JPS5926328B2 - Gas phase reactor - Google Patents
Gas phase reactorInfo
- Publication number
- JPS5926328B2 JPS5926328B2 JP12577576A JP12577576A JPS5926328B2 JP S5926328 B2 JPS5926328 B2 JP S5926328B2 JP 12577576 A JP12577576 A JP 12577576A JP 12577576 A JP12577576 A JP 12577576A JP S5926328 B2 JPS5926328 B2 JP S5926328B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction
- phase reactor
- tubular body
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
- C23C16/45508—Radial flow
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 本発明は気相反応装置に関するものである。[Detailed description of the invention] The present invention relates to a gas phase reactor.
気相成長反応にお(・ては反応室に導入された反応物質
を含んだガスの流れる状態が反応効率や反応生成物の純
度あるいは反応生成物の膜厚や膜質の均一性に大きな影
響を与える。このため気相反応装置においては反応室内
の形状や導入ガスの噴出方向等を充分考慮して設計する
ことが重要となつて来る。従来では、気相化学反応を用
いて反応生成物を形成対象物上に堆積被着させる場合、
ベースとなるキャリア−ガス中に反応成分を添加した混
合ガスを、形成対象物が設置され適当な反応温度に昇温
された反応室内のガス噴射装置を介して導入することに
より行なつていた。In vapor phase growth reactions, the flow conditions of the gas containing the reactant introduced into the reaction chamber have a large effect on the reaction efficiency, the purity of the reaction product, and the uniformity of the film thickness and film quality of the reaction product. For this reason, it is important to design a gas-phase reactor by taking into account the shape of the reaction chamber, the direction of the gas to be introduced, etc. Conventionally, gas-phase chemical reactions are used to generate reaction products. When depositing on the object to be formed,
This was carried out by introducing a mixed gas in which reactive components were added to a base carrier gas through a gas injection device into a reaction chamber in which the object to be formed was installed and the temperature was raised to an appropriate reaction temperature.
第1図に従来の気相成長装置の断面概略図を示し、同図
を用いてガス噴射装置1から噴射されたガスの流れにつ
いて説明する。ガス噴射装置1の下方のガス導入口2よ
り導入された反応成分を含んだ混合ガスは、ガス導入口
2と反対側のガス噴出口3より反応室4内に噴出される
。ガス噴出口3の開口面積は、ガス導入口2の開口面積
よりも小さくなつているので、I 反応室4内に噴出さ
れるガスの噴射速度はガス導入口2に導入されるガスの
速度よりも犬となる。反応室4内に噴出されたガスはペ
ルシャー5上部に到達した後、反応室4下方に導びかれ
その一部のガスは形成対象物6を載置し且つ気相化学反
応j を行なわしめる温度に高周波熱装置7により昇温
されたサセプター8上に達する。サセプター8はサセプ
ター支持台9により回転されると共に支持されている。
反応成分を含んだ混合ガスは形成対象物6おより びサ
セプター8上で反応を行ない反応生成物を堆積被着する
。FIG. 1 shows a schematic cross-sectional view of a conventional vapor phase growth apparatus, and the flow of gas injected from the gas injection apparatus 1 will be explained using the same figure. A mixed gas containing reaction components introduced from the gas inlet 2 at the lower part of the gas injection device 1 is ejected into the reaction chamber 4 from the gas outlet 3 on the opposite side to the gas inlet 2. Since the opening area of the gas outlet 3 is smaller than the opening area of the gas inlet 2, the injection velocity of the gas injected into the reaction chamber 4 is lower than the velocity of the gas introduced into the gas inlet 2. also becomes a dog. After the gas ejected into the reaction chamber 4 reaches the upper part of the Persian 5, it is guided to the lower part of the reaction chamber 4, and a part of the gas is heated to a temperature at which the object to be formed 6 is placed and a gas phase chemical reaction j is carried out. The heat reaches the susceptor 8 heated by the high-frequency heating device 7. The susceptor 8 is rotated and supported by a susceptor support base 9.
The mixed gas containing the reaction components reacts on the formation object 6 and the susceptor 8, and the reaction products are deposited thereon.
その後サセプター8の中心部方向に流れ再度中心部に位
置しているガス噴射装置1から噴出されたガスに巻込ま
れた状態となり再びペルシャー5上部へ導びかれる。5
すなわち従来の気相成長装置における反応室4内のガ
スの流れは反応室4中心からペルシャー5の内壁に向つ
ての対流状態となつており、また反応室4内に導入され
た反応成分を含んだ混合ガスの一部のみしか形成対象物
6上に達しないために以下の欠点を生じていた。Thereafter, the gas flows toward the center of the susceptor 8 and is again engulfed by the gas ejected from the gas injection device 1 located at the center, and is again guided to the upper part of the persier 5. 5
That is, the flow of gas in the reaction chamber 4 in the conventional vapor phase growth apparatus is in a convection state from the center of the reaction chamber 4 toward the inner wall of the Persian 5, and the gas does not contain the reaction components introduced into the reaction chamber 4. However, only a portion of the mixed gas reaches the formation target 6, resulting in the following drawbacks.
(1)形成対象物6上に到達する対流ガスの成分として
は導入された混合ガス成分とサセプター8上で既に気相
反応により生成した副生成ガスおよび反応室4内で発生
する不純物ガス、例えば高温に昇温されているサセプタ
ー8や形成対象物6から発散した吸着ガスおよび混合ガ
ス成分と形成対象物6との反応により生じる成分、例え
ばSOS(シリコン・オン・サファイア)結晶成長にお
けるアルミナの水素キャリヤーにおける還元作用で発生
する酸化アルミニウム(Al2O、AlO)等、種々雑
多な成分を含むので形成対象物6上に堆積被着する反応
生成物の純度は必らずしも目的とした物質のみの清浄な
物とは限らない。(1) Components of the convective gas that reaches the formation target 6 include the introduced mixed gas component, by-product gas already generated by gas phase reaction on the susceptor 8, and impurity gas generated in the reaction chamber 4, for example. Components generated by the reaction between adsorbed gas and mixed gas components emitted from the susceptor 8 and the formation target 6 heated to high temperatures and the formation target 6, such as hydrogen in alumina during SOS (silicon on sapphire) crystal growth. Since it contains various miscellaneous components such as aluminum oxide (Al2O, AlO) generated by the reduction action in the carrier, the purity of the reaction product deposited on the object 6 is not necessarily limited to the target substance. It doesn't necessarily mean something clean.
(2)反応室4内に導入された混合ガスの一部は、ペル
シャー5の内壁とサセプター8の間隙を通り、気相成長
装置下方に配置されているガス排出口10から装置外に
排出される。(2) A part of the mixed gas introduced into the reaction chamber 4 passes through the gap between the inner wall of the Persian 5 and the susceptor 8, and is discharged to the outside of the apparatus from the gas outlet 10 located below the vapor growth apparatus. Ru.
反応室4内における前記混合ガスの流れは形成対象物6
上への反応生成物の堆積被着には寄与しないため導入さ
れた混合ガスの利用効率が悪い。本発明はこれらの欠点
を解決することを目的とした気相反応装置を提供するも
ので、以下実施例により図面と共に本発明を説明する。The flow of the mixed gas in the reaction chamber 4 causes the object to be formed 6
Since it does not contribute to the deposition of reaction products on top, the efficiency of utilization of the introduced mixed gas is poor. The present invention provides a gas phase reactor aimed at solving these drawbacks, and the present invention will be explained below with reference to Examples and drawings.
第2図は本発明の一実施例を示す気相反応装置の断面概
略図を示す。FIG. 2 shows a schematic cross-sectional view of a gas phase reactor showing one embodiment of the present invention.
ガス噴射装置11は反応装置下方の中心に配設されてい
て、ガス導入口12を有し、該ガス導入口12と反対の
先端部にはガス遮蔽板22がガス導入方向と直交してガ
ス噴射装置11の一端を封じるように配設されている。
また前記ガス遮蔽板22近傍のガス噴射装置11上の側
面には複数個のガス噴出口13を有している。該ガス噴
出口13から反応室14内に噴射されるガスの噴射速度
は、該ガス噴出口13の開口総面積がガス導入口12の
開口面積よりも小さくなつているため、ガス導入口12
に導入される反応成分とベースとなるキャリアーガスの
混合ガスの導入速度よりも大となる。このため、ガス導
入口12より導入された混合ガスはガス噴射装置11下
方から上方に向かつて進行後、ガス噴出口13から反応
室14内にほぼ横方向に大きな速度で噴射される。噴射
された混合ガスの大半は形成対象物16を載置し、且つ
気相化学反応を行なわしめる温度に高周波加熱装置17
により昇温された基台となるサセプター18上に達する
。該サセプター18はサセプター支持台19により支持
されると共に、ガス噴射装置11を中心として水平方向
に回転している。混合ガス中の反応成分は形成対象物1
6やサセプター18上で反応を行ない反応生成物を堆積
被着する。その後サセプター18上を進行したガス流は
ペルシャー15の内壁近傍に配設されたガス流制御部と
してのガス流制御壁21に衝突する。該ガス流制御壁2
1は大きい口径と小さい口径の開口部を有した直円錐台
形状の隔壁部23と該隔壁部23の小さい開口部に同示
円状の貫通孔を有した円板状の隔壁部24とが一体的に
結合されてなる形状であり、前記隔壁部23の大きい口
径の開口部が反応室14の下面を向く様に配設されてい
る。尚、該ガス流制御壁21の大きい口径の開口部の取
付高さはサセプター18の取付高さとガス噴射装置11
の最頂部の高さ位置の間である。また該ガス流制御壁2
1の隔壁部23の直円錐台形状の仰角は45壁以下が望
ましい。また隔壁部24の開口部の口径は、サセプター
18の外径の%から1倍の間が適当である。ガス流制御
壁21やペルシャー15の内壁に衝突したガス流は横方
向の流れから下向きの流れに変換せられサセプター18
とペルシャー15の内壁のなす間隙を通り、気相反応装
置下方に配設されているガス排出口20から装置外に排
出される。即ちガス流制御壁21は、サセプター18上
でのガス流が対流となることを防止あるいは抑制する効
果を持つ。なお、ガス流制御部は、本実施例のもの以外
にペルシャー15の側壁に設けられる排出口であつても
可能である。The gas injection device 11 is disposed at the center of the lower part of the reaction device, and has a gas inlet 12, and a gas shielding plate 22 is provided at the tip opposite to the gas inlet 12, and is perpendicular to the gas introduction direction. It is arranged so as to close one end of the injection device 11.
Further, a plurality of gas ejection ports 13 are provided on the side surface of the gas injection device 11 near the gas shielding plate 22 . The injection speed of the gas injected into the reaction chamber 14 from the gas outlet 13 is lower than that of the gas inlet 12 because the total opening area of the gas outlet 13 is smaller than the opening area of the gas inlet 12.
The rate of introduction of the mixed gas of the reaction components and the base carrier gas is higher than the rate of introduction of the mixed gas. Therefore, the mixed gas introduced through the gas inlet 12 travels upward from below the gas injection device 11, and then is injected from the gas injection port 13 into the reaction chamber 14 in a substantially lateral direction at a high speed. Most of the injected mixed gas is heated to a high-frequency heating device 17 at a temperature at which the formation target 16 is placed and a gas phase chemical reaction is carried out.
The heat reaches the susceptor 18, which serves as a base, and is heated by this process. The susceptor 18 is supported by a susceptor support base 19 and rotates horizontally around the gas injection device 11. The reaction component in the mixed gas is the object to be formed 1
The reaction is carried out on the susceptor 18 and the reaction product is deposited. Thereafter, the gas flow traveling on the susceptor 18 collides with a gas flow control wall 21 as a gas flow control section disposed near the inner wall of the Persian 15. The gas flow control wall 2
1 has a partition wall part 23 in the shape of a truncated right cone having openings with a large diameter and a small diameter, and a partition wall part 24 in the shape of a disk having a circular through hole in the small opening of the partition wall part 23. The partition wall 23 has a large diameter opening facing the lower surface of the reaction chamber 14. The mounting height of the large diameter opening of the gas flow control wall 21 is equal to the mounting height of the susceptor 18 and the gas injection device 11.
It is between the highest height position of . Also, the gas flow control wall 2
The elevation angle of the right circular truncated cone shape of the partition wall portion 23 is preferably 45 walls or less. The diameter of the opening of the partition wall 24 is suitably between % and 1 times the outer diameter of the susceptor 18. The gas flow that collides with the gas flow control wall 21 and the inner wall of the Persian 15 is converted from a lateral flow to a downward flow and is transferred to the susceptor 18.
It passes through the gap formed by the inner wall of the gas phase reactor 15 and is discharged from the gas phase reactor from the gas exhaust port 20 located below the reactor. That is, the gas flow control wall 21 has the effect of preventing or suppressing the gas flow on the susceptor 18 from becoming convection. Note that the gas flow control section may be an exhaust port provided on the side wall of the Persian 15 other than the one in this embodiment.
以下に本発明の気相反応装置の効果を述べる。The effects of the gas phase reactor of the present invention will be described below.
(1)反応室14に導入された反応成分を含んだ混合ガ
スは、従来例で述べた如くの対流を生じることなく、ガ
ス流制御壁とガス噴射装置の作用効果により絶えず新鮮
な混合ガスが形成対象やサセプター18上を覆つている
ので清浄な反応生成物を均一性よく得ることが可能とな
る。即ち、形成対象物からのオートドーピングや、アウ
トデイフユージヨンまたはサセプターあるいはペルシャ
ーからの不純物の混入が防止できるので、例えばサフア
イア基板上にシリコンを成長させるような、基板と異種
物質の気相成長には特に効果的である。(2)反応室に
導入された反応成分を含んだ混合ガスの大半が形成対象
物やサセプター近傍を流れるため反応成分の殆んどが反
応を行なうので効率よく反応生成物を形成対象物上に堆
積被着することが出来る。(1) The mixed gas containing the reaction components introduced into the reaction chamber 14 does not cause convection as described in the conventional example, and is constantly supplied with fresh mixed gas due to the effects of the gas flow control wall and the gas injection device. Since it covers the object to be formed and the susceptor 18, it is possible to obtain a clean reaction product with good uniformity. In other words, it is possible to prevent autodoping from the object to be formed and the incorporation of impurities from out-diffusion, susceptors, or Persians, so that it is possible to prevent the vapor phase growth of a substrate and a foreign material, such as growing silicon on a sapphire substrate. It is particularly effective for (2) Most of the mixed gas containing reaction components introduced into the reaction chamber flows near the object to be formed and the susceptor, so most of the reaction components react, so the reaction products are efficiently transferred onto the object to be formed. Can be deposited.
(3)上記第(2)項に記載したように、混合ガスの大
半が形成対象物やサセプターの近傍を流れるため、反応
生成物を所定量に限定した場合、反応温度や混合ガス中
の反応成分濃度や混合ガス流量等を従来装置と同一条件
にして反応を行なうと、従来装置よりも堆積速度が大と
なり、堆積に要する時間が短縮できるので、反応成生物
を減少させても従来と同様の堆積が行なえる。(3) As described in item (2) above, since most of the mixed gas flows near the object to be formed and the susceptor, when the reaction products are limited to a predetermined amount, the reaction temperature and the reaction in the mixed gas If the reaction is carried out under the same conditions as the conventional device, such as component concentration and mixed gas flow rate, the deposition rate will be higher than that of the conventional device, and the time required for deposition can be shortened, so even if the reaction products are reduced, the reaction will be the same as the conventional device. can be deposited.
また、堆積速度が大であるため、反応温度を低くしても
従来装置により得たものと同一の堆積層が得られるので
、形成対象物からのオートドーピングやアウトデイフユ
ージヨンが抑制でき、不純物分布の急峻な堆積層を得る
ことができる。反応速度を従来と同一のものにして同一
堆積層を得ようとする場合、反応温度を下げる以外に、
反応成分を含んだ混合ガス濃度を稀くすることも可能で
あるので、有毒物質や可燃性物質を用いた反応において
は危険性が減少する。(4)上記第(3)項に記載した
ように、本発明装置では、従来と同一堆積層を得るのに
、短時間で行なえるため、反応温度に加熱するための電
力、反応物質およびキャリアーガス等の資源節約が可能
となる。In addition, because the deposition rate is high, the same deposited layer as that obtained with conventional equipment can be obtained even if the reaction temperature is lowered, so autodoping and outdiffusion from the object to be formed can be suppressed. A deposited layer with a steep impurity distribution can be obtained. When trying to obtain the same deposited layer with the same reaction rate as before, in addition to lowering the reaction temperature,
It is also possible to reduce the concentration of the gas mixture containing the reactants, thereby reducing the danger in reactions involving toxic or flammable substances. (4) As described in item (3) above, with the apparatus of the present invention, it is possible to obtain the same deposited layer as in the conventional method in a short time. It becomes possible to save resources such as gas.
以上本発明による気相反応装置は、工業上、特に半導体
工業において価値の高いものである。As described above, the gas phase reactor according to the present invention is of high value industrially, particularly in the semiconductor industry.
第1図は従来の気相反応装置の断面概略図、第2図は本
発明の気相反応装置の一実施例の断面概略図である。
11・・・・・・ガス噴射装置、12・・・・・・ガス
導入口、13・・・・・・ガス噴出口、14・・・・・
・反応室、15・・・・・・ペルシャー 16・・・・
・・形成対象物、17・・・・・・高周波加熱装置、1
8・・・・・・基台、19・・・・・・サセプター支持
台、20・・・・・・ガス排出口、21・・・・・・ガ
ス流制御部、22・・・・・・ガス遮蔽板。FIG. 1 is a schematic cross-sectional view of a conventional gas phase reactor, and FIG. 2 is a schematic cross-sectional view of an embodiment of the gas phase reactor of the present invention. 11...Gas injection device, 12...Gas inlet, 13...Gas spout, 14...
・Reaction chamber, 15... Persian 16...
...Object to be formed, 17...High frequency heating device, 1
8...Base, 19...Susceptor support stand, 20...Gas exhaust port, 21...Gas flow control unit, 22...・Gas shielding plate.
Claims (1)
前記形成対象物に反応ガスを噴出するガス噴出口を有す
るガス噴射装置と、前記形成対象物を通過した前記反応
ガスが再度前記形成対象物に接触しないように前記反応
ガスを導くガス流制御部とが反応室内に形成されたこと
を特徴とする気相反応装置。 2 ガス噴射装置が管状体よりなり、前記管状体の一端
に、前記管状体の一端の開口面積より大きな面積を有す
るガス遮蔽板を有するとともに、前記管状体の側壁の前
記ガス遮蔽板近傍に複数個のガス噴出口を有することを
特徴とする特許請求の範囲第1項に記載の気相反応装置
。 3 ガス流制御部が、下方に向つて開口面積が大きくな
る両端開放の管状体よりなり、反応室内壁に設けられた
ことを特徴とする特許請求の範囲第1項に記載の気相反
応装置。[Claims] 1. A base on which an object to be formed by vapor phase growth is placed;
a gas injection device having a gas jetting port for ejecting a reaction gas to the object to be formed; and a gas flow control unit that guides the reaction gas so that the reaction gas that has passed through the object does not come into contact with the object again. A gas phase reactor characterized in that a gas phase reactor is formed in a reaction chamber. 2. The gas injection device is made of a tubular body, and has a gas shielding plate at one end of the tubular body having an area larger than the opening area of one end of the tubular body, and a plurality of gas shielding plates are provided on a side wall of the tubular body near the gas shielding plate. 2. The gas phase reactor according to claim 1, characterized in that the device has two gas jet ports. 3. The gas phase reactor according to claim 1, wherein the gas flow control section is formed of a tubular body with both ends open so that the opening area becomes larger toward the bottom, and is provided on the wall of the reaction chamber. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12577576A JPS5926328B2 (en) | 1976-10-19 | 1976-10-19 | Gas phase reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12577576A JPS5926328B2 (en) | 1976-10-19 | 1976-10-19 | Gas phase reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5350076A JPS5350076A (en) | 1978-05-08 |
JPS5926328B2 true JPS5926328B2 (en) | 1984-06-26 |
Family
ID=14918520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12577576A Expired JPS5926328B2 (en) | 1976-10-19 | 1976-10-19 | Gas phase reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5926328B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145198A (en) * | 1980-04-04 | 1981-11-11 | Hitachi Ltd | Forming method of single crystal silicon membrane and device therefor |
-
1976
- 1976-10-19 JP JP12577576A patent/JPS5926328B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5350076A (en) | 1978-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950012910B1 (en) | Vapor phase growth apparatus | |
US6444262B1 (en) | Thermal processing unit and thermal processing method | |
TW544775B (en) | Chemical vapor deposition apparatus and chemical vapor deposition method | |
EP1386981B1 (en) | A thin film-forming apparatus | |
US8465802B2 (en) | Chemical vapor deposition reactor and method | |
JPH04348031A (en) | Chemical vapor growth equipment | |
US6818249B2 (en) | Reactors, systems with reaction chambers, and methods for depositing materials onto micro-device workpieces | |
JP2006069888A (en) | Method for manufacturing polycrystal silicon rod and manufacturing apparatus | |
JPH09246192A (en) | Thin film gas phase growing device | |
JPS5926328B2 (en) | Gas phase reactor | |
US4582020A (en) | Chemical vapor deposition wafer boat | |
JPS592536B2 (en) | gas injection device | |
US4548159A (en) | Chemical vapor deposition wafer boat | |
JPS5920381B2 (en) | Gas phase reactor | |
JPH1050615A (en) | Single wafer processing gas-phase growth device | |
JPH0530350Y2 (en) | ||
JP5493062B2 (en) | Metalorganic vapor phase epitaxy system | |
JPH026389A (en) | Apparatus for vapor growth of semiconductor thin film | |
JPH10158098A (en) | Vapor phase growth method and system for gan thin film | |
JPS63199412A (en) | Vapor growth device | |
JPS61248519A (en) | Chemical vapor deposition apparatus | |
JPS6154616A (en) | Gas exhausting process | |
JPH0967192A (en) | Vapor growth device | |
JPH01297820A (en) | Apparatus and method for applying film to board | |
JPH0662534U (en) | Chemical vapor deposition equipment |