JPS5926060A - Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil - Google Patents

Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil

Info

Publication number
JPS5926060A
JPS5926060A JP6472982A JP6472982A JPS5926060A JP S5926060 A JPS5926060 A JP S5926060A JP 6472982 A JP6472982 A JP 6472982A JP 6472982 A JP6472982 A JP 6472982A JP S5926060 A JPS5926060 A JP S5926060A
Authority
JP
Japan
Prior art keywords
sample
column
component
hydrocarbons
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6472982A
Other languages
Japanese (ja)
Inventor
Kyosuke Kasamatsu
笠松 喬介
Junko Nakagawa
淳子 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd, Mitsui Petrochemical Industries Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP6472982A priority Critical patent/JPS5926060A/en
Publication of JPS5926060A publication Critical patent/JPS5926060A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To separate and sample quickly and exactly the satd. component, olefinic component and arom. component in a sample hydrocarbon oil, by providing metallic columns, a pump, etc. which withstand respectively high pressures and determining the partition points of the three components by using an indicator added to the sample or silica gel. CONSTITUTION:A sample hydrocarbon oil is drawn by an injection cylinder 8 into a sample loop 7, and a displacement solvent such as isopropyl alcohol or the like is fed from a vessel 1 through a high pressure-resistant pump 2, a three-way valve 5, and a six-way valve 6 to the loop 7 where the sample is passed through high pressure-resistant metallic columns 11 packed with silica gel to a flow cell 14 arranged to avoid the incorporation of foam. A small column 16 contg. a fluorescent indicator (JIS K 2536) or the like for analyzing the compsn. of petroleum products, i.e., hydrocarbons which is incorporated in a silica gel is placed in front of the inlet of the columns 11, and the point where the absorbancy increases sharply at each partition point of the components which are separated in order of the satd. component, the olefinic component, the aromatic component and the displacement component is detected with an autograph UV visible spectrophotometer 13, whereby the respective components are quickly and exactly separated and drawn. The three components contg. no displacement solvent are thus separated with high purity.

Description

【発明の詳細な説明】 この発明は石油製品等の炭化水素油をその構成成分であ
る飽和炭化水素(以下飽和分きいう)、オレフィン炭化
水素(以下、オレフィン分という)、芳香族炭化水素(
以下、芳香族分という)、の3化合物タイプに分離して
採取する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to hydrocarbon oils such as petroleum products, which contain saturated hydrocarbons (hereinafter referred to as saturated components), olefin hydrocarbons (hereinafter referred to as olefin components), and aromatic hydrocarbons (hereinafter referred to as olefin components).
The present invention relates to a method for separating and collecting aromatic compounds into three types (hereinafter referred to as aromatic components).

石油製品等の炭化水素油に含有される炭化水素は飽和分
、オレフィン分、芳香族分の3化合物タイプに大別され
るので、炭化水素油の組成をこれら3化合物タイプの含
有率で表現することは、炭化水素油の最も基本的な試験
の一つとなっている。しかしながら、オレフィン分を含
有する炭化水素油において、飽和分、オレフィン分、芳
香族分の3化合物タイプのすべてを高い純度で、各種測
定が可能なように数ml程度の量分離採取することはこ
れまで極めて困難であった。このことば現在における自
動車カッリンの主要原料の一つである接触分解ナフサの
精密、詳細な分析を困難にしているだけでなく、石油代
替燃料としての重質油分解生成油やオイルシェール油等
、オレフィン分を主要構成成分とする炭化水素油の研究
開発にも障害となるものである。
The hydrocarbons contained in hydrocarbon oils such as petroleum products are roughly divided into three compound types: saturated, olefin, and aromatic, so the composition of hydrocarbon oil is expressed by the content of these three compound types. This has become one of the most basic tests for hydrocarbon oils. However, in hydrocarbon oil containing olefins, it is difficult to separate and collect all three types of compounds, saturated, olefin, and aromatic, in amounts of several ml to enable various measurements with high purity. It was extremely difficult. This term not only makes precise and detailed analysis of catalytic cracking naphtha, one of the main raw materials for automotive Kallin, difficult, but also makes it difficult to analyze catalytic cracking naphtha, which is currently one of the main raw materials for automobile Kallin, and also makes it difficult to analyze olefins such as heavy oil cracked oil and oil shale oil, which are used as alternative fuels for petroleum. This also poses an obstacle to the research and development of hydrocarbon oils whose main constituents are

本発明はこの様な事情を背景さしてなされたものであっ
て、その目的とする吉ころは、主としてオレフィン分含
有量の比較的高い炭化水素油から、飽和分、オレフィン
分、芳香族分の3化合物タイプすべてを、より詳細な分
析・試験に供しうる程度の純度で数mlの量、分離採取
する方法を提供することにある。同様の目的をもって従
来試みられた方法としては、微小球状シリカゲルを充て
ん剤とし、n−ヘキサンまたはフッ素化環状エーテルを
溶出溶剤とした高速液体クロマトクラフィーへシリヵヶ
ルヲ充てん剤としだカラムと、シリカケルに硝酸銀を担
持させたものを充てん剤としだカラムを組み合わせ、シ
クロヘキサン、ベンゼンで溶出を行なう高速液体クロマ
トクラフィーなどがある。しかしこれらの方法は1回に
処理しうる試料の量が数百mg以下と少いため、数ml
の各化合物タイプを採取するには莫大な時間と労力を要
し、しかもこれらの方法で分離される各化合物タイプは
溶出溶剤で希釈された状態でしか採取できないため、採
取後溶出溶剤を蒸発除去することが必要で−ある。その
ため試料中の低沸点の成分が蒸発によって失なわれるこ
とはさけられず、特にガソリン留分の炭化水素油は溶出
溶剤と沸点が近いため、この様な溶出液体クロマトグラ
フィーの適用は不可能である。
The present invention was developed against the background of the above, and its objective is to obtain a hydrocarbon oil with a relatively high olefin content, and to reduce the saturated content, olefin content, and aromatic content from hydrocarbon oil with a relatively high olefin content. The object of the present invention is to provide a method for separating and collecting all compound types in amounts of several ml with a purity level that can be subjected to more detailed analysis and testing. Previously attempted methods for the same purpose include high-performance liquid chromatography using microspherical silica gel as a packing material and n-hexane or fluorinated cyclic ether as an elution solvent. There is high-performance liquid chromatography, which combines a column loaded with cyclohexane and benzene as a packing material. However, these methods can only process a few hundred mg of sample at a time;
It takes a huge amount of time and effort to collect each compound type, and each compound type separated by these methods can only be collected diluted with the elution solvent, so the elution solvent must be removed by evaporation after collection. It is necessary to do so. Therefore, it is inevitable that low-boiling components in the sample will be lost by evaporation, and in particular, hydrocarbon oils from gasoline fractions have boiling points close to the elution solvent, making it impossible to apply such elution liquid chromatography. be.

従って分離法としては、溶出溶剤を含まない状態で成分
が採取できる置換クロマトグラフィーの利用が好ましい
が、オレフィン分を含む炭化水素油を対象とした置換ク
ロマトクラフィーの公知の方法としては、ASTMD2
003が唯一の方法であった。この方法はオレフィン分
を含有する沸点221°C以下の炭化水素油から飽和分
のみを分離採取することを目的としており、本発明が目
的としている、飽和分、オレフィン分、芳香族分の3化
合物タイプすべての分離採取には本来適さないが、この
方法に規定外の拡張を加え、飽和分を採取したあとその
まま試料の流出を続ければ、オレフィン分と芳香族分が
順次流出してくるので、分離採取を行なうことは不可能
ではない。しかしながら、この方法は、(イ)カラムと
して長さ約2.9 mと、長大なカラス管を使用するた
め洗浄等の取扱いがいちじるしく不便である、(ロ)カ
ラムかガラス製で破裂の危険があるためカラム内圧力を
高くすることができず、このため試料および置換溶剤の
流速を大きくできないので、分離に極めて長時間を要し
、試料の粘度1こよっては実施不能の場合もある、など
多くの点で実用性に乏しい。
Therefore, as a separation method, it is preferable to use displacement chromatography, which allows the components to be collected without an eluent, but known methods for displacement chromatography targeting hydrocarbon oils containing olefins include ASTM D2
003 was the only way. The purpose of this method is to separate and collect only the saturated component from a hydrocarbon oil with a boiling point of 221°C or less that contains olefin components, and the three compounds targeted by the present invention: saturated component, olefin component, and aromatic component. Although it is not originally suitable for separating and collecting all types, if you add an unspecified extension to this method and continue to flow out the sample after collecting the saturated component, the olefin component and aromatic component will flow out one after another. It is not impossible to perform separate sampling. However, this method (a) uses a long glass tube with a length of about 2.9 m, which makes handling such as cleaning extremely inconvenient; and (b) the column is made of glass, which poses a risk of rupture. Because of this, it is not possible to increase the pressure inside the column, and therefore the flow rate of the sample and replacement solvent cannot be increased, so separation takes an extremely long time, and it may not be possible to carry out the process due to the viscosity of the sample. It is impractical in many respects.

本発明は上述の様な諸問題を解決し、飽和分、オレフィ
ン分、芳香族分の3化合物タイプ間における良好な分離
を達成したものであるが、そのための手段として本発明
ではまず第一に、実用上望ましい大きな流速で試料およ
び置換溶剤を安全に流すことができるよう、十分な耐圧
性を有する金属製パイプをカラムに使用するこさを特徴
とする。本発明において、当該3化合物タイプ間の良好
な分離を達成するためにとられた手段における第2の特
徴は、カラムに試料および置換溶剤を流すために、十分
な耐圧性を有し一定した任意の流速で液体を押し出すこ
とのできる送液ポンプを使用することである。送液にポ
ンプを使用することによって、従来置換クロマトグラフ
ィーで行なわれていた、ガスで加圧して送液する方法で
は達せられなかった、流速の精密な設定、調節および一
定流速での送、液が可能となった。
The present invention solves the above-mentioned problems and achieves good separation between the three types of compounds: saturated, olefin, and aromatic. The column is characterized by the use of metal pipes with sufficient pressure resistance so that the sample and replacement solvent can be safely flowed at a practically desirable high flow rate. In the present invention, a second feature of the measures taken to achieve good separation between the three compound types is that the column has sufficient pressure resistance and constant randomization to flow the sample and displacement solvent through the column. The solution is to use a liquid pump that can push out liquid at a flow rate of . By using a pump for liquid delivery, it is possible to precisely set and control the flow rate, as well as to send the liquid at a constant flow rate, which was not possible with the conventional displacement chromatography method of pressurizing the liquid with gas. became possible.

以上を組み合わせた置換クロマトクラフィーによれば、
従来なし得なかった、炭化水素油の飽和分、オレフィン
分、芳香族分間の迅速かつ良好な分離が容易に達成でき
、試料中の成分はカラム末端より、飽和分、オレフィン
分、芳香族分の順に流出して来るから、これをそれぞれ
別の受器に分割採取すればよい。各化合物タイプ間の分
割点すなわち、それぞれの受器を交換する時期の決定は
本分離操作における重要な部分であるが、これを確実、
容易に行なう一つの方法として、本発明では自記紫外・
可視分光光度計を用いてカラム流出液の吸光強度を連続
的に記録し、得られるクロマトクラムから分割点を決定
することを特徴とする。
According to displacement chromatography that combines the above,
A quick and good separation of the saturated, olefin, and aromatic components of hydrocarbon oil, which could not be achieved in the past, can be easily achieved. Since they flow out one after the other, you can divide them into separate containers and collect them. Determining the split point between each compound type, i.e. when to replace each receiver, is an important part of this separation procedure;
In the present invention, one method to easily carry out is self-recording ultraviolet light
It is characterized in that the absorption intensity of the column effluent is continuously recorded using a visible spectrophotometer, and the dividing points are determined from the resulting chromatogram.

炭化水素油の成分のうち芳香族分はそれ自身紫外光を強
く吸収するため、検出器を紫外部の適当な波長たとえは
280 amに設定しておけば、オレフィン分と芳香族
分の分割点は、芳香族分の流出にもとすく吸光強度の急
激な増大によってただちに決定できる。しかし他の成分
および置換溶剤として用いるアルコール類はすべて紫外
・可視光に対し吸収を示さないため、オレフィン分・芳
香族分間の分割点以外の分割点は試料成分そのものの吸
光強度によっては決定しえない。このため本発明におい
ては飽和分とオレフィン分の中間および芳香族分と置換
溶剤の中間にそれぞれ流出し、かつ紫外又は可視光を吸
収するような指示薬を、あらかじめ試料又はカラム中に
添加しておき、これら指示薬の流出によって生じる吸光
強度の変化によって分割点を決定する方法をとる。この
目的のための指示薬としては上述の性質を有する物質で
あれは利用できるが、容易に入手しうるものとして、石
油製品の炭化水素組成分析(けい光指示薬吸着法、J 
I S K 2536 )に使用するけG)光指示薬が
好適である。本けい光指示薬中の一成分は飽和分とオレ
フィン分の分割点付近に流出し、かつ紫外光に対し吸収
を示す。検出器の波長を280#mに設定しておけばそ
の流出によってクロマトクラムに明瞭なピークを生じる
ので、分割点は明確に決定することができる。ついでオ
レフィン分の流出中も引きつつき検出器の波長を280
 、:mに設定しておけは前述のように芳香族分の流出
による吸光強度の急増により、オレフィン分と芳香族分
の分割点も正確に決定できる。また本けい光指示薬中の
他の一成分である赤色染料は芳香族分と置換溶剤の分割
点付近に流出するが、この染料は波長500 em付近
に吸収極大を有するので、芳香族分の流出中に検出器の
波長を5000−5=に切り換えておくことにより、こ
の波長で吸収を示さない芳香族分のあとにこの染料か置
換溶剤とともに流出して来ると、急激に吸光強度か増大
し、この分割点もまた明確に決定できる。
Among the components of hydrocarbon oil, the aromatic component itself strongly absorbs ultraviolet light, so if the detector is set to an appropriate wavelength in the ultraviolet region, for example 280 am, the dividing point between the olefin component and the aromatic component can be detected. can be immediately determined by the rapid increase in absorption intensity even when aromatic components are released. However, since the other components and the alcohols used as replacement solvents do not absorb any ultraviolet or visible light, the dividing points other than the dividing point between the olefin component and the aromatic component cannot be determined depending on the absorption intensity of the sample component itself. do not have. For this reason, in the present invention, an indicator that flows out between the saturated component and the olefin component and between the aromatic component and the displacement solvent and absorbs ultraviolet or visible light is added in advance to the sample or column. , a method is used to determine the dividing point based on the change in absorption intensity caused by the outflow of these indicators. As an indicator for this purpose, any substance with the above-mentioned properties can be used, but the most readily available one is hydrocarbon composition analysis of petroleum products (fluorescent indicator adsorption method, J.
G) Optical indicators for use in ISK 2536) are preferred. One component in this fluorescent indicator flows out near the dividing point between the saturated and olefin components, and exhibits absorption of ultraviolet light. If the wavelength of the detector is set to 280#m, the outflow will produce a clear peak in the chromatogram, so the dividing point can be clearly determined. Then, while the olefin component was flowing out, the wavelength of the peck detector was set to 280.
, :m, the division point between the olefin component and the aromatic component can be accurately determined due to the sudden increase in the light absorption intensity due to the outflow of the aromatic component as described above. In addition, the red dye, which is another component in this fluorescent indicator, flows out near the dividing point between the aromatic component and the replacement solvent, but since this dye has an absorption maximum near the wavelength of 500 em, the aromatic component flows out. By switching the wavelength of the detector to 5000-5 = 5,000-5 during the process, when the aromatic component that does not exhibit absorption at this wavelength flows out together with the dye or replacement solvent, the absorption intensity increases rapidly. , this dividing point can also be clearly determined.

しかしながら、置換クロマトクラフィーにおいてはカラ
ム流出液中に気泡の混在かさけられないため、分光光度
検出器で吸光強度を測定するためにカラム流出液を通過
させるフローセルとしては、通常高速液体クロマトグラ
フィーなどに使用されている、カラムに直結して用いる
微小容量のフローセルは、気泡による大きなノイズを発
生するため利用できない。本発明ではこの困難を解決す
るために発明者らが考案したフローセルを用いることを
特徴とする。本フローセルはその入口部分をろと状に開
放にした、サイホン形式のフローセルであって、カラム
流出液をろと状部分に滴下することによって気泡を大気
中に逃がし、液体のみをフローセルに流通させるように
したものである。本フローセルの使用によって、カラム
流出液の吸光強度は気泡の影響なしに記録すること力≦
可會ヒとなった。
However, in displacement chromatography, air bubbles cannot be mixed in the column effluent, so the flow cell through which the column effluent passes to measure the absorption intensity with a spectrophotometric detector is usually used in high-performance liquid chromatography. The micro-capacity flow cells that are used for direct connection to columns cannot be used because they generate a lot of noise due to air bubbles. The present invention is characterized by using a flow cell devised by the inventors in order to solve this difficulty. This flow cell is a siphon-type flow cell with an open inlet in the shape of a funnel, and by dropping the column effluent into the funnel, air bubbles escape into the atmosphere and only liquid flows through the flow cell. This is how it was done. By using this flow cell, the absorption intensity of the column effluent can be recorded without the influence of air bubbles.
It became possible to meet.

試料成分の分割へ決定をより簡便ζこ1斤なう一つの方
法として、炭化水素組成分析(eす(7)光指示薬吸着
法)と同様目視によって行なうことも可能である。これ
を確実に行なう方法として、本発明ではカラムの出口側
端末Oこ十分な面十圧4生を有するカラス製カラムを分
割点決定用カラムとして接続して用いることを特徴とす
る。本フyラスカラムには主たるカラムである金属製カ
ラムと同様にシリカゲルを充てんする力S1そのさい入
口側端末から1〜2 Glηの位置(こCすG′1光指
示薬入りシリカケルを少量添加しておtす(ま分書l」
点の決定は紫外線ランプの光を照射1−ることζこよっ
て容易に行なうことがてきる。
As another method to more easily determine the division of sample components, it is also possible to perform visual inspection similar to hydrocarbon composition analysis (e.g. (7) optical indicator adsorption method). As a method to ensure this, the present invention is characterized in that a column made of glass having a sufficient surface pressure of 4 at the outlet end of the column is connected and used as a column for determining the dividing point. This fissure column is filled with silica gel in the same way as the main column, which is a metal column. Otsu (Ma bunsho l)
The point can be easily determined by irradiating it with light from an ultraviolet lamp.

つぎに従来シリカゲルを充てん剤とした置換クロマトク
ラフィーにおいて6よ、実施の者β明断しいシリカゲル
をカラムに充てんして用し)、使用済ノシリカゲルは1
回ごとに使(/1捨てさA′1.るのが通例であり、使
用済のシリカケルを繰返し使用することはまったく行な
われてし)な力Sつた。しかしながら、長いカラムを使
用する場合や数本のカラムを連結して使用する場合等に
おいては、シリカゲルをカラムに充てんする作業にかな
りの時間と労力を必要とし、かつ充てんの良否が分離成
績に影響を及はすごとから、毎回充てんしなおすことは
好ましいことではない。
Next, in conventional displacement chromatography using silica gel as a packing material, the practitioner β clearly fills the column with silica gel and uses it), and the used silica gel is 1
It is customary to use (/1 A'1.) each time, and it is never practiced to use used silica gel repeatedly. However, when using a long column or connecting several columns, it requires a considerable amount of time and effort to fill the column with silica gel, and the quality of the packing affects the separation results. It is not a good idea to refill the battery every time as the battery is overflowing.

また使用済のシリカケルを1回どきに使い捨てすること
は、経済性の点から置換クロマトクラフィーに利用しう
るシリカゲルの範囲を限定することとなり、高性能であ
っても高価格のシリカゲルは実用上利用し得なかった。
Furthermore, discarding used silica gel once only limits the range of silica gel that can be used for displacement chromatography from an economic point of view. Couldn't use it.

本発明は、置換クロマトグラフィーに使用したシリカゲ
ルを、カラムに充てんされた状態のまま、簡単な方法で
再生し、繰返し使用するこ吉を、その特徴の一つとして
含むものである。すなわち、置換クロマトグラフィーに
よって炭化水素油を飽和分、オレフィン分、芳香族分の
3化合物タイプに分離するために必要なシリカケルの活
性は、使用後も、適当な再生処理によって完全に回復す
るという事実を見出し、その処理方法を実用化した。本
再生方法を実施することにより、従来シリカゲルを毎回
充てんし、使い捨てすることによって生じていた上述の
不都合はすべて解決するこさができた。
One of the features of the present invention is that the silica gel used in displacement chromatography can be regenerated in a simple manner while still being filled in the column and used repeatedly. In other words, the activity of silica gel, which is necessary for separating hydrocarbon oil into three types of compounds, saturated, olefinic, and aromatic, by displacement chromatography, can be completely recovered by appropriate regeneration treatment even after use. We discovered this and put the processing method to practical use. By implementing this regeneration method, all of the above-mentioned inconveniences caused by conventionally filling and disposing of silica gel each time can be solved.

以下本発明を実施するに好適な装置を示す図面にもとす
いて更に詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A more detailed explanation will be given below with reference to the drawings showing an apparatus suitable for carrying out the present invention.

第1図は本発明を実施するために構成された3図は本発
明を実施したさいに得られるクロマトグラムの説明図で
ある。本発明の詳細な説明するに先立ち、まず装置につ
いて説明する。
FIG. 1 is an explanatory diagram of a chromatogram obtained when the present invention is carried out. Before explaining the present invention in detail, the apparatus will first be explained.

第1図において、1は置換溶剤の容器、2は送液ポンプ
、3は圧力計、4は窒素ノjス導入用導管、5は置換溶
剤と窒素カスの切換用3方バルフ、6は6方バルブ、7
は試料の計量および導入用ループでその内容積か1回の
操作で処理する試料の量に等しくなるようにしたもので
ある。8は試別注入用の注射筒で、ジヨイント9によっ
て試料導入時6方バルブに接続する。
In Fig. 1, 1 is a container for the displacement solvent, 2 is a liquid pump, 3 is a pressure gauge, 4 is a conduit for introducing nitrogen gas, 5 is a three-way valve for switching between the displacement solvent and nitrogen residue, and 6 is a 6 direction valve, 7
is a sample measuring and introducing loop whose internal volume is equal to the amount of sample to be processed in one operation. Reference numeral 8 denotes a syringe barrel for trial injection, which is connected by a joint 9 to a six-way valve when introducing a sample.

10は内径0.5 mm程度のステンレススチール製導
管、11は金属製カラムである。シリカゲルの充てん量
は処理しようとする試料のオレフィン分と芳香族分が完
全に展開、保持されるに十分な量とし、このため/’7
ラムの内容積か所要光てん量を満たしうるよう、適当な
内径吉長さのカラムを準備する。カラムに用いる金属管
さしては少なくとも150 Kg/cm2以上の耐圧性
が必要である。12はカラムを収納しうる空気浴恒温槽
、13は自記紫外・可視分光光度計、14はフローセル
の入口および出口を示し、15は分離された成分を採取
する受器である。】4のフローセルは第2図にその一例
を詳細に示す。16は分割点決定用の指示薬さして市販
のけい光指示薬入りシリカケルを使用するさい、その少
量を充てんした小カラムである。この小カラムおよび1
3.14は分割点決定を目視によって行なう場合は不要
で、かイつりに分割点決定用ガラスカラムを11のあと
に接続する。
10 is a stainless steel conduit with an inner diameter of about 0.5 mm, and 11 is a metal column. The amount of silica gel filled is sufficient to completely develop and retain the olefin and aromatic components of the sample to be treated.
Prepare a column with an appropriate inner diameter and length to satisfy the internal volume of the column or the required amount of light. The metal tube used in the column must have a pressure resistance of at least 150 kg/cm2. 12 is an air bath constant temperature bath capable of housing a column, 13 is a self-recording ultraviolet/visible spectrophotometer, 14 is an inlet and an outlet of a flow cell, and 15 is a receiver for collecting separated components. An example of the flow cell No. 4 is shown in detail in FIG. 16 is a small column filled with a small amount of commercially available silica gel containing a fluorescent indicator when used as an indicator for determining the dividing point. This small column and 1
3.14 is not necessary when the dividing point is determined visually, and a glass column for determining the dividing point is connected after 11.

以上のような構成の装置を用いて炭化水素油の飽和分、
オレフィン分、芳香族分を分離採取する方法を以下に述
へる。
Using the apparatus configured as above, the saturated content of hydrocarbon oil,
The method for separating and collecting the olefin and aromatic components will be described below.

まず準備として、あらかじめ活性化したシ1jカゲルを
第1図IIのカラム?こ、またけい光指示薬入りシリカ
ゲルを16の小カラムに乾式光てんした後、図のように
連結する。このとき16の小カラムと6方バルブ6は連
結しないでおく。6方バルブ6を点線の位置にセットし
、8.9を通じて適当な溶剤をループ7に流して洗浄し
、ついで3方バルブ5を点線の位置にセン1−シて窒素
ガスを流し、5から小カラム入口までの全流路を乾燥す
る。以上の準備が終ったら窒素ガスを止め、小カラム1
6き6方ハルフロを接続し、6方バルブ6を点線の位置
にセットしてループ7に試料を満たす。つぎに6方バル
ブ6.3方バルブ5を実線の位置にセットし、送液ポン
プ2を起動して置換溶剤(たとえはイソプロピルアルコ
ール)を流す。ループ7中の試料および小カラム16中
のけい光指示薬は送液ポンプ2からの置換溶剤に押され
てカラムに入り、ここで展開、分離された後、カラム末
端より流出し、14のフローセルを通って15の受器(
こ流出して来る。I3の分光光度計の波長をはじめ28
0 mm lこセットしておくと試料成分の流出にとも
ない、第3図に示す様なりロマトクラムが記録紙上に描
かれる。第3図においてAはフローセル中にカラム流出
液か入ったことによるパルス状のノイスで、記録計の指
示はこのあと、ただちにヘースラインに戻り飽和分の流
出していることを示す。Bは飽和分きオレフィン分の分
割点を指示するけい光指示薬成分によるピーク、Cは芳
香族分の流出1ζよる吸光強度の増大で、記録計の指示
は通常振り切れた状態となる。芳香族分が流出中の適当
な時期りにおいて分光光度計の波長を500 amに切
り換えると記録計の指示は再びヘースラインに戻る。E
は芳香族分き置換溶剤の分割点を指示するけい光指示薬
成分によるピークである。第3図中の矢印F、G、Hが
それぞれ飽和分きオレフィン分、オレフィン分き芳香族
分、芳香族分と置換溶剤の分割点であるか、実際lこけ
フローセルの受光部から出口までの容積によるおくれを
補正した、点線の矢印F′、G′、I−1’を受器交換
時期としてF′までを飽和画分、F′からσまてをオレ
フィン画分、G′からH′までを芳香族画分としてそれ
ぞれ別の受器に採取する。なお分光光度計を使用せず分
割点決定用ガラスカラムを用いて目視によって分割点を
定める場合はけい光指示薬吸着法と同様に操作すればよ
い。採増した各両分の容積は受器の目盛線によって正確
に決定できる。
First of all, as a preparation, apply the activated deer gel in advance to the column shown in Figure 1 II. Also, silica gel containing a fluorescent indicator was dry-injected into 16 small columns, and then connected as shown in the figure. At this time, the 16 small columns and the 6-way valve 6 are left unconnected. Set the 6-way valve 6 to the dotted line position, flush a suitable solvent to the loop 7 through 8.9 for cleaning, then set the 3-way valve 5 to the dotted line position to flow nitrogen gas from 5. Dry the entire flow path up to the small column inlet. After completing the above preparations, stop the nitrogen gas and
Connect the 6-way 6-way half flow, set the 6-way valve 6 to the position indicated by the dotted line, and fill the loop 7 with the sample. Next, the six-way valve 6 and the three-way valve 5 are set to the positions indicated by the solid lines, and the liquid feed pump 2 is started to flow the replacement solvent (for example, isopropyl alcohol). The sample in loop 7 and the fluorescent indicator in small column 16 are pushed by the displacement solvent from liquid pump 2 and enter the column, where they are developed and separated, then flow out from the end of the column and pass through 14 flow cells. Through the 15 receptacles (
This is coming out. 28 including the wavelength of the spectrophotometer of I3.
If the sample component is set to 0 mm, a romatochlam will be drawn on the recording paper as shown in FIG. 3 as the sample components flow out. In FIG. 3, A is a pulse-like noise caused by the column effluent entering the flow cell, and the recorder's indication immediately returns to the Haese line after this, indicating that the saturated amount is flowing out. B is the peak due to the fluorescent indicator component indicating the division point of the saturated olefin component, and C is the increase in the absorption intensity due to the outflow of the aromatic component 1ζ, and the recorder's indication is normally in a state where it has swung out. When the wavelength of the spectrophotometer is switched to 500 am at an appropriate time while the aromatics are flowing out, the reading on the recorder returns to the Hasslein. E
is a peak due to the fluorescent indicator component that indicates the splitting point of the aromatic displacing solvent. Arrows F, G, and H in Figure 3 are the dividing points of saturated olefin, olefin aromatic, and aromatic and substitution solvent, respectively. The dotted arrows F', G', and I-1', which corrected the lag due to volume, are the receiver replacement times, and up to F' is the saturated fraction, from F' to σ is the olefin fraction, and from G' to H' The aromatic fraction is collected in separate receivers. Note that when determining the dividing point visually using a glass column for determining the dividing point without using a spectrophotometer, the same operation as in the fluorescent indicator adsorption method may be used. The volume of each additional volume can be accurately determined by the scale lines on the receiver.

つぎに以上の方法の分離を実施した後、カラム中のシリ
カケルを再生する方法を述べる。上述の方法によって芳
香族画分までを採取し終ったら、第1図の置換溶剤の容
器1を塩化メチレンの入った容器に変え、ポンプの流速
をカラムの耐圧性が許容しうる範囲内で十分大キクシ、
塩化メチレンを送液する。カラム末端から塩化メチレン
が流出してからさらにカラム内容積の2倍容程度の塩化
メチレンを流した後ポンプを止める。ついで第1図の3
方バルフ5を点線の位置にセットして窒素カスを流し、
空気浴恒温槽12の温度を150°Cないし175°C
に保って放置する。放置する時間はカラム内容積、窒素
カス流量によって変るか、カラム出口から液体の飛沫か
出なくなってから3ないし8時間程度で十分である。以
上の処理によって、カラム中のシリカケルは再生される
のて、そのま才ただちに再使用することかできる。また
再生後カラムの出口および入口に密閉手段を構しておけ
は長期間放置後もそれを解除するこ吉によりたソちに使
用できる。たたし16の小カラム中のけい光指示薬入り
シリカケルおよび目視によって分割点を決定した場合の
分割点決定用カラスカラムの内容物はその都度光てんし
なおす。
Next, a method for regenerating the silica gel in the column after performing the separation according to the above method will be described. Once the aromatic fraction has been collected using the above method, replace the replacement solvent container 1 in Figure 1 with a container containing methylene chloride, and adjust the pump flow rate to a level that is within the range that the pressure resistance of the column allows. Big Kikusi,
Pump methylene chloride. After methylene chloride has flowed out from the end of the column, methylene chloride in an amount approximately twice the column internal volume is further flowed, and then the pump is stopped. Then 3 in Figure 1
Set valve 5 at the position indicated by the dotted line and let the nitrogen scum flow through.
The temperature of the air bath constant temperature bath 12 is set to 150°C to 175°C.
Leave it alone. The time for leaving to stand varies depending on the internal volume of the column and the flow rate of nitrogen gas, but it is sufficient to leave it for about 3 to 8 hours after liquid droplets no longer come out from the column outlet. Through the above treatment, the silica gel in the column is regenerated and can be immediately reused. Also, if a sealing means is provided at the outlet and inlet of the column after regeneration, it can be used to release the seal even after being left for a long time. The contents of the silica gel containing a fluorescent indicator in the 16 small columns and the glass column for determining the dividing point when the dividing point is determined by visual inspection are re-introduced each time.

以下実施例をあげて本発明を例証するが、本発明の実施
態様なこれらに限定されるものてはない。
The present invention will be illustrated below with reference to Examples, but the present invention is not limited to these embodiments.

実施例1 純品炭化水素混合物の分離成績炭化水素油の
実試料では、分離した両分の紳度決定が困難であり、詳
細な分離成績の評価ができないので、純品炭化水素を既
知量混合した試料を用い、分離した各両分をカスクロマ
トクラフィーによって分析し、分離成績をしらべた例を
以下に示す。
Example 1 Separation results of pure hydrocarbon mixture In an actual sample of hydrocarbon oil, it is difficult to determine the degree of separation between the two separated parts, and detailed evaluation of separation results is not possible. Therefore, a known amount of pure hydrocarbons was mixed together. The following is an example in which the separated samples were analyzed by gas chromatography, and the separation results were investigated.

イ、カッリン留分相当試料 試f4:、1−へブタン、メチルシクロヘキザン、■−
オクテン、トルエン等容混 合物(飽和分50容積係、オレフィ ン分25容積係、芳香族分25容積 係) 試料量:約10 ml カラム:ステンレススチール製内径167 mm長さ5
00mm1本、内径 7、6 mm長さ500mm2本、内 径4. Q mm長さ500mm1本を直列に連結した
もの。
B. Sample sample corresponding to Kallin fraction f4:, 1-hebutane, methylcyclohexane, ■-
Mixture of equal volumes of octene and toluene (saturated: 50 volumes, olefins: 25 volumes, aromatics: 25 volumes) Sample amount: Approximately 10 ml Column: Stainless steel, inner diameter 167 mm, length 5
00mm 1 piece, inner diameter 7, 6mm length 500mm 2 pieces, inner diameter 4. Q: One piece of 500mm length connected in series.

シリカゲル: Davison製No、922(粒径7
4μ以下) 置換溶剤:イソプ口ピルアルコール 流速:1ml/min 所要時間:約2時間 分離成績:第1表のbおり / 口、灯油留分相当試料 試料:n−デカン3容、n−hリテカ゛ン;3容、1′
−トチセン1容、]−テトラ テセン】容、n−フチルヘンセン1 容、n−へキシルヘンセン】容の混 合物(飽和分60容積係、オレフィ ン分20容積係、芳香族分20容積 %) 試料量:約101nt カラム、シリカケル、置換溶剤、流速、所要時間はイ、
に同じ。
Silica gel: Davison No. 922 (particle size 7
(4 μ or less) Substitution solvent: Isopropyl alcohol Flow rate: 1 ml/min Required time: Approximately 2 hours Separation results: As shown in Table 1. ;3 volume, 1'
-tothycene 1 volume, ]-tetrathecene] volume, n-phthylhensene 1 volume, n-hexylhensen] volume (saturate content 60 volume part, olefin content 20 volume part, aromatic content 20 volume%) Sample amount: about 101 nt The column, silica gel, displacement solvent, flow rate, and required time are
Same as .

分離成績:第2表のとおり。Separation results: As shown in Table 2.

実施例2 実試料の分離成績 接触分解ナフサを本発明の方法により分離し、得られた
各両分の概略組成を紫外線吸収法、NMFt、法および
マススペクトル法によって分析し、分離成績をしらへた
例を以下に示す。
Example 2 Separation results of actual samples Catalytic cracked naphtha was separated by the method of the present invention, and the approximate composition of each of the obtained two fractions was analyzed by ultraviolet absorption method, NMFt method, and mass spectrometry method, and the separation results were reported. An example is shown below.

試料:接触分解ナフサ 試料量:約10mt カラム、シリカケル、置換溶剤、流速、所要時間は実施
例1に同じ。
Sample: Catalytic cracking naphtha Sample amount: Approximately 10 mt Column, silica gel, substitution solvent, flow rate, and required time are the same as in Example 1.

分離成績:第3表のとおり。Separation results: As shown in Table 3.

実施例3. シリカゲルの再生 実施例1、会で使用したシリカケルを本発明の方法で再
生し、実施例1、咎の試料を繰返し分離したときの各回
の分離成績は第4表に示すとおりで、近似した分離成績
か得られており、再生が完全に行なわれていることかわ
かる。
Example 3. Regeneration of silica gel Example 1: The silica gel used in the meeting was regenerated by the method of the present invention, and when the sample of Example 1 was repeatedly separated, the separation results each time are as shown in Table 4. You can see that the results are obtained and that the regeneration is complete.

試料、分離条件:実施例1、鼻に同じ シリカケル再生条件:分離に使用後塩化メチレン約30
0 mlを送液洗浄 、175°Cて窒素を8時間通気 (圧カフ Kg/cm2)
Sample, separation conditions: Example 1, same silica gel regeneration conditions for the nose: about 30 methylene chloride after use for separation
0 ml was pumped and washed, and nitrogen was aerated at 175°C for 8 hours (pressure cuff Kg/cm2)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図てあ施したさい
に得られるクロマトクラムの説明図である。 ■・・・置換溶剤容器、2・・・送液ポンプ、3・・・
圧力計、4・・・窒素カス導入管、5・0・3方ハルフ
、6・・・6方ハルフ、7・拳・サンプルループ、8・
−−注射m、9・・・ジヨイント、10e・・導管、1
】・・・カラム、12・・・空気浴恒温槽、13・・・
自記紫外可視分光光度計、14・・・フローセル(入口
および出口)、15・・・受器、16・・・指示薬用小
力ラム、17・・・ろと状部、18・・・透過窓(石英
窓板付)、19・・・出口、 A・・・カラム流出液の流入によるパルス、B・・・飽
和分とオレフィン分の分割点を指示する指示薬成分のピ
ーク、 C・・・芳香族分の流入による吸収強度の立ち上り、 D e lI @波長2804@mより530 mmへ
の切換点、 E・・・芳香族分と置換溶剤の分割点を指示する指示薬
成分のピーク、 FlG、H・・・クロマトクラム上の分割点、F′、G
′、H’・・・受器交換点、 特許出願人  三菱石油株式会社
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and is an explanatory diagram of a chromatogram obtained during the treatment. ■...Displacement solvent container, 2...Liquid pump, 3...
Pressure gauge, 4...Nitrogen gas introduction tube, 5.0.3-way half, 6...6-way half, 7.fist/sample loop, 8.
--Injection m, 9...Joint, 10e...Conduit, 1
]...Column, 12...Air bath constant temperature bath, 13...
Self-recording UV-visible spectrophotometer, 14...Flow cell (inlet and outlet), 15...Receiver, 16...Small force ram for indicator, 17...Flute-like part, 18...Transmission window (With quartz window plate), 19... Outlet, A... Pulse due to inflow of column effluent, B... Peak of indicator component indicating the division point of saturated and olefin components, C... Aromatic rise of absorption intensity due to inflow of D e I I @ wavelength 2804 @ m to 530 mm, E... peak of indicator component indicating the division point of aromatic component and displacement solvent, FlG, H. ...Dividing points on the chromatogram, F', G
', H'... Receiver exchange point, patent applicant Mitsubishi Oil Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも100 Kg/cm”尉の耐圧性を有
する金属管にシリカゲルを充てんしたカラムと、少なく
とも100 Kg/cm2以上の耐圧性を有し0.2 
mA/m i口取上の任意の流速で試料および置換溶剤
を送液できるポンプを構成要件として置換クロマトクラ
フィーを行ない、試料成分の分割点決定にあらかじめ試
料またはシリカゲルに添加された指示薬を利用すること
を特徴とする炭化水素油中の飽和炭化水素、オレフィン
炭化水素、芳香族炭化水素の分離採取方法。
(1) A column made of a metal tube filled with silica gel that has a pressure resistance of at least 100 Kg/cm2 and a column that has a pressure resistance of at least 100 Kg/cm2 and a pressure resistance of 0.2 kg/cm2 or more.
Displacement chromatography is performed using a pump that can deliver the sample and displacement solvent at any flow rate above the mA/mi intake, and an indicator added to the sample or silica gel in advance is used to determine the separation point of sample components. A method for separating and collecting saturated hydrocarbons, olefin hydrocarbons, and aromatic hydrocarbons in hydrocarbon oil.
(2)カラムから流出する試料成分または指示薬の、紫
外光または可視光に対する吸光強度を連続的に記録する
こきのできる自記紫外・可視分光光度計を用いて、試料
成分の分割点決定を行なうことを特徴とする特許請求の
範囲第1項記載の炭化水素油中の飽和炭化水素、オレフ
ィン炭化水素、芳香族炭化水素の分離採取方法。
(2) Determination of dividing points for sample components using a self-recording ultraviolet/visible spectrophotometer that continuously records the absorption intensity of the sample components or indicator flowing out of the column against ultraviolet light or visible light. A method for separating and collecting saturated hydrocarbons, olefin hydrocarbons, and aromatic hydrocarbons in hydrocarbon oil according to claim 1, characterized by:
(3)カラムの出口側端末に、シリカケルを充てんした
少なくとも50 Kg/cm 尉の耐圧性を有するカラ
ス製のカラムを接続し、本カラスカラム入口部分に少量
添加したけい光指示薬により、−試料成分の分割点決定
を紫外線照射下で目視によって行なうことを特徴とする
特許請求の範囲第1項記載の炭化水素油中の飽和炭化水
素、オレフィン炭化水素、芳香族炭化水素の分離採取方
法。
(3) A glass column filled with silica gel and having a pressure resistance of at least 50 Kg/cm is connected to the outlet end of the column. A method for separating and collecting saturated hydrocarbons, olefin hydrocarbons, and aromatic hydrocarbons in hydrocarbon oil according to claim 1, wherein the dividing point is determined visually under ultraviolet irradiation.
(4)使用済シリカケルをカラムに充てんされた状態の
まま再生し、繰返し使用することを特徴とする特許請求
の範囲第1項記載の炭化水素油中の飽和炭化水素、オレ
フィン炭化水素、芳香族炭化水素の分離採取方法。
(4) Saturated hydrocarbons, olefin hydrocarbons, and aromatic compounds in the hydrocarbon oil according to claim 1, characterized in that the spent silica kel is regenerated in the state filled in the column and used repeatedly. Method for separating and collecting hydrocarbons.
JP6472982A 1982-04-20 1982-04-20 Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil Pending JPS5926060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6472982A JPS5926060A (en) 1982-04-20 1982-04-20 Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6472982A JPS5926060A (en) 1982-04-20 1982-04-20 Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPS5926060A true JPS5926060A (en) 1984-02-10

Family

ID=13266524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6472982A Pending JPS5926060A (en) 1982-04-20 1982-04-20 Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS5926060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291564A (en) * 1990-04-10 1991-12-20 Sekiyu Shigen Kaihatsu Kk Method for identifying oil indications
US6341539B1 (en) 1998-12-24 2002-01-29 Kanaki Kokyukoki Mfg. Co., Ltd. Parking brake system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291564A (en) * 1990-04-10 1991-12-20 Sekiyu Shigen Kaihatsu Kk Method for identifying oil indications
US6341539B1 (en) 1998-12-24 2002-01-29 Kanaki Kokyukoki Mfg. Co., Ltd. Parking brake system

Similar Documents

Publication Publication Date Title
Sanders et al. Capillary gas chromatographic method for determining the C3-C12 hydrocarbons in full-range motor gasolines
Norris et al. Determination of hydrocarbon types in petroleum liquids by supercritical fluid chromatography with flame ionization detection
Sloan et al. Northwest fisheries science center organic analytical procedures
US3222135A (en) Apparatus for the preparation of fluid samples
Miller et al. New type of chromatographic column
JPS5926060A (en) Separating and sampling method of saturated hydrocarbon, olefinic hydrocarbon and aromatic hydrocarbon in hydrocarbon oil
Trussell et al. Precise analysis of trihalomethanes
US3199956A (en) Cocurrent packed helical coil extractor
Winterlin et al. On-column chromatographic extraction of aflatoxin M1 from milk and determination by reversed phase high performance liquid chromatography
DE3735599C2 (en)
De Paoli et al. Determination of organophosphorus pesticides in fruits by on-line size-exclusion chromatography—liquid chromatoghraphy—gas chromatography—flame photometric detection
US20220291099A1 (en) Isolation and analysis of terpenes
RU2633650C1 (en) Method for determining content of polycyclic aromatic hydrocarbons in rubbers and tires
Zahner et al. Chromatographic Separation of Phenol from Cresylic Acids
Wenninger et al. Constituents of opoponax oil: Sesquiterpene hydrocarbons
JPH06242095A (en) Simultaneous quantitative analysis of kerosene, methanol, btx and mtbe in gasoline
Popl et al. The separation of polycyclic aromatic hydrocarbons
Sanzo Chromatographic analyses of fuels
CN209102674U (en) A kind of device that Two way chromatograms mass spectrometry analysis tobacco middle peasant is residual
Harvey Separation Techniques of Chromatography
De Laet et al. Capillary gas chromatography of hydrocarbon mixtures containing alkanes and alkenes, selective olefin stripping applied to very diluted samples
US20240011964A1 (en) Apparatus and method to separate individual hydrocarbons from a composition of multiple hydrocarbons in one or more matrices
FI102786B (en) Device for identification of highlighted mineral oils
SU832398A1 (en) Device for sampling gas samples liberated from liquid and introducing them into analyzer
O'Brien et al. Studies of methods for hydrocarbon type analysis of gasolines