JPS5926042B2 - Predictive control device - Google Patents

Predictive control device

Info

Publication number
JPS5926042B2
JPS5926042B2 JP3574178A JP3574178A JPS5926042B2 JP S5926042 B2 JPS5926042 B2 JP S5926042B2 JP 3574178 A JP3574178 A JP 3574178A JP 3574178 A JP3574178 A JP 3574178A JP S5926042 B2 JPS5926042 B2 JP S5926042B2
Authority
JP
Japan
Prior art keywords
value
target value
output
disturbance
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3574178A
Other languages
Japanese (ja)
Other versions
JPS54129274A (en
Inventor
敏勝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3574178A priority Critical patent/JPS5926042B2/en
Publication of JPS54129274A publication Critical patent/JPS54129274A/en
Publication of JPS5926042B2 publication Critical patent/JPS5926042B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 従来の予測制御方式は第1図に示すように制御量x(を
)の情報のみから予測器によつてリードタイムl△T先
の制御量の予測値マ(を+l△T)を求め、その予測値
x(を+l△T)と△T先の目標値に(を+l△T)を
比較して得た偏差7(を+l△T)より比例積分動作の
PI調節器を介して操作信号ul(を)を作つている。
DETAILED DESCRIPTION OF THE INVENTION As shown in FIG. 1, the conventional predictive control method uses a predictor to calculate the predicted value of the controlled variable for a lead time lΔT based only on the information on the controlled variable x. +l△T) is calculated, and the predicted value x (+l△T) is compared with the target value (+l△T) ahead of △T. From the deviation 7 (+l△T) obtained, the proportional-integral operation is calculated. The operating signal ul() is generated via the PI controller.

このような方式の欠点は、現時点までの履歴の延J長線
上の予測を行なうため、操作量又は外乱が途中で急変す
ると極度に予測の精度が低下する。
The drawback of such a method is that prediction is performed on the extended J-length line of the history up to the present time, so if the manipulated variable or disturbance suddenly changes midway, the accuracy of the prediction will be extremely reduced.

また操作量及び外乱が途中で変動しない場合でもリード
タイムl△Tを大きくとると精度が悪くなることである
。したがつて、この方式による予測制・ 御性能は従来
のPI制御に比べ大幅な改善は望めない。本発明は、上
記事情に鑑み、従来のPID調節器からなるフィードバ
ック系はそのままの形で残し、かつ従来の系の目標値設
定器の値を、制御対ワ 象の挙動を近似した簡単な数式
モデル部とその数式モデルの変数のフィードバックルー
プから構成された予測制御回路で操作することにより、
従来の予測制御では得られなかつた高制御性能が得られ
、特に遅れが大きいプロセス等に有効である予5 測制
御装置を提供することを目的とするもので、PID追値
制御系に一定目標値のもとに外乱を入力したときの制御
量の挙動を表わす近似特性F2(D)e−L2D(ただ
しDは微分演算子)の内むだ時間を含まない項F、(D
)を伝達関数として有し制o御対象に入力する外乱が入
力され外乱変動予測値y2およびその時間微分値y2を
出力する外乱変動予測器と、前記PID制御系に一定外
乱のもとに目標値を入力したときの制御量の挙動を表わ
す近似伝達特性F、(D)e−LIDの内むだ時間を含
まない■5項F1(D)を伝達関数とし後記する修正目
標値の中間変数△に*が入力され目標値変動予測値y、
およびその時間微分値ylを出力する目標値変動予測器
と、むだ時間L2−L1を出力するむだ時間発生器とを
具え、y1とY2とを加算しその値を係数倍する係数器
とす,と女,とを加算しその値を係数倍する係数器との
両係数器の出力を加算し符号変換して得る修正目標値の
中間変数△r*を一方では前記目標値変動予測器の入力
側にフイードバツクするとともに他方前記むだ瞬間発生
器に入力して得た出力△rを前記PID追値制御系の目
標値設定器出力に加算するようにしたことを特徴とする
Oただし、F2(D)およびF1(D)の構造は有理関
数とし、分子のDの次数mと分母のDの次数nとの間に
m<nの関係をもたせ、F2(D)およびF,(D)の
出力の微分値がF2(D)およびF,(D)の内部の変
数で表わずことができるようにする。
Furthermore, even if the operation amount and disturbance do not change during the process, if the lead time lΔT is large, the accuracy will deteriorate. Therefore, the predictive control/control performance of this method cannot be expected to be significantly improved compared to conventional PI control. In view of the above circumstances, the present invention leaves the conventional feedback system consisting of a PID controller as it is, and changes the value of the target value setter of the conventional system to a simple mathematical formula that approximates the behavior of the object to be controlled. By operating a predictive control circuit consisting of a model section and a feedback loop of the variables of the mathematical model,
The objective is to provide a predictive control device that provides high control performance that could not be obtained with conventional predictive control, and is particularly effective for processes with large delays. Approximate characteristics F2(D)e-L2D (where D is a differential operator) that express the behavior of the controlled variable when a disturbance is input to the value are terms F, (D
) as a transfer function and receives a disturbance input to the controlled object and outputs a predicted disturbance variation value y2 and its time differential value y2; Approximate transfer characteristic F that expresses the behavior of the controlled variable when the value is input, (D) does not include dead time in e-LID ■ 5th term F1 (D) is the transfer function and intermediate variable of the corrected target value described later △ * is input to the target value fluctuation predicted value y,
and a target value fluctuation predictor that outputs the time differential value yl, and a dead time generator that outputs the dead time L2-L1, and a coefficient unit that adds y1 and Y2 and multiplies the value by a coefficient; and a coefficient unit that adds and multiplies the value by a coefficient, and an intermediate variable △r* of the corrected target value obtained by adding the outputs of both coefficient units and converting the sign. It is characterized in that the output △r obtained by inputting it to the dead moment generator is added to the output of the target value setter of the PID value control system. ) and F1(D) are rational functions, with a relationship of m<n between the order m of D in the numerator and the order n of D in the denominator, and the outputs of F2(D) and F, (D) The differential value of F2(D) and F,(D) are made to be able to be expressed without being expressed by internal variables.


1例えば、簡単な例として1次遅れ特性は,+70
で、分子の次数m−01分母の次数n−1であるため、
前記のm<nの条件を満足しており、この場合の数学モ
デルはここで、X:入力、Y:出力で具体的な計算式は
上式を変形してY+τDY−X とおき、さらに、Z=DYで表わせば、 となつて、Yは上式のZを積分することにより求められ
、したがつて中間変数Zを出力すれば、それは出力Yの
微分値である。

1 For example, as a simple example, the first-order lag characteristic is +70
Since the order of the numerator is m-01 and the order of the denominator is n-1,
The above condition of m<n is satisfied, and the mathematical model in this case is as follows: If expressed as Z=DY, then Y can be found by integrating Z in the above equation, and therefore, if intermediate variable Z is output, it is the differential value of output Y.

本発明の一実施例を第2図について説明すると、破線で
囲んだ部分は従来の制御対象とPTD調節器からなる系
を示しており、目標値設定器1から出力された信号は減
算器2で制御対象3の出力する制御量4と減算され、制
御偏差5となる。
An embodiment of the present invention will be described with reference to FIG. 2. The part surrounded by a broken line shows a conventional system consisting of a controlled object and a PTD regulator, and the signal output from the target value setter 1 is transmitted to the subtracter 2. is subtracted from the control amount 4 output by the controlled object 3, resulting in a control deviation 5.

ただし、目標値設定器1と減算器2の間にある加算器9
は本発明に係る予測制御回路の一部であるのでこれにつ
いては後述する。次に制御偏差5を入力とするPID調
節器6は制御対象3を操作量信号7を出力する。また、
制御対象3では操作信号7と外乱8を受けてその出力制
御量4が変動するような関係になつている。本発明はこ
のような従来の制御系に目標値設定器1と減算器2の間
に加算器9を設け後述する予測制御回路で計算された信
号10と目標値設定器1の信号を加算することにより、
従来のPID追値制御系の目標値を修正しようとするも
のである。
However, the adder 9 located between the target value setter 1 and the subtracter 2
Since this is a part of the predictive control circuit according to the present invention, this will be described later. Next, the PID controller 6 which inputs the control deviation 5 outputs a manipulated variable signal 7 for the controlled object 3. Also,
The controlled object 3 is in such a relationship that its output control amount 4 fluctuates in response to the operation signal 7 and the disturbance 8. The present invention provides such a conventional control system with an adder 9 between the target value setter 1 and the subtracter 2, and adds the signal 10 calculated by the predictive control circuit described later and the signal from the target value setter 1. By this,
This is an attempt to correct the target value of the conventional PID value control system.

すなわち、まず信号10を切り、かつ外乱8を一定にし
ておいて、破線で囲んだ部分の目標値設定器1の出力(
r)のステツプ変化による変動量△rに対する制御量4
の値yの変動量△yの応答を調べて近似伝達特性F1(
D)。−LlDを決定する。ここでF1(D)にはむだ
時間特性は含まない形とし、Dは微分演算子若を意味し
、tは時間である。次に信号10は切つておき、かつ目
標値設定器1の出力(r)を一定にしておいて、外乱8
(w)のステツプ変化に対する制御量4(y)の変動量
△yの応答を同様に調べて、近似伝達特性F2(D)e
′−L2Dを決定する。
That is, first, the signal 10 is turned off and the disturbance 8 is kept constant, and the output of the target value setter 1 (
Control amount 4 for the variation amount △r due to step change in r)
The approximate transfer characteristic F1 (
D). - Determine LID. Here, F1(D) does not include the dead time characteristic, D means a differential operator, and t is time. Next, the signal 10 is turned off, the output (r) of the target value setter 1 is kept constant, and the disturbance 8
Similarly, the response of the variation Δy of the controlled variable 4(y) to the step change of (w) is investigated, and the approximate transfer characteristic F2(D)e
'-L2D is determined.

以上の準備のもとに以下に予測制御回路を説明する。外
乱8の情報を前述の近似伝達特哲T2(D)e−L2D
のF2(D)部のみで構成した外乱変動予測器11に印
加し、出力12(Y2)と出力13(?)を出す。
Based on the above preparations, the predictive control circuit will be explained below. Information on disturbance 8 is transferred using the above-mentioned approximate transmission characteristic T2(D)e-L2D
The signal is applied to the disturbance fluctuation predictor 11 consisting of only the F2 (D) section, and outputs 12 (Y2) and 13 (?) are output.

次に前述の近似伝達特性F1(D)e−LlをのF1(
D)部のみで構成した目標値変動予測器14に修正目標
値の中間変数15(△r)を印加し、出力16(膚)と
出力17(?)を出す。加算器18では出力12(Y2
)と出力16(y1)を加算して、係数器19で係数倍
し、加算器20で係数器19の出力と後述する係数器2
2の出力を加算する。加算器21は出力13(曾)と出
力17(y1)を加算し、係数器22へ出力する。更に
、加算器20の出力は符号変換器23に伝達され、符号
変換器23の出力の一方は目標値変動予測器14に、そ
して他方はむだ時間発生器24に伝達される。むだ時間
発生器24は信号10を出力し、加算器9で目標設定器
1の出力と加算される。なお、むだ時間発生器24の設
定値は(L2−L,)でL2≦L,の場合はむだ時間の
設定値を零にするか、又はバイパスさせる。このような
装置において外乱8がかりに変動した場合を想定すると
、制御量4は目標値設定器1の値とずれるが、ずれを極
力少なくするために本発明装置は、次のように動作する
。まず、外乱8の値を外乱変動予測器11に入力し、出
力12(Y2)と出力13(y:2)を出す。出力12
(Y2)は加算器18を通り、係数器19及び符号変換
器23から、一方は目標値変動予測器14に加えられ、
他方はむだ時間発生器24に加えられる。そこで、目標
値変動予測器14は符号変換器23の出力を受け、出力
16(y1)と出力17(y:1)を出す。加算器18
では出力12(Y2)と出力16(y1)が加算され、
また加算器21では出力13(Y2)と出力17(y1
)が加算される。そして、加算器21の出力は係数器2
2に伝達され、加算器20で係数器19の出力と加算さ
れ、符号変換器23へ伝達される。すなわち、出力12
(Y2)と出力16(y1)を加算した後、係数倍して
目標値変動予測器14にフイードバツクする系統と、出
力13(九)と出力17(六)を加算した後、係数倍し
て目標値変動予測器14にフイードバツクする系統から
成立つており、出力12(Y2)と出力16(y1)の
和及び出力13(Y2)と出力17(Y1)の和を零に
近ずける働きをする。このような回路の途中から符号変
換器23の出力として、信号を取出しむだ時間発生器2
4を通して加算器9に加えることにより本来の目標値設
定器1の出力を修正する。ここで、むだ時間発生器24
のむだ時間設定値は(L2−L,)で、L2≦L1のと
きは、むだ時間の設定値を零にするか、又はバイパスさ
せる。なお、修正された目標値すなわち加算器9の出力
は減算器2に伝達され、制御量4と比較され、外乱8に
より乱された制御量4が目標値より小さいときはPID
調節器6の入力が増し、PID調節器6の出力すなわち
操作量信号7が増え、制御量4を増やし、徐々に制御偏
差5を零にもつていくような構成になつている。前述の
作用により制御性能は格段に上昇するわけであるが、こ
の点を第3図を併用して説明する。まず、修正目標値△
rの信号10が加算器9に接続されていない従来のPI
D制御系で外乱8が変化すると制御量4がY2のように
変動する場合を考える。
Next, the above-mentioned approximate transfer characteristic F1(D)e−Ll of F1(
The intermediate variable 15 (△r) of the corrected target value is applied to the target value fluctuation predictor 14, which is comprised only of part D), and outputs 16 (skin) and 17 (?) are output. The adder 18 outputs 12 (Y2
) and the output 16 (y1), multiplied by the coefficient in the coefficient unit 19, and the adder 20 adds the output of the coefficient unit 19 and the output 16 (y1), which will be described later.
Add the outputs of 2. The adder 21 adds the output 13 (s) and the output 17 (y1) and outputs the result to the coefficient multiplier 22. Further, the output of the adder 20 is transmitted to a code converter 23, one of the outputs of the code converter 23 is transmitted to the target value variation predictor 14, and the other to the dead time generator 24. The dead time generator 24 outputs a signal 10, which is added to the output of the target setter 1 in the adder 9. The set value of the dead time generator 24 is (L2-L,), and if L2≦L, the set value of the dead time is set to zero or bypassed. Assuming that such a device fluctuates due to the disturbance 8, the control amount 4 will deviate from the value of the target value setter 1. In order to minimize the deviation, the device of the present invention operates as follows. First, the value of disturbance 8 is input to the disturbance fluctuation predictor 11, and output 12 (Y2) and output 13 (y:2) are output. Output 12
(Y2) passes through the adder 18 and is applied from the coefficient unit 19 and code converter 23, one of which is added to the target value fluctuation predictor 14,
The other is added to the dead time generator 24. Therefore, the target value fluctuation predictor 14 receives the output of the code converter 23 and outputs an output 16 (y1) and an output 17 (y:1). Adder 18
Then output 12 (Y2) and output 16 (y1) are added,
Also, in the adder 21, output 13 (Y2) and output 17 (y1
) is added. Then, the output of the adder 21 is the coefficient unit 2
2, is added to the output of the coefficient multiplier 19 by an adder 20, and is transmitted to a code converter 23. That is, output 12
(Y2) and output 16 (y1) are added, then multiplied by a coefficient, and then fed back to the target value fluctuation predictor 14. After adding output 13 (9) and output 17 (6), the system is multiplied by a coefficient and fed back to the target value fluctuation predictor 14. It consists of a system that feeds back to the target value fluctuation predictor 14, and has the function of bringing the sum of output 12 (Y2) and output 16 (y1) and the sum of output 13 (Y2) and output 17 (Y1) close to zero. do. A signal is extracted from the middle of such a circuit as the output of the code converter 23 and is sent to the dead time generator 2.
4 to the adder 9, the original output of the target value setter 1 is corrected. Here, the dead time generator 24
The dead time set value is (L2-L,), and when L2≦L1, the dead time set value is set to zero or bypassed. Note that the corrected target value, that is, the output of the adder 9, is transmitted to the subtracter 2 and compared with the control amount 4, and when the control amount 4 disturbed by the disturbance 8 is smaller than the target value, the PID
The input to the regulator 6 increases, the output of the PID regulator 6, that is, the manipulated variable signal 7 increases, the control amount 4 increases, and the control deviation 5 is gradually brought to zero. The control performance is greatly improved by the above-mentioned action, and this point will be explained with reference to FIG. 3. First, the revised target value △
Conventional PI where the signal 10 of r is not connected to the adder 9
Consider a case where when the disturbance 8 changes in the D control system, the control amount 4 changes like Y2.

予測制御回路は外乱8の変化を変動予測器11で受けて
曾の値と曾の値を出力する。
The predictive control circuit receives changes in the disturbance 8 with a fluctuation predictor 11 and outputs a value of 0 and a value of 0.

ただし、第3図には曾と後述するハは省略している。?
およびハは係数器22及び係数器19を通つて加算器2
0及び符号変換器23に伝達され、目標値変動予測器1
4に印加される。その結果、?及びy′1が目標値変動
予測器14から出力され、賃及び?とそれぞれに加算及
び係数倍され、目標値変動予測器14にフィードバック
される。そして、フイードバツクされる値は第3図に△
r*で示す。この△r*を更にむだ時間発生器24を通
して得られた値が修正目標値で△rで示されている。第
2図の破線で囲んだPlD制御系は△rを受けて、目標
値変動による応答としてy1の挙動を示し、先の外乱に
よるY2と加算された形で制御量4(y)の変動が現わ
れる。本発明装置によればこのyの値は第1図のPID
制御系での制御量x(t)に比べ非常に小さい。本発明
装置は従来の予測制御装置に比べ、数学モデルを使用し
ているので、予測の精度が非常によく、高制御性能が得
られる。
However, in FIG. 3, Zeng and C, which will be described later, are omitted. ?
and C pass through the coefficient unit 22 and the coefficient unit 19 to the adder 2
0 and the code converter 23, and the target value fluctuation predictor 1
4. the result,? and y′1 are output from the target value fluctuation predictor 14, and the wage and ? are added and multiplied by a coefficient, respectively, and fed back to the target value fluctuation predictor 14. The feedback values are shown in Figure 3.
Indicated by r*. The value obtained by passing this Δr* further through the dead time generator 24 is the corrected target value and is indicated by Δr. The PID control system surrounded by the broken line in Fig. 2 receives △r and shows the behavior of y1 as a response due to the target value fluctuation, and the fluctuation of the controlled variable 4(y) is added to Y2 due to the previous disturbance. appear. According to the device of the present invention, the value of y is the PID of FIG.
This is very small compared to the control amount x(t) in the control system. Compared to conventional predictive control devices, the device of the present invention uses a mathematical model, so prediction accuracy is much better and high control performance can be obtained.

因みに従来の予測器は制御量を微分しているので、制御
量にノイズが重畳されていると予測値が大巾に乱される
。したがつて、本発明装置は特にむだ時間が大きな熱プ
ロセス等に対しては制御性能の向上が顕著である。
Incidentally, since conventional predictors differentiate the control amount, if noise is superimposed on the control amount, the predicted value will be greatly disturbed. Therefore, the control performance of the apparatus of the present invention is significantly improved, especially for thermal processes with large dead times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の予測制御装置における制御方式を示すプ
ロツク図、第2図は本発明予測制御装置の一実施例を示
すプロツク図、第3図は第2図の入出力関係を示す線図
である。 1・・・・・泪標値設定器、2・・・・・・減算器、3
・・・・・・制御対象、4・・・・・・制御量、5・・
・・・・制御偏差、6・・・・・・PID調節器、7・
・・・・・操作量信号、8・・・・・・外乱、9・・・
・・・加算器、10・・・・・・予測制御回路で計算さ
れた信号、11・・・・・・外乱変動予測器、12(臂
)・・・・・・外乱変動予測器11の出力、13(y:
2)・・・・・・外乱変動予測器の出力(Y2)の微分
値、14・・・・・・目標値変動予測器、15・・・・
・・修正目標値の中間変数△R8、16(冑)・・・・
・・目標値変動予測器14の出力、17(六)・・・・
・・目標値変動予測器14の出力11の微分値、18・
・・・・・加算器、19・・・・・・係数器、20・・
・・・・加算器、21・・・・・・加算器、22・・・
・・・係数器、23・・・・・・符号変換器、24・・
・・・・むだ時間発生器。
Fig. 1 is a block diagram showing a control method in a known predictive control device, Fig. 2 is a block diagram showing an embodiment of the predictive control device of the present invention, and Fig. 3 is a diagram showing the input/output relationship of Fig. 2. It is. 1...Typical value setter, 2...Subtractor, 3
...Controlled object, 4...Controlled amount, 5...
... Control deviation, 6 ... PID controller, 7.
...Manipulated amount signal, 8...Disturbance, 9...
... Adder, 10 ... Signal calculated by the prediction control circuit, 11 ... Disturbance fluctuation predictor, 12 (arm) ... Disturbance fluctuation predictor 11 Output, 13(y:
2)... Differential value of the output (Y2) of the disturbance fluctuation predictor, 14... Target value variation predictor, 15...
・Intermediate variable of corrected target value △R8, 16 (armor)...
...Output of target value fluctuation predictor 14, 17 (six)...
... Differential value of output 11 of target value fluctuation predictor 14, 18.
...Adder, 19...Coefficient unit, 20...
...Adder, 21...Adder, 22...
...Coefficient unit, 23... Code converter, 24...
...Dead time generator.

Claims (1)

【特許請求の範囲】[Claims] 1 PID追値制御系に一定目標値のもとに外乱を入力
したときの制御量の挙動を表わす近似特性▲数式、化学
式、表等があります▼(ただしDは微分演算子)の内む
だ時間を含まない項F_2(D)を伝達関数として有し
制御対象に入力する外乱が入力され外乱変動予測値■_
2およびその時間微分値■_2を出力する外乱変動予測
器と、前記PID制御系に一定外乱のもとに目標値を入
力したときの制御量の挙動を表わす近似伝達特性▲数式
、化学式、表等があります▼の内むだ時間を含まない項
F_1(D)を伝達関数とし後記する修正目標値の中間
変数△_r^*が入力され目標値変動予測値■_1およ
びその時間微分値■_1を出力する目標値変動予測器と
、むだ時間L_2−L_1を出力するむだ時間発生器と
を具え、■_1と■_2とを加算しその値を係数倍する
係数器と■_1と■_2とを加算しその値を係数倍する
係数器との両係数器の出力を加算し符号変換して得る修
正目標値の中間変数△_r^*を一方では前記目標値変
動予測器の入力側にフィードバックするとゝもに他方前
記むだ時間発生器に入力して得た出力△_rを前記PI
D追値制御系の目標値設定器出力に加算するようにした
ことを特徴とする予測制御装置。
1 Approximate characteristics that represent the behavior of the controlled variable when a disturbance is input to a PID value control system under a constant target value ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (where D is a differential operator), the dead time It has a term F_2(D) that does not include as a transfer function, and the disturbance input to the controlled object is input and the disturbance fluctuation predicted value ■_
2 and its time differential value■ A disturbance fluctuation predictor that outputs _2, and an approximate transfer characteristic representing the behavior of the controlled variable when a target value is input to the PID control system under a constant disturbance ▲Mathematical formula, chemical formula, table The term F_1 (D) that does not include dead time in ▼ is used as a transfer function, and the intermediate variable △_r^* of the corrected target value described later is input, and the predicted target value fluctuation value ■_1 and its time differential value ■_1 are input. It is equipped with a target value fluctuation predictor that outputs, a dead time generator that outputs dead time L_2-L_1, a coefficient unit that adds ■_1 and ■_2 and multiplies the value by a coefficient, and ■_1 and ■_2. On the one hand, when the intermediate variable △_r^* of the corrected target value obtained by adding the outputs of the coefficient machine and the coefficient machine which adds the value and multiplies the value by a coefficient and converts the sign is fed back to the input side of the target value fluctuation predictor. The output △_r obtained by inputting the other dead time generator to the PI
A predictive control device characterized in that it is added to the output of a target value setter of a D-value control system.
JP3574178A 1978-03-28 1978-03-28 Predictive control device Expired JPS5926042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3574178A JPS5926042B2 (en) 1978-03-28 1978-03-28 Predictive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3574178A JPS5926042B2 (en) 1978-03-28 1978-03-28 Predictive control device

Publications (2)

Publication Number Publication Date
JPS54129274A JPS54129274A (en) 1979-10-06
JPS5926042B2 true JPS5926042B2 (en) 1984-06-23

Family

ID=12450244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3574178A Expired JPS5926042B2 (en) 1978-03-28 1978-03-28 Predictive control device

Country Status (1)

Country Link
JP (1) JPS5926042B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153405A (en) * 1980-04-30 1981-11-27 Mitsubishi Heavy Ind Ltd Control system for thermal power plant
JPS5743202A (en) * 1980-08-27 1982-03-11 Japan Atom Energy Res Inst Feed forward control system
JPS59105106A (en) * 1982-12-08 1984-06-18 Toshiba Corp Controlling system of feedforward/feedback
JP2604036B2 (en) * 1989-06-09 1997-04-23 株式会社東芝 Engine test control device

Also Published As

Publication number Publication date
JPS54129274A (en) 1979-10-06

Similar Documents

Publication Publication Date Title
JPH0298701A (en) Controller
KR0135586B1 (en) Gain adaptive control device
JPH0738128B2 (en) Control device
JPS5926042B2 (en) Predictive control device
JP3288184B2 (en) Motor control device
JPH09136698A (en) Servo control system for rudder of air plane
Xian et al. Adaptive tracking control of linear uncertain mechanical systems subjected to unknown sinusoidal disturbances
JPS5925242B2 (en) Simple predictive control device
JPS61109104A (en) Pid controller
JP3340923B2 (en) SAC controller
JPS5941004A (en) Process control device
JPH08314503A (en) Adaptive controller
SU1481707A2 (en) Controller for plants with lags
JPH0625955B2 (en) Control device for reactive power compensation
JPH08123537A (en) Predictive controller
JP3256950B2 (en) Optimal preview learning control device
JP2521267B2 (en) Control system complement device
JP2003259674A (en) Servo control apparatus
JPS581205A (en) Pid controller
Lopez Robust Motion Control of Electric Drives by Dynamic Sliding Modes
JP2003241802A (en) Optimal command producing device
Sain et al. Higher order methods for nonlinear feedback design
SU1008698A1 (en) Self-adjusting control system
JPH08314504A (en) Pid-imc interface device and imc controller
SU991367A1 (en) Manipulator control device