JPS5926895B2 - A device for measuring the partial pressure of a given gas component in a monitored gas environment - Google Patents

A device for measuring the partial pressure of a given gas component in a monitored gas environment

Info

Publication number
JPS5926895B2
JPS5926895B2 JP51145700A JP14570076A JPS5926895B2 JP S5926895 B2 JPS5926895 B2 JP S5926895B2 JP 51145700 A JP51145700 A JP 51145700A JP 14570076 A JP14570076 A JP 14570076A JP S5926895 B2 JPS5926895 B2 JP S5926895B2
Authority
JP
Japan
Prior art keywords
gas
electrode
diffusion
monitored
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51145700A
Other languages
Japanese (ja)
Other versions
JPS5269690A (en
Inventor
アーノルド・オツトー・アイセンバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS5269690A publication Critical patent/JPS5269690A/en
Publication of JPS5926895B2 publication Critical patent/JPS5926895B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier

Description

【発明の詳細な説明】 発明の分野 この発明は監視されたガス環境中の所定のガス成分の分
圧を測定するための改善された装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improved apparatus for measuring the partial pressure of a given gas component in a monitored gas environment.

発明の背景及び先行技術 固体及び液体の両者の電解質を使用して、ガス成分の分
圧を監視するための多数の技術及び装置が開発されたが
、これらの装置の若干のものの実用上の有用性、特に電
流動作型の実用上の有用性はガス流速変化及び温度変化
に敏感であるために、並びに電極構造物の劣化のために
しばしば制限を受けるのである。
BACKGROUND OF THE INVENTION AND PRIOR ART Although a number of techniques and devices have been developed for monitoring partial pressures of gaseous components using both solid and liquid electrolytes, the practical usefulness of some of these devices remains unclear. The practical usefulness of the current-operated type, particularly of the current-operated type, is often limited due to sensitivity to gas flow rate changes and temperature changes, and due to deterioration of the electrode structure.

拡散制限電流様式動作で動作する電気化学的電池の代表
例は「酸素分圧のポーラログラフ法測定方法(Meth
odForPolarographiCMeasure
mentOfOxygenPartialPressu
re)」と題する、1972年9月12日発行の米国特
許第3、691、023号明細書に記載されている。
A typical example of an electrochemical cell operating in a diffusion-limited current mode of operation is the ``Polarographic Method for Determination of Oxygen Partial Pressure (Meth
odForPolarographyCMasure
mentOfOxygenPartialPressu
No. 3,691,023, issued September 12, 1972.

この米国特許においては酸素イオン伝導固体電解質電気
化学電池がガスの酸素分圧を監視する。測定される電流
が電極の孔を通つて拡散する酸素の函数であり、こうし
て拡散に限定された重流様式の動作を行う電気化学的電
池を造るように電極/電解質境界面に存在する酸素を減
耗させるのに充分な大きさの電圧を電池の電極間にかけ
る。本明細書で酸素であるとして選定した問題とするガ
ス成分の分圧と拡散電流との間には直線関係が存在し、
従つて拡散電流は試料ガスの酸素分圧の直接的な指示値
として表わすことができる。この米国特許の教示により
造つた装置は、2高分圧試料ガスが存在すると拡散に限
定される電流様式の動作を達成するため電極/重解質境
界面の酸素を減耗するように電極間にかける電位が不当
に大きくなるから、一般に比較的低ガス分圧を監視する
のに限定される。さらにこの先行技術の装置の動作はガ
ス流速の変動、電極構造の変化(これは電極の拡散特性
を変化させる)に敏感である。米国特許第3,787,
308号では、電気化学電池を監視環境下に露出するの
を制限して酸素測定電気化学電池装置の有用範囲を拡げ
るためにオリフイスプレートを使用することを提唱した
。この酸素測定装置は環境中の酸素含量を測定するため
電気化学電池の零位様式の動作を行わせるためにブリツ
ジ回路に接続した1対の電池を含む。この配列はそれが
標準ガス源を必要とし、構造が複雑で、製造するのに高
価であるから不利である。発明の概要さて、添付図面を
参照してガス拡散により限定される電流を測定する電気
化学電池の実用上の有用性を改善する技術をここに開示
する。
In this US patent, an oxygen ion conducting solid electrolyte electrochemical cell monitors the oxygen partial pressure of a gas. The current measured is a function of the oxygen diffusing through the pores of the electrode, thus reducing the oxygen present at the electrode/electrolyte interface, creating an electrochemical cell that operates in a diffusion-limited, heavy-flow mode of operation. A voltage of sufficient magnitude is applied across the electrodes of the battery to cause depletion. There is a linear relationship between the partial pressure and diffusion current of the gas component of interest, which is selected here as oxygen, and
The diffusion current can therefore be expressed as a direct indication of the oxygen partial pressure of the sample gas. A device constructed in accordance with the teachings of this US patent is designed such that in the presence of two high partial pressure sample gases, there is a gap between the electrodes to deplete the oxygen at the electrode/heavyweight interface to achieve diffusion-limited current mode operation. It is generally limited to monitoring relatively low gas partial pressures because the applied potential becomes unduly large. Furthermore, the operation of this prior art device is sensitive to variations in gas flow rate, changes in electrode structure, which change the diffusion properties of the electrodes. U.S. Patent No. 3,787,
No. 308 proposed the use of orifice plates to limit exposure of the electrochemical cell to a monitored environment and extend the useful range of oxygen-measuring electrochemical cell devices. The oxygen measurement device includes a pair of batteries connected to a bridge circuit for operation in the null mode of an electrochemical cell to measure the oxygen content of the environment. This arrangement is disadvantageous because it requires a standard gas source, is complex in construction, and expensive to manufacture. SUMMARY OF THE INVENTION With reference now to the accompanying drawings, a technique is disclosed herein that improves the practical utility of electrochemical cells that measure currents limited by gas diffusion.

すなわちここに、内部室及び電池の内部電極が内部室の
環境に露出され、且つ外部電極が別の環境に露出される
ように内部室の一方の壁の一部を形成する電池とを備え
るアダプタ、及びアダプタの外部の環境から内部室へガ
スを拡散させる寸法をもつ、電気化学電池とは離れた別
のガス拡散孔を含む組体が開示される。電位を電気化学
電池の電極間にかけて内部室から監視しようとするガス
を供給(ポンプ)し、それによつて監視しようとするガ
スの圧力勾配を孔の内外に造り、孔を通つて拡散するガ
ス種の量に正比例する電流を発現させる。電池の電極間
に印加する電位の大きさは内部電極へガスの拡散を確保
するためにガス拡散孔の内側と外側との間のガス分圧勾
配を維持するのに充分な大きさだけが必要である。この
発明の分圧測定装置は、上述のように所定ガス成分の供
給を電気化学電池により行えば、ガス拡散孔を通るガス
種の拡散速度は監視される環境中のガス種の分圧を示す
ものであるという観察に基くものである。この明細書に
開示した技術によれば、電気化学電池と組合わせたハウ
ジングすなわちアダプタ中のガス拡散孔は、電極の大き
さと孔の構造とがガス測定装置のガス拡散能力を決定す
る上述した先行技術とは異つて、ガス拡散特性を決定す
る因子である。
namely, an adapter comprising an internal chamber and a battery forming part of one wall of the internal chamber such that the internal electrodes of the battery are exposed to the environment of the internal chamber and the external electrodes are exposed to another environment. An assembly is disclosed that includes a gas diffusion hole separate from the electrochemical cell and dimensioned to diffuse gas from an environment external to the adapter into the interior chamber. A potential is applied between the electrodes of an electrochemical cell to supply (pump) the gas to be monitored from an internal chamber, thereby creating a pressure gradient of the gas to be monitored in and out of the pore, and the gas species diffusing through the pore. develops a current that is directly proportional to the amount of. The potential applied between the electrodes of the cell needs only to be large enough to maintain a gas partial pressure gradient between the inside and outside of the gas diffusion hole to ensure gas diffusion to the internal electrodes. It is. In the partial pressure measuring device of the present invention, if a predetermined gas component is supplied by an electrochemical cell as described above, the diffusion rate of the gas species through the gas diffusion hole indicates the partial pressure of the gas species in the environment to be monitored. It is based on the observation that something is a thing. According to the technology disclosed in this specification, the gas diffusion holes in the housing or adapter in combination with the electrochemical cell are arranged as described above in which the size of the electrodes and the structure of the holes determine the gas diffusion capability of the gas measuring device. Unlike technology, it is a factor that determines gas diffusion properties.

更に電極構造がもはやガスの拡散を決定する重要な因子
ではないから、電気化学電池の動作寿命に及ぼす電極の
気孔率または構造はこの発明の改善された電池の動作に
顕著に影響しない。
Furthermore, since the electrode structure is no longer the critical factor determining gas diffusion, the porosity or structure of the electrodes on the operational life of the electrochemical cell does not significantly affect the operation of the improved cell of this invention.

その上、この発明の装置では電池の一方の電極と接触し
た標準ガス環境を必要としない〇最後に監視されたガス
環境内のガス流速の変化は、該流速の変化がガス拡散孔
を通して伝達されないから、この発明による改善された
電池装置の動作に有意に影響しない。
Moreover, the device of the invention does not require a standard gas environment in contact with one electrode of the cell; the last monitored gas flow rate change in the gas environment is such that the change in flow rate is not transmitted through the gas diffusion holes. Therefore, it does not significantly affect the operation of the improved battery device according to the present invention.

従つて、この発明の主たる目的は監視されたガス環境中
の所定のガス成分の分圧を測定するための改善された装
置を提供するにある。
Accordingly, it is a principal object of the present invention to provide an improved apparatus for measuring the partial pressure of a given gas component in a monitored gas environment.

この発明は、所定のガス成分を伝導することができる組
成をもつ電解質と緊密に接触して配置された第1第極及
び第2電極を備えた電気化学電池;監視されたガス環境
に露出されて、該環境内の所定のガス成分が第1電極に
接触するために拡散することを可能となす孔を備えたガ
ス拡散装置、第1電極及び第2電極に接続する測定装置
を含む監視されたガス環境中の所定のガス成分の分圧を
測定する装置において、上記電気化学電池が、前記孔を
通つて前記ガス成分が拡散するのを促進するのに充分な
、前記孔を通つて所定ガス成分の分圧差を確立するため
の供給(Puming)手段として動作することを特徴
とする装置にある。
The invention relates to an electrochemical cell comprising a first electrode and a second electrode placed in intimate contact with an electrolyte having a composition capable of conducting a predetermined gaseous component; a gas diffusion device having an aperture that allows a predetermined gas component in the environment to diffuse to contact a first electrode; and a measuring device connected to the first electrode and the second electrode. In an apparatus for measuring the partial pressure of a predetermined gas component in a gaseous environment, the electrochemical cell has a predetermined pressure through the pores sufficient to promote diffusion of the gas component through the pores. The apparatus is characterized in that it operates as a pumping means for establishing a partial pressure difference of gas components.

発明の好適な実施例 この発明は添付図面について下記の実施例の記載から一
層容易に明らかとなろう。
Preferred Embodiments of the Invention The invention will become more readily apparent from the following description of the embodiments, taken in conjunction with the accompanying drawings.

この明細書に開示する発明は電池組成に関係なく、どの
ような、そしてすべてのガス監視電気化学電池に直接適
用できる。
The invention disclosed herein is directly applicable to any and all gas monitoring electrochemical cells, regardless of cell composition.

この発明を記載するために第1図に選択的に説明する実
施例は固体電解質電気化学電池についての実施例である
が、ここに開示した発明の技術は問題とするガス成分す
なわち酸素、ナトリウム、塩素、水素などを監視するた
めの装置に使用した液状及び重合体状電解質に適用でき
ることは明らかである。この発明は醒気化学電池それ自
体に関するものではなく、むしろ所定のガス成分の差分
圧が確立されたガス拡散孔を有するアダプタすなわちハ
ウジングを使用すること、およびこのような差分圧を確
立するための供給手段としての電池の使用に関する。第
1図を参照すると、上述した米国特許第3,691,0
23号に記述し説明した型の、固体電解質24、ガス拡
散アダプタ30の壁内に封密された内部電極22及び外
部電極26から成る、電気化学電池20を含むガス監視
組体10を概略図により説明する。
Although the embodiment selectively illustrated in FIG. 1 to describe the invention is an embodiment for a solid electrolyte electrochemical cell, the inventive technique disclosed herein can be applied to the gas components of interest, namely oxygen, sodium, It is clearly applicable to liquid and polymeric electrolytes used in devices for monitoring chlorine, hydrogen, etc. The present invention is not concerned with a charged chemical cell per se, but rather with the use of an adapter or housing having gas diffusion holes in which a differential pressure of a given gas component is established, and the use of an adapter or housing for establishing such a differential pressure. Concerning the use of batteries as a supply means. Referring to FIG. 1, the above-mentioned U.S. Pat. No. 3,691,0
23 is a schematic representation of a gas monitoring assembly 10 comprising an electrochemical cell 20 consisting of a solid electrolyte 24, an inner electrode 22 and an outer electrode 26 sealed within the walls of a gas diffusion adapter 30; This is explained by:

ガス拡散アダプタ30はガス拡散孔32を通つて拡散す
るガスが監視されたガス環境Gから内部室34に入り、
内部電極22に接触するのを制限する大きさの寸法のガ
ス拡散孔32を含む。電解質物質は監視しようとする電
気化学的に活性なガス種に基いて選択される。酸素が監
視しようとする問題のガスであるとすると、電解質は酸
素の移動を支持する物質から選ばれ、もしナトリウムが
問題の監視しようとするガス種であるとすると、ナトリ
ウム伝導電解質が選ばれるなどである。内部電極22の
構造は監視しようとするガス種を容易に選ぶように多孔
性である。
The gas diffusion adapter 30 allows gas diffusing through the gas diffusion holes 32 to enter the interior chamber 34 from the monitored gas environment G;
It includes a gas diffusion hole 32 sized to limit contact with the internal electrode 22 . The electrolyte material is selected based on the electrochemically active gas species to be monitored. If oxygen is the gas in question to be monitored, then the electrolyte is chosen from a substance that supports the movement of oxygen; if sodium is the gas species in question to be monitored, a sodium-conducting electrolyte is chosen, etc. It is. The structure of the internal electrode 22 is porous to facilitate selection of the gas species to be monitored.

白金は慣用の電極組成である。上述のように、電解質組
成物は監視しようとするガス種の伝導を支持するように
選ばれる。特にこの発明を説明するために選択した実施
例は酸素イオン伝導固体電解質から成り、この固体電解
質は顕著な酸素イオン伝導性及び最小の電子伝導性を示
し、多数の固体電解質酸素電池のいずれか一つの構造及
び組成に対応するものである。上述のように、電気化学
電池材料の選択は監視しようとする問題のガス種に依存
する。例えばナトリウムイオンを監視する用途において
は第1図の電気化学重池20は顕著なナトリウムイオン
伝導性を示す電解質すなわち例えばβ−アルミナを含有
する電池によつて置換えることができる。同様に電気化
学亀池組成物は監視しようとするガス種を監視するのに
好適な多数の重合体、固体または液体電解質を含むよう
に変化させることができる。第1図の実施例においては
、外部電極26は監視されたガス環境Gまたは空気を含
む他の環境に露出させることができる。
Platinum is a conventional electrode composition. As mentioned above, the electrolyte composition is selected to support conduction of the gas species to be monitored. Specifically, the embodiment selected to illustrate the invention consists of an oxygen ion-conducting solid electrolyte that exhibits significant oxygen ion conductivity and minimal electronic conductivity and that is suitable for use in any of a number of solid electrolyte oxygen cells. It corresponds to two structures and compositions. As mentioned above, the choice of electrochemical cell material depends on the gas species in question to be monitored. For example, in sodium ion monitoring applications, the electrochemical cell 20 of FIG. 1 can be replaced by a cell containing an electrolyte exhibiting significant sodium ion conductivity, such as beta-alumina. Similarly, electrochemical Kameike compositions can be varied to include a number of polymeric, solid or liquid electrolytes suitable for monitoring the gas species to be monitored. In the embodiment of FIG. 1, external electrode 26 may be exposed to a monitored gas environment G or other environment including air.

外部電極26と接触する安定な標準ガス環境を必要とし
ないことは明らかである。ガス拡散孔32を通つて監視
されたガス環境Gからガスを内部室34中へガスを拡散
させることは監視しようとする問題のガス種である酸素
すなわち内部室34中に存在する酸素を電解質24を通
して外部電極26へ輸送するように指示された極性をも
つ内部電極22及び外部電極26間に電源40から直流
電圧をかけてガス拡散孔32を通して圧力勾配を確立す
ることによつて達成される。
It is clear that a stable standard gas environment in contact with the external electrode 26 is not required. Diffusion of gas from the monitored gas environment G into the interior chamber 34 through the gas diffusion holes 32 transfers oxygen, the gas species of interest to be monitored, present in the interior chamber 34 to the electrolyte 24. This is accomplished by establishing a pressure gradient through the gas diffusion holes 32 by applying a DC voltage from the power source 40 between the inner electrode 22 and the outer electrode 26 with a polarity directed to be transported through the gas to the outer electrode 26 .

これは監視されたガス環境Gからガス拡散孔32を通つ
て内部室34へと酸素の拡散を起させる。内部電極22
の寸法は、ガス拡散孔32の大きさに比してガス拡散孔
32を通るガス拡散が内部電極22のガス拡散能力に決
して等しくはないか、或はそれよりも大きくはなくする
のに充分に大きい面積のものである。換言すれは、ガス
測定組体10中のガス拡散制限因子はガス拡散孔32の
大きさであつて、内部電極22の大きさではない。この
配列においては、電解質24を通る電荷の移動を決定し
、電流測定回路42により監視される上記ガス拡散から
生ずる電流を決定するのはガス拡散孔32を通るガスの
拡散である。電池20はガス成分測定装置としての機能
を果すのではなく、電荷輸送動作を行うための装置とし
ての機能を果すことを注意すべきである。この点は内部
電極22のガス輸送能力が電解質を通る電荷の移動を決
定し、従つて測定される電流の大きさを決定する前述の
米国特許明細書に記載の拡散制限様式のものとは異るの
である。先行技術の動作と第1図及び第4図に示す概念
との間のその他の主要な差異は電気化学電池の電極間に
かけられた直流電位の厳密な規制である。
This causes the diffusion of oxygen from the monitored gas environment G through the gas diffusion holes 32 into the interior chamber 34 . Internal electrode 22
The dimensions of the gas diffusion hole 32 are sufficient to ensure that the gas diffusion through the gas diffusion hole 32 is never equal to or greater than the gas diffusion capacity of the inner electrode 22 compared to the size of the gas diffusion hole 32. It has a large area. In other words, the gas diffusion limiting factor in the gas measurement assembly 10 is the size of the gas diffusion holes 32, not the size of the internal electrodes 22. In this arrangement, it is the diffusion of gas through the gas diffusion holes 32 that determines the movement of charge through the electrolyte 24 and the current resulting from the gas diffusion monitored by the current measurement circuit 42. It should be noted that the battery 20 does not function as a gas component measuring device, but rather as a device for performing charge transport operations. This is in contrast to the diffusion-limited mode described in the above-mentioned U.S. patent, where the gas transport capacity of the internal electrode 22 determines the transfer of charge through the electrolyte and thus the magnitude of the measured current. It is. The other major difference between prior art operation and the concept shown in FIGS. 1 and 4 is the strict regulation of the DC potential applied between the electrodes of an electrochemical cell.

上述したように、拡散に限定される電流様式の動作を確
立するために必要な先行技術の装置にかけられる電位は
電極と電解質との境界面に存在する酸素を枯渇させるの
に充分な大きさのものでなければならず、またこの状態
を維持するのに充分なほど安定でなければならない。先
行技術の装置が監視されたガス環境Gに対応する環境に
暴露されているから、亀池の動作は敏感な電極/亀解質
境界面から監視しようとする問題のガス成分を枯渇させ
る印加電位の能力に依存する。このような装置の動作は
、慣用の電気化学電池構造は比較的高分圧の監視しよう
とするガス成分を含有するガスに直接露出された電池の
拡散限定電流禄式の動作を確立するのに必要な電位の大
きさに耐えることはできないから、比較的低分圧に限ら
れるのである。第1図の実施例において拡散限定電流様
式の動作を確立するのは内部電極22ではなくて、むし
ろガス拡散孔32の大きさである。
As mentioned above, the potential applied to prior art devices necessary to establish diffusion-limited current mode operation is of sufficient magnitude to deplete the oxygen present at the electrode-electrolyte interface. and must be stable enough to maintain this state. Since the prior art device is exposed to an environment corresponding to the monitored gaseous environment G, Kameike's operation involves applying an applied potential that depletes the gas component of interest to be monitored from the sensitive electrode/Kameike interface. Depends on ability. The operation of such devices is such that conventional electrochemical cell construction establishes diffusion-limited current operation of cells directly exposed to gases containing relatively high partial pressures of the gaseous component to be monitored. Since they cannot withstand the magnitude of the required potential, they are limited to relatively low partial pressures. In the embodiment of FIG. 1, it is not the internal electrode 22, but rather the size of the gas diffusion holes 32 that establishes the diffusion-limited current mode of operation.

従つて、電源40によつて発現される直流重圧の大きさ
は監視されたガス環境Gから内部室34へとガスの拡散
を確保するためにガス拡散孔32を横切る分圧勾配を維
持する目的たけに対して選定される。ガス拡散孔32の
大きさがガス監視組体10の拡散限定特性を決定すると
いう事実は電気化学電池20の設計の選定及び電気化学
電池20の動作を実質上温度変化に無関係となすために
印加電圧の大きさの選定を自由にする。第2図を参照す
れば、この図には電池電流の測定値対所定の動作温度、
印加電圧及びガス拡散孔直径における酸素?の関係を示
す数組の曲線を示す。
Therefore, the magnitude of the DC pressure developed by the power source 40 is intended to maintain a partial pressure gradient across the gas diffusion hole 32 to ensure diffusion of gas from the monitored gas environment G into the interior chamber 34. Selected for bamboo. The fact that the size of the gas diffusion holes 32 determines the diffusion-limiting properties of the gas monitoring assembly 10 makes it possible to select the design of the electrochemical cell 20 and to make the operation of the electrochemical cell 20 substantially independent of temperature changes. Freely select the voltage level. Referring to Figure 2, this figure shows measured battery current versus a given operating temperature.
Oxygen at applied voltage and gas diffusion hole diameter? Several sets of curves showing the relationship are shown.

図において曲線1は1000′C,lボルト(7)、ガ
ス拡散孔面積0.1m7i1曲線2は1000℃,1V
,0.85md1曲線3は1000℃,1V,2.26
m7i1曲線4は1000℃,1V,2.26miIL
1曲線5は700℃,1V,2,26mi1曲線6は7
00℃,1V,2.26md1曲線7は700℃,1V
,2.26m7i1曲線8は1000℃,0.6V,2
.26m7iにおけるそれぞれ測定電流値(ミリアンペ
ア)と酸素?との関係をプロツトした図である。曲線5
,6,7及び8における屈曲点(Knee)はそれらの
曲線の直線部分によつて表わされるガス拡散孔32によ
つて確立される拡散様式からの電池の動作様式の転位点
を表わす。一方曲線の屈曲点後の曲線部分は上述の米国
特許に開示した屯極の拡散特性によつて電流は制限され
る。同じガス混合物、印加電圧及びガス拡散孔に対応し
、しかし環境温度が異る曲線3及び5の直線部分は正確
に一致し、従つて温度変化に対するガス監視組体10の
相対的な非感受性を示すことを注意されたい。ガス拡散
孔の大きさ対電池の感度の代表的な曲線を第3図に示す
。ガス拡散孔32に対する第3図に示す孔の大きさを選
択すればガス監視組体10に対する広範囲のガス分圧応
答が確保でき、ガス拡散孔32の寸法の選択を最適化が
第3図に説明する型の曲線の使用によつて実現すること
ができる。第1図の実施例における外部電極26は監視
されたガス環境Gに露出されているから、明らかに安定
なガス標準環境の必要がないことを示すが、第4図のフ
ランジFにおけるガス監視組体10の実施例では、内部
電極22はガス拡散孔32を通つて拡散する監視された
ガス環境Gからのガスに露出されているけれども、外部
電極26はパイプP中を流れる監視されたガス環境Gか
ら隔離されている。
In the figure, curve 1 is 1000'C, l volt (7), gas diffusion hole area 0.1m7i1 curve 2 is 1000'C, 1V
, 0.85md1 curve 3 is 1000℃, 1V, 2.26
m7i1 curve 4 is 1000℃, 1V, 2.26miIL
1 curve 5 is 700℃, 1V, 2,26mi1 curve 6 is 7
00℃, 1V, 2.26md1 curve 7 is 700℃, 1V
, 2.26m7i1 curve 8 is 1000℃, 0.6V, 2
.. Measured current value (milliampere) and oxygen at 26m7i, respectively? This is a diagram plotting the relationship between curve 5
, 6, 7, and 8 represent transition points in the mode of operation of the cell from the diffusion mode established by the gas diffusion holes 32 represented by the straight portions of their curves. On the other hand, in the portion of the curve after the inflection point, the current is limited by the diffusion characteristics of the tube pole disclosed in the above-mentioned US patent. The linear portions of curves 3 and 5, corresponding to the same gas mixture, applied voltage and gas diffusion holes, but with different ambient temperatures, coincide exactly, thus demonstrating the relative insensitivity of the gas monitoring assembly 10 to temperature changes. Please note that A typical curve of gas diffusion hole size versus cell sensitivity is shown in FIG. The selection of the hole sizes shown in FIG. 3 for the gas diffusion holes 32 ensures a wide range of gas partial pressure responses for the gas monitoring assembly 10, and the selection of the dimensions of the gas diffusion holes 32 is optimized as shown in FIG. This can be achieved by using curves of the type described. Since the external electrode 26 in the embodiment of FIG. 1 is exposed to the monitored gas environment G, clearly indicating that there is no need for a stable gas standard environment, the gas monitoring assembly at the flange F of FIG. In the embodiment of body 10, inner electrode 22 is exposed to gas from a monitored gas environment G diffusing through gas diffusion holes 32, while outer electrode 26 is exposed to gas from a monitored gas environment G flowing through pipe P. isolated from G.

この発明の大抵の実際上の実施の場合には1個のガス拡
散孔をもつガスアダプタを使用するけれども1個より多
いガス拡散孔を設置するという改変も動作上の要求によ
り指示されるならは使用できることは明らかである。
Although most practical implementations of this invention will use a gas adapter with one gas diffusion hole, modifications may be made to install more than one gas diffusion hole if operational requirements dictate. It is clear that it can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の概略断面説明図で、第2図
及び3図は第1図で代表的に示したこの発明の動作を説
明するグラフであり、第4図は第1図に示したこの発明
の他の実施態様の略概説明図である。 図中:10・・・・・・ガス監視組体、20・・・・・
・電池、22・・・・・・内部電極、24・・・・・・
固体電解質、26・・・・・・外部電極、30・・・・
・・ガス拡散アダプタ、32・・・・・・ガス拡散孔、
34・・・・・・内部室、40・・・・・・電源、42
・・・・・・電流計、G・・・・・・監視されたガス環
境、F・・・・・・フランジ、P・・・・・・パイプ。
FIG. 1 is a schematic cross-sectional explanatory diagram of an embodiment of the present invention, FIGS. 2 and 3 are graphs explaining the operation of the present invention representatively shown in FIG. 1, and FIG. FIG. 2 is a schematic explanatory diagram of another embodiment of the present invention shown in FIG. In the diagram: 10... Gas monitoring assembly, 20...
・Battery, 22...Internal electrode, 24...
Solid electrolyte, 26... External electrode, 30...
...Gas diffusion adapter, 32...Gas diffusion hole,
34...Inner chamber, 40...Power supply, 42
...Ammeter, G...Monitored gas environment, F...Flange, P...Pipe.

Claims (1)

【特許請求の範囲】 1 所定のガス成分を運ぶことができる組成をもつ電解
質と緊密に接触して配置された第1電極及び第2電極を
備えた電気化学電池、監視されたガス環境に露出されて
いて上記所定のガス成分が第1電極と接触するために拡
散する孔を備えたガス拡散装置、第1電極及び第2電極
に接続した測定装置を含む、監視されたガス環境中の所
定のガス成分の分圧を測定する装置において、該電気化
学電池は該ガス成分が前記孔を通つて拡散するのを促進
するのに充分な上記孔の前後の前記ガス成分の分圧差を
確立するための供給装置として動作し、前記測定装置が
前記監視された環境中の上記ガス成分の分圧の指示とし
ての上記ガス成分の拡散速度の尺度である生じた電流を
測定するものであることを特徴とする、監視されたガス
環境中の所定のガス成分の分圧を測定する装置。 2 孔の大きさが第1電極の大きさに比較して、孔を通
るガスの拡散が第1電極のガス拡散能力に等しくないか
または第1電極のガス拡散能力を越えないように充分に
小である、特許請求の範囲第1項記載の装置。 3 所定のガス成分が酸素であり、電気化学電池が酸素
イオン伝導性を示す。 特許請求の範囲第1項記載の装置。4 ガス拡散装置と
電気化学電池とが組合わされて内部室を備えたガスヂン
サーの囲いを形成し、電気化学電池が上記囲いの一方の
壁に設置されて内部室から所定のガス成分を供給して孔
を横切つて所定のガス成分の差分圧を確立する、特許請
求の範囲第1項記載の装置。
Claims: 1. An electrochemical cell comprising a first electrode and a second electrode placed in intimate contact with an electrolyte having a composition capable of carrying a predetermined gaseous component, exposed to a monitored gaseous environment. a gas diffusion device having holes through which said predetermined gas component diffuses into contact with a first electrode; and a measuring device connected to said first electrode and said second electrode. In an apparatus for measuring the partial pressure of a gaseous component, the electrochemical cell establishes a partial pressure difference in the gaseous component across the aperture sufficient to promote diffusion of the gaseous component through the aperture. said measuring device is intended to measure the resulting current which is a measure of the rate of diffusion of said gaseous component as an indication of the partial pressure of said gaseous component in said monitored environment. An apparatus for measuring the partial pressure of a predetermined gas component in a monitored gas environment. 2. The size of the pores is sufficient compared to the size of the first electrode such that the diffusion of gas through the pores is not equal to or exceeds the gas diffusion capacity of the first electrode. 2. The device of claim 1, wherein the device is small. 3. The predetermined gas component is oxygen, and the electrochemical cell exhibits oxygen ion conductivity. An apparatus according to claim 1. 4. A gas diffusion device and an electrochemical cell are combined to form a gas generator enclosure with an internal chamber, the electrochemical cell being installed on one wall of said enclosure and supplying a predetermined gas component from the internal chamber. 2. The apparatus of claim 1, wherein a differential pressure of a predetermined gas component is established across the hole.
JP51145700A 1975-12-05 1976-12-06 A device for measuring the partial pressure of a given gas component in a monitored gas environment Expired JPS5926895B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63799875A 1975-12-05 1975-12-05

Publications (2)

Publication Number Publication Date
JPS5269690A JPS5269690A (en) 1977-06-09
JPS5926895B2 true JPS5926895B2 (en) 1984-07-02

Family

ID=24558227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51145700A Expired JPS5926895B2 (en) 1975-12-05 1976-12-06 A device for measuring the partial pressure of a given gas component in a monitored gas environment

Country Status (8)

Country Link
JP (1) JPS5926895B2 (en)
AU (1) AU502736B2 (en)
BE (1) BE849063A (en)
CA (1) CA1071709A (en)
DE (1) DE2654483A1 (en)
FR (1) FR2334101A1 (en)
GB (1) GB1523550A (en)
IT (1) IT1064510B (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158166A (en) * 1976-11-24 1979-06-12 Westinghouse Electric Corp. Combustibles analyzer
GB1571282A (en) * 1976-03-11 1980-07-09 City Tech Gas sensor
US4231733A (en) * 1978-05-31 1980-11-04 Westinghouse Electric Corp. Combined O2 /combustibles solid electrolyte gas monitoring device
JPS559178A (en) * 1978-07-07 1980-01-23 Nippon Denso Co Ltd Oxygen concentration detector
DE2911548A1 (en) * 1979-03-23 1980-09-25 Bayer Ag GAS DETECTOR
DE2923483A1 (en) * 1979-06-09 1980-12-11 Bosch Gmbh Robert POLAROGRAPHIC PROBE FOR DETERMINING THE OXYGEN CONTENT IN GAS, ESPECIALLY IN EXHAUST GAS FROM COMBUSTION ENGINES
NL7906833A (en) * 1979-09-13 1981-03-17 Philips Nv GAS ANALYZER.
FR2466016A1 (en) * 1979-09-21 1981-03-27 Thomson Csf Exhaust gas analyser for IC engine - has metallic cap protecting measuring cell screwed into exhaust assembly
US4449919A (en) * 1980-07-10 1984-05-22 Tokyo Shibaura Denki Kabushiki Kaisha Gas combustion apparatus capable of detecting environmental oxygen deficiency
JPS57154050A (en) * 1981-03-19 1982-09-22 Toyota Motor Corp Oxygen sensor element
JPS57154049A (en) * 1981-03-19 1982-09-22 Toyota Motor Corp Oxygen sensor element
JPS58182151U (en) * 1982-05-31 1983-12-05 株式会社フジクラ solid electrolyte oxygen meter
JPS5931444A (en) * 1982-08-16 1984-02-20 Hitachi Ltd Lean sensor
JPS5958356A (en) * 1982-09-28 1984-04-04 Fuji Electric Corp Res & Dev Ltd Gas analysis apparatus and its production
US4659435A (en) * 1983-02-18 1987-04-21 Corning Glass Works Integrally heated electrochemical cell method and apparatus
JPS59163556A (en) * 1983-03-08 1984-09-14 Nippon Denso Co Ltd Oxygen concentration detecting apparatus
JPS59184854A (en) * 1983-04-06 1984-10-20 Hitachi Ltd Oxygen sensor
JPH065220B2 (en) * 1983-07-04 1994-01-19 トヨタ自動車株式会社 Oxygen concentration detector
JPS6017452U (en) * 1983-07-14 1985-02-06 トヨタ自動車株式会社 oxygen concentration detector
JPS6025958U (en) * 1983-07-28 1985-02-21 株式会社フジクラ Oxygen concentration measuring device
JPS5985951A (en) * 1983-10-03 1984-05-18 Nissan Motor Co Ltd Apparatus for measuring oxygen concentration
JPS6086457A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Air fuel ratio sensor for controlling engine
JPH0612354B2 (en) * 1983-11-28 1994-02-16 株式会社日立製作所 Method for manufacturing oxygen concentration measuring device
JPS6091251A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Air-fuel ratio sensor
JPS6093341A (en) * 1983-10-27 1985-05-25 Fujikura Ltd Oxygen concentration sensor
JPS60114764A (en) * 1983-11-28 1985-06-21 Fujikura Ltd Measurement of oxygen concentration
JPS59192953A (en) * 1983-12-12 1984-11-01 Toyota Central Res & Dev Lab Inc Analytical apparatus for concentration of gaseous oxygen
JPS60173461A (en) * 1984-02-20 1985-09-06 Nissan Motor Co Ltd Oxygen sensor
JPS60235048A (en) * 1984-05-07 1985-11-21 Toyota Motor Corp Method for controlling supply of current to resistance heat generation type electric heater of oxygen sensor
JPS60235047A (en) * 1984-05-07 1985-11-21 Toyota Motor Corp Method for controlling temperature of oxygen sensor with heater for internal-combustion engine
JPS6118856A (en) * 1984-07-06 1986-01-27 Fujikura Ltd Heating of sensor
US4568443A (en) * 1984-09-06 1986-02-04 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio sensor
DE3433187C2 (en) * 1984-09-10 1986-11-27 Mitsubishi Denki K.K., Tokio/Tokyo Sensor for measuring the air / fuel ratio
JPS61132854A (en) * 1984-11-30 1986-06-20 Shimadzu Corp Limiting current type oxygen sensor
FR2575551B1 (en) * 1984-12-27 1987-03-06 Brunel Gerald OXYGEN PROBE DEVICE AND ELECTRONIC COMBUSTION CONTROL EQUIPMENT PROVIDED WITH SUCH A PROBE
JPH0743340B2 (en) * 1985-04-15 1995-05-15 三洋電機株式会社 Oxygen concentration detector
GB2182447B (en) * 1985-10-18 1990-01-24 Honda Motor Co Ltd Device for measuring a component of a gaseous mixture
DE3702838A1 (en) * 1986-02-01 1987-08-13 Fuji Electric Co Ltd OXYGEN SENSOR AND METHOD FOR THE PRODUCTION THEREOF
EP0281375A3 (en) * 1987-03-04 1989-11-29 Westinghouse Electric Corporation Oxygen analyzer
JPH0291556A (en) * 1988-09-29 1990-03-30 Fujikura Ltd Oxygen concentration analyzer
DE3908393A1 (en) * 1989-03-15 1990-09-27 Bosch Gmbh Robert SENSOR ELEMENT FOR LIMIT CURRENT SENSORS FOR DETERMINING THE (LAMBDA) VALUE OF GAS MIXTURES
DE19721232A1 (en) * 1996-05-31 1997-12-04 Electrovac Oxygen particle pressure sensor with two measuring ranges

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400054A (en) * 1966-03-15 1968-09-03 Westinghouse Electric Corp Electrochemical method for separating o2 from a gas; generating electricity; measuring o2 partial pressure; and fuel cell
US3514377A (en) * 1967-11-27 1970-05-26 Gen Electric Measurement of oxygen-containing gas compositions and apparatus therefor
US3650934A (en) * 1969-11-14 1972-03-21 Westinghouse Electric Corp Oxygen control and measuring apparatus
DE2317914A1 (en) * 1973-04-10 1974-10-24 Bbc Brown Boveri & Cie METHOD OF MEASURING LOW OXYGEN CONTENT IN LIQUIDS AND SOLIDS
US3860498A (en) * 1973-07-02 1975-01-14 Westinghouse Electric Corp Method of measuring O{HD 2 {B and O{HD 2 {B containing constituents
NL7309537A (en) * 1973-07-09 1975-01-13 Philips Nv GAS ANALYSIS DEVICE.

Also Published As

Publication number Publication date
CA1071709A (en) 1980-02-12
JPS5269690A (en) 1977-06-09
AU502736B2 (en) 1979-08-09
IT1064510B (en) 1985-02-18
BE849063A (en) 1977-06-03
AU2019576A (en) 1978-06-08
FR2334101A1 (en) 1977-07-01
FR2334101B1 (en) 1981-01-02
GB1523550A (en) 1978-09-06
DE2654483A1 (en) 1977-07-07

Similar Documents

Publication Publication Date Title
JPS5926895B2 (en) A device for measuring the partial pressure of a given gas component in a monitored gas environment
US3691023A (en) Method for polarographic measurement of oxygen partial pressure
US4158166A (en) Combustibles analyzer
US3260656A (en) Method and apparatus for electrolytically determining a species in a fluid
US6746587B2 (en) Electrochemical gas sensor
GB1080343A (en) Electrochemical device
JP2001215214A (en) Hydrogen gas sensor
Yan et al. A solid polymer electrolyte-bases electrochemical carbon monoxide sensor
US6074539A (en) Electrochemical sensor for the detection of hydrogen cyanide
LaConti et al. Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres
US3657639A (en) Method and apparatus for measuring the state of charge of a battery using a reference battery
SE460623B (en) ION SELECTIVE POTENTIOMETRIC MEASURING DEVICE
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
RU189631U1 (en) Sensor for measuring the concentration of oxygen and hydrogen in inert, protective and oxidizing gas mixtures
JPS60112266A (en) Specific gravity sensor for lead storage battery
EP0150182A4 (en) Measuring an extended range of air fuel ratio.
JP3650919B2 (en) Electrochemical sensor
JP2003207483A (en) Gas sensor
Weininger et al. State‐of‐Charge Indicator for Lead‐Acid Batteries
US4539092A (en) Plasma oxygen permeability meter
RU2053506C1 (en) Solid electrolyte sensor for gas analysis
Dominguez et al. New gas polarographic hydrogen sensor
JPH0425753A (en) Gas sensor
SU966581A1 (en) Device for measuring oxygen diffusion coefficient in metals and oxides