JPS5926919A - Preparation of crystalline aluminosilicate - Google Patents

Preparation of crystalline aluminosilicate

Info

Publication number
JPS5926919A
JPS5926919A JP13709882A JP13709882A JPS5926919A JP S5926919 A JPS5926919 A JP S5926919A JP 13709882 A JP13709882 A JP 13709882A JP 13709882 A JP13709882 A JP 13709882A JP S5926919 A JPS5926919 A JP S5926919A
Authority
JP
Japan
Prior art keywords
aqueous solution
aluminate
aluminosilicate
crystallization
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13709882A
Other languages
Japanese (ja)
Other versions
JPS6351968B2 (en
Inventor
Yoshimasa Sasa
佐々 嘉正
Tadaaki Fujita
藤田 忠彰
Tsuneshi Takeda
竹田 常司
Tomoyuki Haishi
知行 拝師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP13709882A priority Critical patent/JPS5926919A/en
Publication of JPS5926919A publication Critical patent/JPS5926919A/en
Publication of JPS6351968B2 publication Critical patent/JPS6351968B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

PURPOSE:To prepare a crystalline aluminosilicate composed of fine particles, in high yield and productivity, by mixing a concentrated aqueous solution of a silicate with an aqueous solution of an aluminate, gelatinizing and crystallizing the mixture, and at the same time, pulverizing the coarse crystals. CONSTITUTION:A concentrated aqueous solution of a water-soluble aluminate having a concentration of 30-70wt% is mixed with an aqueous solution of a water-soluble silicate having a concentration of 30-50wt% at a ratio to obtain the molar ratios (Na2O:Al2O3:SiO2:H2O) of (1.2-2.5):1:(1.5-3.0):(15-35), and the mixture is agitated, gelatinized and crystallized to obtain the crystals of aluminosilicate. In the above process, the system is heated at 60-110 deg.C after the completion of the gelation, and the mixture is recycled, pulverized and crystallized to obtain the slurry of fine aluminate crystals having a particle diameter of 3-5mu, atmost 10mu. The slurry is neutralized with an acid and spray-dried to obtain fine crystals of aluminate having excellent characteristics as the builder for a detergent in high yield.

Description

【発明の詳細な説明】 本発明は結晶性アルミノ珪酸塩の製造法に関する。更に
詳しくは、微細粒子からなシ粗太粒子含蓋の少ない結晶
性アルミノ珪酸塩スラリーの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crystalline aluminosilicates. More specifically, the present invention relates to a method for producing a crystalline aluminosilicate slurry that is made of fine particles and contains few coarse particles.

特に本発明の目的とする所は、洗剤用ビルグーとして用
いられる合成ゼオライトとして優れた性能を有するもの
を高収率でしかも高生産性をもって低コストで製造し得
る方法を提供するにある。
In particular, it is an object of the present invention to provide a method for producing synthetic zeolite having excellent performance as a bilge for detergents in high yield and productivity at low cost.

従来、洗剤用或は洗浄剤用ビルダーとしては。Conventionally, it has been used as a builder for detergents or cleaning agents.

リン酸塩が安価なコストと高いカルシウムイオン交換能
をもつため主たるビルダーとして用いられてきた。しか
るに、近年湖水などでの富栄養化の問題があり、リン酸
塩を生体とするビルダーから、ゼオライトの如きアルミ
ノ珪酸塩を主体とするビルダーに変わりつつある。
Phosphate has been used as the main builder due to its low cost and high calcium ion exchange capacity. However, in recent years there has been a problem of eutrophication in lake water, etc., and there is a shift from builders based on phosphate as a living body to builders based on aluminosilicate such as zeolite.

合成ゼオライトの一般的製造方法は、久しい以前から知
られている。即ち、珪酸ナトリウム水溶液とアルミン酸
ナトリウム水溶液とを過剰アルカリの存在下で、接触・
ゲル化させ、その後、結晶化のために加熱することによ
って製造されている。洗剤用及び洗浄剤用としては、通
常30チ以下の固型分濃度でゲル化・結晶化させ、フ4
イルタープレス、ロータリーフィルタープレス等の濾過
磯で、濾過・水洗して過剰アルカリを除くという方法が
とられている。又この際p液中のアルカリは、濃縮・回
収して再使用している。しかるに、この過剰アルカリを
除くためのν過及びアルカリ回収のだめの濃縮には、多
額の経費と設備投資を必要として、こり、がゼオライト
のコストを上げている。又、ゼオライト特有のレオロジ
ー的性質から、一般には30チ以上の高濃度の固型分濃
度のアルミノ珪酸塩懸濁液からの濾過は雌かしく、通常
、固型分濃度30チ以下で、ゲル化・結晶化させている
のが実状である。
The general method for producing synthetic zeolites has been known for a long time. That is, a sodium silicate aqueous solution and a sodium aluminate aqueous solution are brought into contact with each other in the presence of an excess alkali.
It is produced by gelling and then heating for crystallization. For detergents and detergents, it is usually gelled and crystallized at a solid concentration of 30% or less.
The method used is to remove excess alkali by filtration and washing with water using filters such as Ilter Press and Rotary Filter Press. At this time, the alkali in the p liquid is concentrated, recovered, and reused. However, the v-filtration to remove this excess alkali and the concentration of the alkali recovery waste require a large amount of expense and equipment investment, which increases the cost of zeolite. Additionally, due to the rheological properties specific to zeolites, it is generally difficult to filter aluminosilicate suspensions with high solid content concentrations of 30% or more, and gelation usually occurs at solid content concentrations of 30% or less.・The reality is that it is crystallized.

本発明者等はこのような方法によらず、工程を簡略化し
、安価に製造し得る方法について、種々研究を遂行した
ところ、ゲル化時の固型分濃度をあげることによって4
A型のゼオライト生成域も広がり、従って過剰アルカリ
量も低濃度で合成する場合に較べて少なくてよ・いこと
が判った。このことから、反応の遂行において、使用す
べきアルカリ量を少なくシ、酸又は酸性塩で中和してそ
のまま洗剤のビルダー成分に転換し得る可能性のあるこ
とも明らかとなった。
The present inventors conducted various studies on methods that could simplify the process and produce at a low cost without relying on such methods, and found that by increasing the solid concentration during gelation, 4.
It was found that the production range of type A zeolite was expanded, and therefore the amount of excess alkali was required to be smaller than when synthesis was performed at a low concentration. From this, it has become clear that in carrying out the reaction, it is possible to reduce the amount of alkali used, neutralize it with an acid or an acidic salt, and convert it directly into a builder component for detergents.

又、高濃度で合成したアルミノ珪酸塩スラリーは、反応
後濾過・水洗・乾燥の工程をとらず、他の洗浄活性成分
、補助剤等からなる洗剤スラリー中に直接導入し、噴霧
乾燥して粉末合成洗剤を得ることも可能なことが判った
。又、高濃度で合成した場合には、結晶化に要する時間
が少なくて済み、従って低濃度で合成した場合よりも生
成するゼオライト粒子の粒度は、結晶学的尤みて小さく
なる傾向にあることも判った。
In addition, the aluminosilicate slurry synthesized at a high concentration is directly introduced into a detergent slurry consisting of other cleaning active ingredients, auxiliary agents, etc., without the steps of filtration, water washing, and drying after the reaction, and is spray-dried to form a powder. It turns out that it is also possible to obtain synthetic detergents. Furthermore, when synthesized at a high concentration, less time is required for crystallization, and therefore the particle size of the zeolite particles produced tends to be smaller in crystallographic terms than when synthesized at a low concentration. understood.

高@度でアルミノ珪酸塩を製造することには、上記のよ
うな種々の利点があることを本発明者らは見出したが、
高濃度で製造する場合、その系の濃度が高いために、結
晶の成長速度を制御することが困難であり、細かい粒の
かたまりであるいわゆる団塊あるいは粒塊を生じること
があることが判った。この団塊及び粒塊は第1図(a)
に示すようなものであるが、細かい粒子のかたまりで、
平均粒径で10〜20μに及ぶものもある。
The present inventors have found that producing aluminosilicates at high temperatures has various advantages as described above.
It has been found that when produced at high concentrations, it is difficult to control the growth rate of the crystals due to the high concentration of the system, and so-called nodules or agglomerates, which are clusters of fine grains, may occur. These nodules and grains are shown in Figure 1 (a).
As shown in the figure, it is a mass of fine particles,
Some have an average particle size of 10 to 20 microns.

洗剤用及び洗浄剤用ビルダーとして用いられるアルミノ
珪酸塩としては、かかる粗大粒子を含有することは極め
て不都合である。即ち、ある粒度以上のアルミノ珪酸塩
を洗剤ビルダーとして使用した場合、水不溶の粒子が被
服に付着すると干したあと白く粉をふいたりする恐れが
ある。特に節水型の洗濯機では被服への付着が非常に目
立ち、従ってかかる粗大粒子を含有するゼオライトは実
際上使用できず、又、粒度の大きなものはカルシウムと
のイオン交換速度が遅く、洗剤ビルダーとしては不適当
であり、第1図(b)に示される如き粒度3〜5μ、最
高10μ以内のものが要求される。
It is extremely inconvenient for aluminosilicates used as builders for detergents and detergents to contain such coarse particles. That is, when an aluminosilicate of a certain particle size or more is used as a detergent builder, if water-insoluble particles adhere to clothes, there is a risk that the clothes will turn white after drying. Particularly in water-saving washing machines, adhesion to clothes is very noticeable, so zeolite containing such coarse particles cannot be used in practice, and large particles have a slow rate of ion exchange with calcium, so they cannot be used as detergent builders. is inappropriate, and requires a particle size of 3 to 5 microns, with a maximum of 10 microns, as shown in FIG. 1(b).

本発明者らは、高濃度アルミノ珪酸塩懸濁液の合成に際
して、上記のような粒塊あるいは団塊を粉砕するかある
いは生じさせない様にして製造する方法を得るべく鋭意
・検討の結果、このような団塊あるいは粒塊は、結晶化
の際に混合槽から混合物を高ぜん断力をもつ粉砕装置に
循環し、高ぜん断力を与えることによって粉砕され、最
終的にアルミノ珪酸塩の平均粒径を8μ以下に抑えるこ
とができることを見出し、本発明を完成するに到った。
The present inventors have conducted extensive studies to find a method for producing a high-concentration aluminosilicate suspension by pulverizing or not producing the above-mentioned granules or nodules. During crystallization, the mixture is circulated from the mixing tank to a crushing device with high shear force, and is crushed by applying high shear force, and finally the average particle size of the aluminosilicate is reduced. The present invention was completed based on the discovery that it is possible to suppress the particle size to 8μ or less.

即ち、本発明は高濃度の水溶性珪酸塩水溶液と高濃度の
水溶性アルミン酸塩水溶液とを混合、ゲル化し、次いで
結晶化すると同時に、粉砕の操作を行なうことによるア
ルミノ珪酸塩の製造方法を提供するものである。
That is, the present invention provides a method for producing aluminosilicate by mixing a highly concentrated water-soluble silicate aqueous solution and a highly concentrated water-soluble aluminate aqueous solution, gelling them, crystallizing them, and simultaneously performing a crushing operation. This is what we provide.

これに対し、通常の方法のように、一旦結晶化を完了し
てから粉砕する方法は、ボールミル、サンドミル、アト
ライター等の強力な粉砕機を長時間運転する必要があシ
、シかもなお不十分でありて、極めて効率が悪い。
On the other hand, the conventional method of pulverizing once crystallization is completed requires long-term operation of a powerful pulverizer such as a ball mill, sand mill, or attritor, which is disadvantageous. It is sufficient and extremely inefficient.

又、結晶化前のゲル化物を粉砕することによっても、あ
ゐ粒度まで粉砕することは可能であるが、ゲル化物が比
較的凝集しゃすい性質を有することから、一旦粉砕して
も結晶化の工程で又凝集をおこし、粗大粒子を形成する
恐れがあり、好ましくない。
It is also possible to grind the gelled material before crystallization to a particle size of A, but since the gelled material has a property of being relatively agglomerated, it is difficult to prevent crystallization even if it is ground once. This is not preferable since it may cause aggregation during the process and form coarse particles.

本発明において粉砕に用いられる装置は特に限定される
ものではないが、通常コロイドミル、ディスインチグレ
ーター、ホモジナイザーと称される微粉砕機が用いられ
る。具体的、には、線用鉄工(株)製のディスパーミル
、特殊磯化工業(株) 製のホモミツクラインミル、ホ
モミックマイコロイグー、ホモミツクラインミクサー等
が挙げられる。
The device used for pulverization in the present invention is not particularly limited, but a pulverizer usually called a colloid mill, a distingrater, or a homogenizer is used. Specific examples include a disper mill manufactured by Line Ironworks Co., Ltd., a homomic line mill manufactured by Tokushu Isoka Kogyo Co., Ltd., a homomic line mixer, and a homomic line mixer manufactured by Tokushu Isoka Kogyo Co., Ltd.

上記粉砕装置でのせん断力は、攪拌羽根乃至回転体の外
周部の周速度で5m/sec 以上のせん断力を与える
ものが望ましい。
The shearing force in the above-mentioned crushing device is desirably one that provides a shearing force of 5 m/sec or more at the circumferential speed of the outer peripheral portion of the stirring blade or the rotating body.

本発明の方法で得られるアルミノ珪酸塩スラリーは、そ
の固形分が30係以上、好ましくはま用いることが出来
、経済的にもプロセス的にも価値は大きい。
The aluminosilicate slurry obtained by the method of the present invention has a solid content of 30 parts or more and can preferably be used for a long time, and is of great value both economically and from a process standpoint.

本発明によれば、かかる濃厚系での反応は、60〜70
電量係のアルミン酸塩水溶液及び30〜50重量%珪酸
塩水溶液を用いて行なわれる。
According to the present invention, the reaction in such a concentrated system is carried out at 60 to 70
This is carried out using a coulometric aqueous aluminate solution and a 30 to 50% by weight aqueous silicate solution.

それ以上の濃度の水溶液乃至上記塩の固形物を出発原料
とすることは好ましくない。
It is not preferable to use an aqueous solution with a higher concentration or a solid substance of the above-mentioned salt as a starting material.

製造されたスラリーがそのまま、あるいは中和して洗剤
配合に用いられる為には、過剰アルカリの量が少量であ
ることが望ましいが、幸いにも上述した如く上記のよう
な濃厚系での反応では過剰アルカリ量が少なくてもビル
グー性能に優れたアルミノ珪酸塩が得られるのである。
In order for the produced slurry to be used as it is or after being neutralized for use in detergent formulations, it is desirable that the amount of excess alkali be small, but fortunately, as mentioned above, the reaction in a concentrated system is not possible. Even if the amount of excess alkali is small, an aluminosilicate with excellent bilge performance can be obtained.

特に、上記雨水溶液の混合物の組成がモル比でHa O
: AA O: 810.、 : H,、O= 1.2
〜2,5 :G2      25 1.5〜s、o : 15〜35となる様調製されるの
が好ましい。
In particular, the composition of the rainwater solution mixture is Ha O
: AA O: 810. , : H,, O= 1.2
-2,5: G2 25 1.5-s, o: 15-35 is preferably prepared.

本発明の方法に於てゲル化は、回分式に行なっても、連
続式に行なってもよい。又、混合方法は、水溶性アルミ
ン酸塩水溶液中に水溶性珪酸塩水溶液を加えていっても
、逆に水溶性珪酸塩水溶夜中に水溶性アルミン酸塩水溶
液を加えていってもよい。
In the method of the present invention, gelation may be carried out batchwise or continuously. Further, the mixing method may be such that the water-soluble silicate aqueous solution is added to the water-soluble aluminate aqueous solution, or conversely, the water-soluble aluminate aqueous solution may be added to the water-soluble silicate aqueous solution overnight.

しかしながら、ゲルの流動性の面からはアルミノ珪酸塩
ゲルを予め調製しておき、これにアルミン酸塩水溶液と
珪酸塩水溶液とを同時に添加していく方法が最も望まし
い。
However, from the viewpoint of gel fluidity, it is most desirable to prepare an aluminosilicate gel in advance and add an aluminate aqueous solution and a silicate aqueous solution to it simultaneously.

本発明の実施に当ってはゲル調整時に循環・粉砕してお
いてもよいが、その効果はあまシ大きくなく、50μの
湿式篩法でゲル中の粗大粒子を測定すると、通常10%
程度の粗大粒子が存在する。
In carrying out the present invention, the gel may be circulated and pulverized during gel preparation, but the effect is not so great, and when coarse particles in the gel are measured using a 50μ wet sieve method, it is usually 10%.
Some coarse particles are present.

ゲル化は通常40〜90℃に保って行なわれるが、この
ゲル化調整時に結晶化が起こらないように行なうことが
必要である。もし、ゲル化調整時に結晶化が始まると、
結晶化した核が結晶化速度を促進させ、添加した水溶性
アルミン酸塩と水溶性珪酸塩とが即座に結晶化し、強固
な凝集体である団塊あるいは粒塊を生じ、後に粉砕を行
なっても容易に粉砕できないことKなる0 次でゲル化が完了した時点で60〜110℃の温度に昇
温し、循環・粉砕しながら、結晶化を行なう。結晶化の
時間は通常15〜120分間である。結晶化に要する時
間は主に結晶化の温度、ゲルの濃度及び過剰アルカリ量
によって左右される。結晶化時間が長すぎたシ、高温す
ぎたシした場合はゼオライ)4Aはイオン交換性のない
、ヒドロキシソーダライト化するので、充分留意する必
要がある。
Gelation is usually carried out at a temperature of 40 to 90°C, but it is necessary to adjust the gelation to prevent crystallization. If crystallization begins during gelation adjustment,
The crystallized core accelerates the crystallization rate, and the added water-soluble aluminate and water-soluble silicate crystallize immediately, forming solid aggregates, such as nodules or granules, that will remain stable even after pulverization. When gelation is completed at the 0th order K, which means that it cannot be easily pulverized, the temperature is raised to 60 to 110° C., and crystallization is carried out while circulating and pulverizing. The crystallization time is usually 15 to 120 minutes. The time required for crystallization mainly depends on the crystallization temperature, the gel concentration and the amount of excess alkali. If the crystallization time is too long or the temperature is too high, 4A will turn into hydroxysodalite, which has no ion exchange properties, so care must be taken.

又本発明方法の実施九当っては粉砕機への循環速度は、
結晶化の速度よシも早いことが望ましい。結晶化速度は
、結晶化の温度、ゲルの濃度、過剰アルカリ蓋、種ゲル
量等によって左右されるが、通常、循環速度は混合槽中
のゲルあるいはゼオライトスラリーが結晶化時間内に循
環すること、具体的には1時間以内、望ましくは20分
以内で循環できることが望ましい。
Also, when carrying out the method of the present invention, the circulation speed to the crusher is:
It is desirable that the speed of crystallization is also fast. The crystallization speed depends on the crystallization temperature, gel concentration, excess alkali cap, amount of seed gel, etc., but normally the circulation speed is determined by the circulation of the gel or zeolite slurry in the mixing tank within the crystallization time. Specifically, it is desirable to be able to circulate within one hour, preferably within 20 minutes.

本発明での結晶化時点での粉砕の作用機構は、軽い凝集
体を形成している結晶化への遷移域で、粉砕、解砕を行
ない強固な凝集体の形成を防ぐことである。これに対し
、結晶化の完了した時点からの粉砕による場合は上記の
妬く強固な凝集体を形成しているため容易でない。
The mechanism of action of crushing at the time of crystallization in the present invention is to prevent the formation of strong aggregates by crushing and crushing in the transition region to crystallization where light aggregates are formed. On the other hand, crushing after crystallization is not easy because the above-mentioned extremely strong aggregates are formed.

粉砕・結晶化を完了したアルミノ珪酸塩スラリーは、ソ
ーダライト化を防ぐため80℃以下に冷却される。冷却
されたアルミノ珪酸塩スラリー中には過剰のアルカリを
含有するため、洗剤用及び洗浄剤用として用いる場合に
は有利には酸又は酸性塩で中和することによシ製造すべ
き洗剤或は洗浄剤の成分圧変換させることが出来る。
The aluminosilicate slurry that has been pulverized and crystallized is cooled to 80° C. or lower to prevent it from becoming sodalite. Due to the excess alkali content in the cooled aluminosilicate slurry, detergents or detergents which, when used for detergents and detergents, should advantageously be prepared by neutralization with acids or acid salts. The component pressure of the cleaning agent can be changed.

上記の中和に用いられる飯又は酸性塩は、炭酸ガスや硫
酸、塩酸などの鉱酸等の無機物質などであることができ
る。
The rice or acid salt used for the above-mentioned neutralization may be an inorganic substance such as carbon dioxide gas or a mineral acid such as sulfuric acid or hydrochloric acid.

しかし有機酸、例えば脂肪酸、クエン酸、ポリアクリル
酸、マレイン酸、又はアルキルベンゼンスルホン酸、パ
ラトルエンスルホン酸、アルキル硫酸エステル、アルキ
ルエーテル硫酸エステル等の酸の形の陰イオン界面活性
剤も、この目的に使用することができる。又、一種の酸
又は酸性塩のみならず、二種類以上の酸又は酸性塩によ
ってpH調整することも可能である。
However, anionic surfactants in the form of organic acids, such as fatty acids, citric acid, polyacrylic acid, maleic acid, or acids such as alkylbenzene sulfonic acids, paratoluene sulfonic acids, alkyl sulfates, alkyl ether sulfates, etc., may also be used for this purpose. It can be used for. Moreover, pH adjustment can be performed not only by one type of acid or acidic salt, but also by two or more types of acids or acidic salts.

中和の程度は該アルミノ珪酸塩懸濁液を1係スラリーと
して測定した際、pH8,5〜11.5、特にpH10
〜11とするのが、洗剤用として優れた効力を発揮する
ため好ましい。該アルミノ珪酸塩懸濁液中に過剰の水酸
化す) IJウムを残さないことが、該アルミノ珪酸塩
懸濁液と他の洗剤成分を混合したスラリーを噴霧乾燥し
て粉末洗剤を製造する場合、その製品の粉末物性特に耐
ケーキング性等において良好な結果を得るために望まし
い。
The degree of neutralization is determined when the aluminosilicate suspension is measured as a 1st slurry, with a pH of 8.5 to 11.5, particularly a pH of 10.
A value of 11 to 11 is preferable because it exhibits excellent effectiveness as a detergent. It is important not to leave excess hydroxide in the aluminosilicate suspension when a powder detergent is produced by spray drying a slurry of the aluminosilicate suspension and other detergent ingredients. , is desirable in order to obtain good results in the powder physical properties of the product, particularly in terms of caking resistance, etc.

このように酸又は酸性塩によって中和を終えた該懸濁液
は、他の洗剤成分を含有するスラリー中に直接加えられ
、噴霧乾燥によシ粉末洗剤が得られる。
The suspension thus neutralized with an acid or an acidic salt is added directly to a slurry containing other detergent ingredients and spray-dried to obtain a powdered detergent.

同、水溶性珪酸塩と水溶性アルミン酸塩との混合、ゲル
化に際して、そのゲル化物にその流動性向上のため、ア
クリル酸系オリゴマー等の分散剤を加えて本発明を実施
することも可能である0 次に実施例と比較例を示して、本発明の構成と効果を更
に具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。
Similarly, when mixing and gelling a water-soluble silicate and a water-soluble aluminate, it is also possible to carry out the present invention by adding a dispersant such as an acrylic acid oligomer to the gelled product in order to improve its fluidity. 0 Next, the structure and effects of the present invention will be explained in more detail by showing Examples and Comparative Examples, but the present invention is not limited to these Examples.

以下の実施例及び比較例中アルミノ珪酸塩懸濁液中の粗
大粒子は細目の口径50μをもつ試験篩で行なった。測
定方法は、@濁液をよく分散させ懸濁液2fを精秤し、
25℃、500だlの水で5分間、攪拌後、更に500
dの水で洗浄し、上記金網を通して残分を収得する。そ
の後、この試験篩を110℃の乾燥器内で乾燥後、精秤
し、篩残漬を計算した。
In the following Examples and Comparative Examples, coarse particles in aluminosilicate suspensions were examined using a test sieve with a fine diameter of 50 μm. The measurement method is to disperse the suspension well and accurately weigh 2f of the suspension.
After stirring for 5 minutes at 25℃ with 500 liters of water, add 500 liters of water.
Wash with water from Step d, and collect the residue through the wire mesh. Thereafter, this test sieve was dried in a dryer at 110° C., and then accurately weighed to calculate the amount of residue left on the sieve.

又粒度分布は、微結晶粒子の体槓巨分率をLeeds 
& N0RTHRUP 社の光赦乱粒)K計により測定
した結果を示す。
In addition, the particle size distribution is defined as the macroscopic fraction of microcrystalline particles.
&N0RTHRUP's photo-absorbing grain) K meter.

実施例1 外部に湿式粉砕装置(特殊機化工業(株)製ホモミツク
ラインミルLM−8型)への循環系をもち、2段のプロ
ペラ攪拌機を有する200 Aの混合容器中に、Na2
O/ h、1b20. /H20= 1.06 / 1
/8のモル比であるアルミン酸ナトリウム水溶液74〜
と5号のナトリウムシリフート水溶液(Na20 / 
Sin、、/ H2O= 1 / 3.15 / 22
.50モル比) 99 K、とをそれぞれ500 Kg
/Hr 、  400Kr/Hrの速度で添加・混合し
た。
Example 1 Na2 was placed in a 200 A mixing vessel equipped with an external circulation system to a wet grinding device (Homo Mitsukline Mill LM-8 model manufactured by Tokushu Kika Kogyo Co., Ltd.) and a two-stage propeller agitator.
O/h, 1b20. /H20=1.06/1
/8 molar ratio of sodium aluminate aqueous solution 74~
and No. 5 sodium silicate aqueous solution (Na20 /
Sin,, / H2O = 1 / 3.15 / 22
.. 50 molar ratio) 99 K, and 500 Kg each
/Hr, and was added and mixed at a rate of 400Kr/Hr.

混合槽は、加熱のためのジャケットを有してお” ” 
2Kf/ci2G の蒸気により、混合槽内の温度を7
0℃にあげ、混合容器底部の開口弁を介して、吐出性能
をもつ湿式粉砕装置ホモミツクラインミルに送シ、循環
した。ホモミツクラインミルの回転数は、  3,60
0 rpmで、そのせん断速度は、内部にあるタービン
羽根の周速度から計算すると1’5m/sea  であ
った。温度を徐々にあげ、90℃に達するまでラインミ
ルを駆動し画壇した。30分後に、結晶化は完了し循環
をとめた。ホモミツクラインミル内部のタービン羽根と
ステーター間の間隙は0.5正であった。
The mixing tank has a jacket for heating.
2Kf/ci2G of steam lowers the temperature inside the mixing tank to 7.
The temperature was raised to 0° C., and the mixture was sent and circulated through the opening valve at the bottom of the mixing container to a homomic line mill, a wet grinding device with discharge performance. The rotation speed of Homo Mitsukline mill is 3.60
At 0 rpm, the shear rate was 1'5 m/sea calculated from the circumferential speed of the internal turbine blades. The temperature was gradually increased and the line mill was operated until it reached 90°C. After 30 minutes, crystallization was complete and circulation was stopped. The gap between the turbine blades and the stator inside the homomic line mill was 0.5 positive.

ホモミツクラインミルへの循itは30 A/minで
あ夛、循環回数を計算すると、約8回であった。
The circulation to the homomic line mill was 30 A/min, and the number of circulations was calculated to be about 8 times.

結晶化を終えたアルミノ珪酸塩@濁液中の粗大粒子を前
述の50μの湿式篩法で測定すると0.1係であった。
When the coarse particles in the crystallized aluminosilicate @ suspension were measured using the 50μ wet sieve method described above, the particle size was 0.1.

又、顕微鏡によって観察しても団塊あるいは粒塊の存在
がないことが確かめられた。粒度分布は、Leeas 
& N0RTHRUP 社の光散乱式粒度測定計によっ
て測定した。体積平均径は4.9μであった。測定結果
は以下の粒子スペクトルを示す(第1表)。
Furthermore, it was confirmed that there were no nodules or granules when observed under a microscope. Particle size distribution is Lees
& Measured using a light scattering particle size analyzer manufactured by NORTHRUP. The volume average diameter was 4.9μ. The measurement results show the following particle spectra (Table 1).

第  1  表 面分(μm) <31 100チ <22  99係 <1697係 <11 96チ <   7.8  83% <   5,5  79  チ <   3,9  559J <   2,8  29  係 結晶化の完了したアルミノ珪酸塩懸濁液は70℃まで冷
却し炭酸ガスにょシ1チスラリーとしてpH10,6に
なるまで中和した。
1st surface area (μm) <31 100<22 99<1697<11 96<7.8 83% <5,5 79 <3,9 559J <2,8 29 Completed crystallization The aluminosilicate suspension was cooled to 70° C. and neutralized as a carbon dioxide slurry until the pH reached 10.6.

過剰アルカリの中和を終えたアルミノ珪酸塩懸濁液を、
他の洗浄活性物質やビルダー、補助剤等を含んだ洗剤ス
ラリーに直接加え噴霧乾燥した。得られた粉末洗剤の洗
浄力や粉末物性は市販のアルミノ珪酸塩を用いて製造さ
れた粉末洗剤と同一であった。又、節水型の洗濯機にて
被服への付着テストを行なったが、衣類への水不溶物付
着性は実用上問題とならなかった。
The aluminosilicate suspension after neutralizing excess alkali is
It was added directly to a detergent slurry containing other cleaning actives, builders, adjuvants, etc. and spray dried. The detergency and powder physical properties of the obtained powder detergent were the same as those of a powder detergent produced using a commercially available aluminosilicate. In addition, an adhesion test to clothing was conducted using a water-saving washing machine, but the adhesion of water-insoluble substances to clothing did not pose a practical problem.

比較例1 実施例1と同様な方法で湿式粉砕機に循環せずゲル化・
結晶化を行なった。
Comparative Example 1 In the same manner as in Example 1, gelation and
Crystallization was performed.

結晶化が完了した後、混合容器底部の開口弁を介して吐
出性能を有する湿式粉砕装置に送り、実施例1の条件と
同様にして循環した。循環して30分後のアルミノ珪酸
塩懸濁液中の粗大粒子を前述の湿式篩法で測定するとな
お6チあった。更に3時間循環・粉砕を繰シ返したが、
湿式篩法で測定するとなお3チの篩残があった。
After the crystallization was completed, the mixture was sent to a wet grinding device with discharge performance through an opening valve at the bottom of the mixing container, and circulated under the same conditions as in Example 1. After 30 minutes of circulation, the number of coarse particles in the aluminosilicate suspension was measured by the wet sieving method described above, and found to be 6 particles. The circulation and crushing were repeated for another 3 hours, but
When measured using a wet sieve method, there were still 3 sieve residues.

3時間循環後の粒度分布を光散乱式粒度計によって測定
した。その測定結果を第2表に示した。
The particle size distribution after 3 hours of circulation was measured using a light scattering granulometer. The measurement results are shown in Table 2.

第  2  表 面分 <88   100係 <62    99 <44    96 <31        86 く22   15 〈16g5 <11    51 <7,8      59 <5.5  28 <3.9 16 <  、2.8       8 比較例2 実施例1と同様な方法で、50℃でゲル化・混合した後
、混合・ゲル化液を40〜50℃に保ち、混合容器底部
の開口弁を介して吐出性能を有する湿式粉砕装置に送シ
、実施例1の条件と同様にして循環して、50分後のゲ
ル化液中の粗大粒子を前述の湿式篩法で測定するとなお
4係あった。更に3時間循環し、その後循環を止め、温
度を100℃にあげ、結晶化させた。結晶化に要した時
間は20分であった。結晶化を終えたアルミノ珪酸塩懸
濁液中の粗大粒子を前述の湿式篩法で測定するとなお1
.5%の篩残があった。3時間循環後の粒度分布を光散
乱式粒度計によって測定した。その測定結果を第3表に
示す。
2nd surface <88 100 ratio <62 99 <44 96 <31 86 22 15 <16g5 <11 51 <7,8 59 <5.5 28 <3.9 16 < , 2.8 8 Comparative Example 2 Implementation After gelling and mixing at 50°C in the same manner as in Example 1, the mixed/gelling liquid is kept at 40 to 50°C and sent to a wet grinding device with discharge performance through the opening valve at the bottom of the mixing container. The gel was circulated under the same conditions as in Example 1, and after 50 minutes, the coarse particles in the gelled solution were measured by the wet sieving method described above, and there were still 4 particles. The mixture was circulated for an additional 3 hours, after which the circulation was stopped and the temperature was raised to 100°C to allow crystallization. The time required for crystallization was 20 minutes. When the coarse particles in the aluminosilicate suspension after crystallization are measured using the wet sieving method described above, it is still 1.
.. There was 5% sieve residue. The particle size distribution after 3 hours of circulation was measured using a light scattering granulometer. The measurement results are shown in Table 3.

第  5  表 面   分 <88   100qb < 62 98 < 44    96 <31    90 < 22    80 <16   70 <11    58 <   7.8       42 <5,5       51 く  5゜9      18 <   2.8        8 比較例3 比較例1と同様に混合・ゲル化して結晶化させた後、ア
ルミノ珪酸塩懸濁液を一部抜き出しマイコロイダ−(特
殊機化工業製LSm)を繰り返し10回通過させた。マ
イコロイダーの砥石間の間隙は0.5mであシ、砥石の
回転数は、ノ珪酸塩懸濁液中の粗大粒子を前述の湿式篩
法で測定するとなお8壬の篩残があった。
5th surface <88 100qb <62 98 <44 96 <31 90 <22 80 <16 70 <11 58 <7.8 42 <5,5 51 ku 5゜9 18 <2.8 8 Comparative example 3 Comparative example After mixing, gelling, and crystallizing in the same manner as in 1, a portion of the aluminosilicate suspension was extracted and passed through Mycolloider (LSm manufactured by Tokushu Kika Kogyo) 10 times. The gap between the grinding wheels of Mycolloider was 0.5 m, and the number of rotations of the grinding wheels was such that when the coarse particles in the silicate suspension were measured by the wet sieving method described above, there were still 8 mm of sieve residue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は高濃度でのアルミノ珪酸塩@濁液合成時
にあられれた団塊の顕微鏡で観票したスケッチ図、第1
図(b)は団塊を形成しないゼオライト4A粒子の(a
)と同様な図である。 出願人代理人  古  谷     馨図
Figure 1 (a) is a microscopic sketch of a nodule formed during the synthesis of aluminosilicate @ suspension at a high concentration.
Figure (b) shows (a) of zeolite 4A particles that do not form nodules.
) is a similar figure. Applicant's agent Kaoru Furuya

Claims (1)

【特許請求の範囲】 1 アルミン酸塩水溶液と珪酸塩水溶液とを混合・ゲル
化し、引き続き熱水結晶化によシ結晶性アルミノ珪酸塩
を製造するにあたり、アルミン酸塩水溶液として30〜
70重量%濃度の水溶液を、又珪酸塩水溶液として50
〜50重量係濃重量水溶液を用い、結晶化と同時に粉砕
を行って結晶性アルミノ珪酸塩スラリーを生成せしめる
ことを特徴とする結晶性アルミノ珪酸塩の製造方法。 2 アルミン酸塩水溶液と珪酸塩水溶液との混合によっ
て得られる混合物の組成がモル比でNa2O:A720
. : Sin□: H2O= 1.2〜2,5 : 
1 :1.5〜3,0 : 1 s〜55である特許請
求の範囲第1項記載の結晶性アルミノ珪酸塩の製造法。 3 粉砕を循環系に設けた粉砕装置で行う特許請求の範
囲第1項又は第2項記載の結晶性アルミノ珪酸塩の製造
法。
[Scope of Claims] 1. In producing a crystalline aluminosilicate by mixing and gelling an aluminate aqueous solution and a silicate aqueous solution, and subsequently performing hydrothermal crystallization, 30 to
An aqueous solution with a concentration of 70% by weight, or a silicate aqueous solution with a concentration of 50% by weight.
A method for producing a crystalline aluminosilicate, which comprises using a concentrated aqueous solution of ~50% by weight and simultaneously crystallizing and pulverizing to produce a crystalline aluminosilicate slurry. 2 The composition of the mixture obtained by mixing the aluminate aqueous solution and the silicate aqueous solution is Na2O:A720 in molar ratio.
.. : Sin□: H2O= 1.2~2,5:
1:1.5 to 3.0:1 s to 55. The method for producing a crystalline aluminosilicate according to claim 1. 3. A method for producing a crystalline aluminosilicate according to claim 1 or 2, wherein the pulverization is carried out using a pulverizer installed in a circulation system.
JP13709882A 1982-08-06 1982-08-06 Preparation of crystalline aluminosilicate Granted JPS5926919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13709882A JPS5926919A (en) 1982-08-06 1982-08-06 Preparation of crystalline aluminosilicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13709882A JPS5926919A (en) 1982-08-06 1982-08-06 Preparation of crystalline aluminosilicate

Publications (2)

Publication Number Publication Date
JPS5926919A true JPS5926919A (en) 1984-02-13
JPS6351968B2 JPS6351968B2 (en) 1988-10-17

Family

ID=15190809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13709882A Granted JPS5926919A (en) 1982-08-06 1982-08-06 Preparation of crystalline aluminosilicate

Country Status (1)

Country Link
JP (1) JPS5926919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052682A (en) * 2015-09-11 2017-03-16 国立大学法人 東京大学 Production method of fine zeolite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070289A (en) * 1973-06-29 1975-06-11
JPS51128689A (en) * 1975-04-18 1976-11-09 Degussa Method of manufacturing aatype molecular sieves of crystalline zeolite
JPS5215500A (en) * 1975-07-26 1977-02-05 Henkel & Cie Gmbh Process for preparing zeoliteelike alkali aluminum silicate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070289A (en) * 1973-06-29 1975-06-11
JPS51128689A (en) * 1975-04-18 1976-11-09 Degussa Method of manufacturing aatype molecular sieves of crystalline zeolite
JPS5215500A (en) * 1975-07-26 1977-02-05 Henkel & Cie Gmbh Process for preparing zeoliteelike alkali aluminum silicate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052682A (en) * 2015-09-11 2017-03-16 国立大学法人 東京大学 Production method of fine zeolite

Also Published As

Publication number Publication date
JPS6351968B2 (en) 1988-10-17

Similar Documents

Publication Publication Date Title
US3912649A (en) Detergent composition employing alkali metal polysilicates
JPH06502445A (en) Coagulation method for aluminosilicate or layered silicate detergent builders
US3971727A (en) Alkali metal polysilicates, methods for their production and detergent compositions employing same
US3971631A (en) Pelletizing alkali metal polysilicates
US3956467A (en) Process for producing alkali metal polysilicates
US4213874A (en) Synthetic amorphous sodium aluminosilicate base exchange materials
JPH11510848A (en) Method for producing a high-density detergent composition using conditioned air
JPS6049133B2 (en) Production method of cation exchange fine particulate water-insoluble silicate
JP3594615B2 (en) Small particle size P-type zeolite
JPH0326795A (en) Zeolite aggregation process and product
JPS5926919A (en) Preparation of crystalline aluminosilicate
JP4185188B2 (en) Composite powder
GB2264941A (en) Preparing granular borates
JP4393862B2 (en) Manufacturing method of detergent particles
JP2004115791A (en) Detergent particle group
JP2000186300A (en) Preparation of mononuclear detergent particle group
JPS58156527A (en) Preparation of amorphous aluminosilicate
JPS5926918A (en) Preparation of crystalline aluminosilicate
TWI239351B (en) Particles for supporting surfactant and process for preparing the same
JP3412811B2 (en) Preparation of detergent particles
JPH10212116A (en) Production of clay mineral powder
JPH1121595A (en) Production of high-bulk-density particulate detergent composition
JP2002265992A (en) Base granule group and detergent particle group
JPS638211A (en) Production of fine a-type zeolite
JPS5849598B2 (en) cleaning composition