光する二つの直線偏
波は干渉し、両波の位相の違いによって干渉縞16の明
暗が生じる。一方の光ファイバ13に圧力を印加すると
、伝搬光の位相が変化し、他の光ファイバ14からの出
力光との間に干渉縞16を生じる。この干渉縞16の変
位により圧力変動量が測定できる。この方式は、2本の
光ファイバを用いていることや、レファレンス用の光フ
ァイバ14の偏波面は、種々の外乱(温度変化、振動5
曲げ等)等によって容易に変化し、測定精度を向上する
には、レファレンス用光ファイバを恒温槽等に入れてお
く必要があるなど、測定系が複雑化する欠点があった。
Conventionally, a pressure sensor using an optical fiber as shown in FIG. 1 has been proposed. In FIG. 1, light source 1
In this method, the light from 1 is split into two by a beam splitter I2, and each of the lights is input to an optical fiber 13 including a pressure sensitive part 15 and a reference optical fiber 14, thereby making use of interference between two linearly polarized waves. Two linearly polarized waves polarized in the same direction interfere with each other, and the difference in phase between the two waves causes brightness and darkness of the interference fringes 16. When pressure is applied to one optical fiber 13, the phase of the propagating light changes, and interference fringes 16 are generated between it and the output light from the other optical fiber 14. The amount of pressure fluctuation can be measured based on the displacement of the interference fringes 16. This method uses two optical fibers, and the polarization plane of the reference optical fiber 14 is affected by various external disturbances (temperature changes, vibrations, etc.).
This has the disadvantage that the measurement system becomes complicated, such as the reference optical fiber being required to be placed in a thermostatic oven or the like in order to improve measurement accuracy.

本発明は1,1本の光ファイバを用いるだけで簡単に圧
力変化を測定できる光フアイバ圧力センサを提供するも
のである。
The present invention provides an optical fiber pressure sensor that can easily measure pressure changes by using just one optical fiber.

以F1図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the F1 drawing.

図2は、偏波面保存ノア・イバの一例として楕円クラ、
ド形偏波面1呆存光ファイバの座標系を示すもので、2
1はコア、22は内部クラッド、23は楕円クラッド、
24は外部クラ、ドを示す。ここで、楕円クラッド23
の長袖及び短軸を各々X軸25及びy軸26とする。θ
F28はX軸に対する外力F27の印加力向の傾き角、
Ei 29は入射波の振幅を示し、θi30は入射偏波
角すなわち入射波のX軸に対する傾き角を示す。bx 
、 byは、楕円クラ、ドの長軸及び短軸を表わしてお
り、クラッド楕円率εは次のように定義する。
Figure 2 shows an elliptic curve as an example of a polarization-preserving Noah/Iba.
This shows the coordinate system of an optical fiber with a doped polarization plane of 1 and 2.
1 is a core, 22 is an internal cladding, 23 is an elliptical cladding,
24 indicates an external club. Here, the elliptical cladding 23
Let the long and short axes of 2 be the X axis 25 and the y axis 26, respectively. θ
F28 is the inclination angle of the applied force direction of external force F27 with respect to the X axis,
Ei 29 indicates the amplitude of the incident wave, and θi30 indicates the incident polarization angle, that is, the inclination angle of the incident wave with respect to the X axis. bx
, by represent the major and minor axes of the ellipses, and the cladding ellipticity ε is defined as follows.

’bx −by         ・・・・・・・・・
・・(1)bx + by 図3は、本発明の原理を示す図で、31は光源、32は
偏光子、33はλ/2板、34は集光用レンズ、35は
偏波面保存光ファイバ、36はファイバ支持及び回転機
構、37は感圧部、38は検光子、39は検光子回転機
構、310は受光器、311は出力表示部を示す。圧力
を測定する原理を以下に説明する。光源31から出た光
は、偏光子32を通過することにより直線偏光になり、
λ7/2板33で回転して、入射偏波角θi30を所望
の値(通常は45°)に合わせる。
'bx -by ・・・・・・・・・
...(1) bx + by FIG. 3 is a diagram showing the principle of the present invention, where 31 is a light source, 32 is a polarizer, 33 is a λ/2 plate, 34 is a condensing lens, and 35 is a polarization-preserving light beam. 36 is a fiber support and rotation mechanism, 37 is a pressure sensitive section, 38 is an analyzer, 39 is an analyzer rotation mechanism, 310 is a light receiver, and 311 is an output display section. The principle of measuring pressure will be explained below. The light emitted from the light source 31 becomes linearly polarized light by passing through the polarizer 32,
It is rotated by the λ7/2 plate 33 to adjust the incident polarization angle θi30 to a desired value (usually 45°).

そこで、長さしの感圧部38に外力F27が加1つった
時の光出力の変化を検光子38を回転39させて測定す
る。光出力の最大電力IEMI2及び最小受光電力IE
m12 から、偏光度Pは、 で表される。
Therefore, the analyzer 38 is rotated 39 to measure the change in the light output when the external force F27 is applied to the long pressure sensitive part 38. Maximum power of optical output IEMI2 and minimum received power IE
From m12, the degree of polarization P is expressed as follows.

図4に、ファイバ35の出力端における楕円偏波面の偏
波面の座標系を示す。図4において、29は入射偏波の
振幅Eiを表し、30は入射ll1i波角θ1142は
楕円偏波面41のX軸に対する傾き角ψを表す。
FIG. 4 shows the coordinate system of the polarization plane of the elliptical polarization plane at the output end of the fiber 35. In FIG. 4, 29 represents the amplitude Ei of the incident polarized wave, and 30 represents the incident ll1i wave angle θ1142, the inclination angle ψ of the elliptically polarized wave surface 41 with respect to the X axis.

43 、44は楕円偏波面41の長軸4及び短軸Emの
振幅を表す。
43 and 44 represent the amplitudes of the major axis 4 and minor axis Em of the elliptically polarized plane 41.

図2及び4において、入射偏光角θ430を00又は9
0°以外に入射した直線偏波Ei 29は、2つの直交
した軸方向、例えば、X軸及びy軸方向の直線偏波成分
IEx12.1Ey+”  のベクトル和で表すことが
できる。この両モード間の位相差をψとすれば、偏光度
Pは次式で表される。
In Figures 2 and 4, the incident polarization angle θ430 is set to 00 or 9.
The linearly polarized wave Ei 29 incident at an angle other than 0° can be expressed as a vector sum of linearly polarized wave components IEx12.1Ey+'' in two orthogonal axial directions, for example, the X-axis and y-axis directions. If the phase difference is ψ, the degree of polarization P is expressed by the following equation.

特にθ・=45°の時には、F−45°となるので式(
3)の偏光度Pは、 P = cns(P             (’)
で表される。
Especially when θ・=45°, it becomes F-45°, so the formula (
The polarization degree P of 3) is P = cns(P (')
It is expressed as

従って、式(3)捷たは式(4)より偏光度Pを測定す
ることにより、光ファイ・<35中を伝搬する直交する
偏波成分HE青modeとHE汽mode間の位相差ψ
が求められる。(2)式で表される偏光度Pは、検光子
38を回転することにより簡単に測定できる。この測定
例を図5に示した。図5において、縦軸は受光レベルの
変化を示し、横軸は時間を表し荷重(F、L)に対応し
ている。この図より、荷重(F。
Therefore, by measuring the degree of polarization P from equation (3) or equation (4), the phase difference ψ between the orthogonal polarization components HE blue mode and HE steam mode propagating in the optical fiber <35
is required. The degree of polarization P expressed by equation (2) can be easily measured by rotating the analyzer 38. An example of this measurement is shown in FIG. In FIG. 5, the vertical axis represents the change in the light reception level, and the horizontal axis represents time and corresponds to the load (F, L). From this figure, the load (F.

L)を加えると受光レベルが正弦波状に変化することが
分る。
It can be seen that when L) is added, the received light level changes sinusoidally.

図6は、図5のような光強度の変化を(2)式の偏光度
Pで表した実測例である。入射偏波角θiが45°の場
合について、外力Fの印加方向の傾き角θ、が45°の
時には、偏光度Pはほとんど変化がないが、θ、が45
°以外の00又は90°の時には、外力Fの大きさの変
化に対し偏光度Pは0かも1まで大きく変化しているこ
とが分かる。
FIG. 6 is an actual measurement example in which the change in light intensity as shown in FIG. 5 is expressed by the polarization degree P of equation (2). When the incident polarization angle θi is 45°, when the inclination angle θ of the application direction of the external force F is 45°, the degree of polarization P hardly changes, but θ is 45°.
It can be seen that when the angle is 00 or 90 degrees, the degree of polarization P changes greatly from 0 to 1 in response to a change in the magnitude of the external force F.

図7は、感圧部37の受けだ外力Fの大きさを横軸に、
その時の位相差ψ(式(4))を縦軸にとったもので、
θ、が45°以外のθ°又は90°の時には、外力Fの
大きさと位相差ψがほぼ直線的に比例していることがわ
かる。図7より、外力の圧力感度であることが分った。
In FIG. 7, the magnitude of the external force F received by the pressure sensitive part 37 is plotted on the horizontal axis.
The phase difference ψ (Equation (4)) at that time is taken on the vertical axis,
It can be seen that when θ is other than 45° or 90°, the magnitude of the external force F and the phase difference ψ are almost linearly proportional. From FIG. 7, it was found that this was due to the pressure sensitivity of external force.

偏波面保存光ノアイノ(に、外力Fを印加した場合のフ
ァイバの中心付近における応力差Δσef(=σえ−σ
y)は、簡単に次式で表される。
Stress difference Δσef (=σe−σ
y) is simply expressed by the following formula.

ここで、Δσ。は楕円クラッド23による偏波面保存光
ファイバのy軸及びy軸方向の残留応力成分の差を表し
、Δσfは外力Fによって新たにファイバ内に生じる応
力差を表す。εはクラ、ド楕円率<  b”  by 
> 、Eはヤング率、νはポアソン比、bx−1−by Δα(=α24−α23)は媒質24と23の熱膨張率
差を表し、ΔT’(=T−To)は室温Tとファイバの
軟化点温度Toとの差を表す。応力差Δσefの数値例
を図8に示した。図8より、外力印加方向が00≦θ2
<45゜の場合には、応力差が零になる現象(Δσef
−o)があることが分る。又、外力Fが零のときの応ノ
J差Δσefは、ファイバ固有の応力差Δσ。と等しく
なり、外力Fを変化することにより簡単に偏波面保存光
ファイバの製造過程に生じた固有残留応力Δσ。を推定
すること7% B1能である。
Here, Δσ. represents the difference between the residual stress components in the y-axis and y-axis directions of the polarization-maintaining optical fiber due to the elliptical cladding 23, and Δσf represents the stress difference newly generated within the fiber by the external force F. ε is the ellipticity < b” by
>, E is Young's modulus, ν is Poisson's ratio, bx-1-by Δα (=α24-α23) is the difference in thermal expansion coefficient between media 24 and 23, and ΔT' (=T-To) is the difference between room temperature T and fiber represents the difference between the softening point temperature To and the softening point temperature To. A numerical example of the stress difference Δσef is shown in FIG. From Figure 8, the external force application direction is 00≦θ2
<45°, the stress difference becomes zero (Δσef
-o). Furthermore, the response J difference Δσef when the external force F is zero is the stress difference Δσ inherent to the fiber. By changing the external force F, the inherent residual stress Δσ generated in the manufacturing process of the polarization-maintaining optical fiber can be easily calculated. Estimating 7% B1 ability.

光弾性効果及び式(5)よりy軸及びy軸方向に偏光し
た光波間の位相差ψは次式で表される。
Based on the photoelastic effect and equation (5), the phase difference ψ between the y-axis and the light waves polarized in the y-axis direction is expressed by the following equation.

ここで、Δβ(−βニーβy)は、X、y軸方向の偏光
モード間の伝搬定数差を表す。Lo、Lはファイバ全長
及び感圧部のファイバ長を表し、CPは光弾性定数(≧
3.50X 10−5mA/Kq )、λは波長を表す
Here, Δβ (−β knee βy) represents the propagation constant difference between the polarization modes in the X and y axis directions. Lo and L represent the total fiber length and the fiber length of the pressure sensitive part, and CP is the photoelastic constant (≧
3.50X 10-5 mA/Kq), λ represents the wavelength.

式(6)より外力Fによる位相変化すなわち圧力感度(
−収)は、 LdF F些さ曵・f(θF )     (7)LdF   
λb で表される。ここで、bはファイバの外部クラッド半径
を表している。式(7)より、簡単に圧力(外力)の変
化機を求めることができる。
From equation (6), the phase change due to external force F, that is, the pressure sensitivity (
− collection) is LdF F triviality ・f(θF ) (7) LdF
It is expressed as λb. Here, b represents the outer cladding radius of the fiber. From equation (7), the change machine of pressure (external force) can be easily determined.

図9に、ファイバの外部クラッド半径す、光弾性定数C
P(よ3.50X10 ’i/に9)、ファイバ感圧部
長り図9において、横軸は外力印加方向である。図より
、外力印加方向θ2が00又は90°(=I近の方が感
度が大きいことが分った。式(7)及び図9より、感度
は外力を印加する偏波面保存光ファイバの長さしに比例
するので、必要とする感度に応じてファイバの長さLを
選択することができる。
Figure 9 shows the outer cladding radius of the fiber, the photoelastic constant C
P (3.50 x 10'i/9), fiber pressure sensitive length length In Figure 9, the horizontal axis is the direction of external force application. From the figure, it was found that the sensitivity is greater when the external force application direction θ2 is near 00 or 90° (=I. From equation (7) and Figure 9, the sensitivity is determined by the length of the polarization-maintaining optical fiber to which the external force is applied. Since it is proportional to the length, the length L of the fiber can be selected depending on the required sensitivity.

又、図3において、位相差を検出する手段として、これ
まで説明した検光子38を回転39する構成の他に、図
109図11のようなものがある。
Further, in FIG. 3, as a means for detecting a phase difference, in addition to the configuration in which the analyzer 38 is rotated 39 as described above, there is a device as shown in FIGS. 109 and 11.

図1Oは、検光子38を回転させずに、λ/2板33の
光軸に対し45°(又は、−45°)方向に固定して測
定する方法である。
FIG. 1O shows a method of measuring by fixing the analyzer 38 in the 45° (or -45°) direction with respect to the optical axis of the λ/2 plate 33 without rotating it.

又、図11のように、ファイバ出力端でウォラストンプ
リズム等の複屈折結晶111を用いることにより、出力
楕円偏波を2つの直線偏波に分離し、2つの光検出器1
12 、113て光電力i、 l I2を測定し、11
4の出力処理部で偏光度を測定する構成である。
In addition, as shown in FIG. 11, by using a birefringent crystal 111 such as a Wollaston prism at the fiber output end, the output elliptically polarized wave is separated into two linearly polarized waves, and the two photodetectors 1
12, 113 to measure the optical power i, l I2, 11
The configuration is such that the degree of polarization is measured by the output processing section No. 4.

偏波面保存ファイバとして楕円クラッドのものについて
説明したが、すでに公知であるサイドピットタイプ、あ
るいは、パンダファイバ等でも良く、とにかくy軸、y
軸において偏波面を保存するファイバであれば良いこと
は説明するまでもないO 以上説明したように、本発明の圧力センサを用いること
により、精度の高い圧力(外力)測定が可能となり、海
底ケーブル又は中継器の耐圧試験等の際、ケーブル又は
中継器に埋め込んでおくことも可能となり、様々の耐圧
試験等に応用できる。
Although we have described an elliptical clad fiber as a polarization maintaining fiber, it is also possible to use a side pit type, a panda fiber, etc., which are already well-known.
It goes without saying that any fiber that preserves the plane of polarization in its axis is sufficient. Alternatively, it is also possible to embed it in a cable or repeater during a voltage resistance test of a repeater, and it can be applied to various voltage resistance tests.

又、出力表示部311を他の部分と離して設置すること
により、遠隔測定も可能となる。
Further, remote measurement is also possible by installing the output display section 311 apart from other parts.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来の圧力センサの例を示す構成図、図2は本発
明に用いる偏波保存ファイバの1例を説明するための座
標系図、図3は本発明の詳細な説明するだめの構成図、
図4は本発明の詳細な説明するだめの座標系図、図59
図6.図71図8及び図9は本発明における測定結果を
示す特性図、図10及び図11は本発明において位相差
を検知する例を示すブロック図である。 11・・・光源、12・・・ビームスプリッタ、13・
・・光ファイバ、14・・・レファレンス周光ファイバ
、15・・・感圧部、16・・・干渉縞、21・・・コ
ア、22・・・内部クラッド、23・・・楕円クラッド
、24・・・外部クラッド、25・・・y軸、26・・
・y軸、27・・・外ツバ28・・・傾き角、29・・
・振幅、30・・・入射偏波角、31・・・光源、32
・・・偏光子、33・・・λ/2板、34・・・集光用
レンズ、35・・・偏波面保存光ファイバ、36・・・
ファイバ支持及び回転機構、37・・・感圧部、38・
・・検光子、39・・・検光子回転機構、310・・・
受光器、311・・・出力表示部、41・・・楕円偏波
面、42・・・傾き角、43・・・長軸EMの振幅、4
4・・・短軸E。 の振幅、111・・・複屈折結晶、112 、113・
・光検出器、114・・・出力処理部。 特許出願人  国際電信電話株式会社 代理人 犬塚 学 外1名 13!]1 図2 6 ダ ソ 図6 タト  カ  F (Q/CIη) 図 7 外力F(g/cm) 図8 外力F(kg/cm) 図9 外力印加負度θF (deg )
FIG. 1 is a configuration diagram showing an example of a conventional pressure sensor, FIG. 2 is a coordinate system diagram for explaining an example of a polarization maintaining fiber used in the present invention, and FIG. 3 is a configuration diagram for explaining the present invention in detail. ,
FIG. 4 is a coordinate system diagram for detailed explanation of the present invention, FIG.
Figure 6. 71 FIGS. 8 and 9 are characteristic diagrams showing measurement results in the present invention, and FIGS. 10 and 11 are block diagrams showing an example of detecting a phase difference in the present invention. 11... Light source, 12... Beam splitter, 13.
... Optical fiber, 14 ... Reference peripheral optical fiber, 15 ... Pressure sensitive part, 16 ... Interference fringe, 21 ... Core, 22 ... Internal cladding, 23 ... Elliptical cladding, 24 ...External cladding, 25...y axis, 26...
・Y axis, 27...Outer collar 28...Tilt angle, 29...
・Amplitude, 30...Incidence polarization angle, 31...Light source, 32
... Polarizer, 33 ... λ/2 plate, 34 ... Condensing lens, 35 ... Polarization maintaining optical fiber, 36 ...
Fiber support and rotation mechanism, 37...pressure sensing section, 38.
...Analyzer, 39...Analyzer rotation mechanism, 310...
Light receiver, 311... Output display unit, 41... Elliptical polarization plane, 42... Tilt angle, 43... Amplitude of long axis EM, 4
4...Short axis E. amplitude, 111...birefringent crystal, 112, 113...
- Photodetector, 114...output processing section. Patent applicant International Telegraph and Telephone Co., Ltd. agent Inuzuka 1 off-campus person 13! ]1 Figure 2 6 Daso diagram 6 Tato force F (Q/CIη) Figure 7 External force F (g/cm) Figure 8 External force F (kg/cm) Figure 9 Negativity of external force application θF (deg)

Claims (1)

【特許請求の範囲】[Claims] 偏波面保存光ファイバの長軸又は短軸に直交しない偏光
を前記偏波面保存光ファイバに入射する手段と、前記長
軸(又は短軸)に対し45°以外の方向に圧力(外力)
を受ける感圧部分を持つ偏波保存光ファイバと、前記長
軸方向及び前記短軸方向の偏光、の位相差を検出する手
段とを備え、前記位相差から前記圧力の大きさを検出す
ることを特徴とする光ファイバ圧力センサ。
means for inputting polarized light that is not orthogonal to the long axis or short axis of the polarization-maintaining optical fiber into the polarization-maintaining optical fiber; and pressure (external force) in a direction other than 45° with respect to the long axis (or short axis).
a polarization-maintaining optical fiber having a pressure-sensitive portion that receives the pressure; and means for detecting a phase difference between the polarized light in the long axis direction and the short axis direction, and detecting the magnitude of the pressure from the phase difference. An optical fiber pressure sensor featuring:
JP13576882A 1982-08-05 1982-08-05 Optical fiber pressure sensor Granted JPS5927232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13576882A JPS5927232A (en) 1982-08-05 1982-08-05 Optical fiber pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13576882A JPS5927232A (en) 1982-08-05 1982-08-05 Optical fiber pressure sensor

Publications (2)

Publication Number Publication Date
JPS5927232A true JPS5927232A (en) 1984-02-13
JPH056127B2 JPH056127B2 (en) 1993-01-25

Family

ID=15159404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13576882A Granted JPS5927232A (en) 1982-08-05 1982-08-05 Optical fiber pressure sensor

Country Status (1)

Country Link
JP (1) JPS5927232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120999A2 (en) * 1983-03-30 1984-10-10 Licentia Patent-Verwaltungs-GmbH Fibre-optic sensor for force and pressure measurements, as well as for monitoring and protection purposes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120999A2 (en) * 1983-03-30 1984-10-10 Licentia Patent-Verwaltungs-GmbH Fibre-optic sensor for force and pressure measurements, as well as for monitoring and protection purposes
EP0120999A3 (en) * 1983-03-30 1985-11-21 Licentia Patent-Verwaltungs-GmbH Fibre-optic sensor for force and pressure measurements, as well as for monitoring and protection purposes

Also Published As

Publication number Publication date
JPH056127B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
Vengsarkar et al. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature
Huang et al. Perturbation effects on mode propagation in highly elliptical core two-mode fibers
US4495411A (en) Fiber optic sensors operating at DC
US4456377A (en) Multimode fiber optic rotation sensor
US5298964A (en) Optical stress sensing system with directional measurement capabilities
EP0262825A2 (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
EP0214907B1 (en) Fiber sensor
CN111238772A (en) Optical fiber ring detection device and detection method based on polarization crosstalk principle
US5815270A (en) In-line fiber-optic polarimeter using a fused 1x5 star coupler
US4648274A (en) Photoelastic measuring transducer and accelerometer based thereon
Stowe et al. Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator
CN111486939A (en) Ultrasonic measuring device for realizing optical path and polarization state regulation and control based on SAGNAC principle
JPS59226821A (en) Optical detector
JPS5927232A (en) Optical fiber pressure sensor
GB2117132A (en) Interferometer
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPS59204738A (en) Method for injecting light to polarized axis of optical fiber for maintaining plane of polarization
Furstenau Performance of the double-polarization method in interferometric digital force sensing by fiber tension bending
WO1991013329A1 (en) Pressure sensor
Thursby et al. In-line mode splitter applied to a dual polarimeter in elliptical core fibre
JPS60218020A (en) Total single-polarization fiber rotary sensor
JPS63195529A (en) Optical fiber hydrophone
JP2003083843A (en) Extinction ratio measuring device
JPS6147513A (en) Optical fiber sensor