JPS5925990A - Method for plating ferrous metal - Google Patents

Method for plating ferrous metal

Info

Publication number
JPS5925990A
JPS5925990A JP13523282A JP13523282A JPS5925990A JP S5925990 A JPS5925990 A JP S5925990A JP 13523282 A JP13523282 A JP 13523282A JP 13523282 A JP13523282 A JP 13523282A JP S5925990 A JPS5925990 A JP S5925990A
Authority
JP
Japan
Prior art keywords
plating
ions
iron
soln
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13523282A
Other languages
Japanese (ja)
Inventor
Mitsuo Azuma
東 光郎
Takashi Watanabe
孝 渡辺
Mitsuo Yoshida
光男 吉田
Takashi Otsubo
孝至 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13523282A priority Critical patent/JPS5925990A/en
Publication of JPS5925990A publication Critical patent/JPS5925990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To make plating efficiency constant, by carrying out continuous plating while reducing tervalent Fe ions formed in a plating bath with Ag. CONSTITUTION:A plating vessel 1 is filled with a plating soln. contg. FeSO4, ZnSO4, (NH4)2SO4 and tervalent Fe ions, and an electric current is supplied between an anode 2 made of a Pb-Sn alloy and a cathode 3 made of a steel plate to electroplate the steel plate with an Fe-Zn alloy. Part of the plating soln. is introduced into a dissolution vessel 4 through a flowmeter 10 and brought into contact with Fe 5 and Zn 6 to supply Fe ions and Zn ions. The soln. is then introduced into reduction vessels 7, 7' packed with Ag. In the vessels 7, 7', tervalent Fe ions in the soln. are reduced by adding NH4Cl 8. The plating soln. contg. a smaller amount of tervalent Fe ions is returned to the vessel 1 through a filter 9 and reused.

Description

【発明の詳細な説明】 本発明は鋼板上に鉄、あるいは鉄合金めっきを連続的に
施す方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously applying iron or iron alloy plating to a steel plate.

近年、鋼板の防錆、あるいは、塗装下地処理の改良のた
めに、鉄もしくは鉄系合金めっきを施すことが広く検討
されているのは周知の通りである。
As is well known, in recent years, the use of iron or iron-based alloy plating has been widely considered for the purpose of rust prevention of steel plates or improvement of coating surface treatment.

例えば、鉄単独めっき、鉄−亜鉛合金めっき、鉄−亜鉛
−ニッケル合金めっき、鉄−ニッケルめっきなどがこの
例である。これらのめつきは従来から検剃されているが
、工業的に連続的にめっきする場合、最大の問題点はめ
っき浴中に生成し2、蓄積されてくる3価鉄イオンの挙
動である。すなわち、この3価鉄イオン(Fe3+)は
めっき中に対極で発生する酸素、あるいはめっき液の循
環中にエアレーションによる酸化などにより生成するが
、このFe3+量がめつき浴中に多くなるとめっき効率
を下げ、また、めっき面の性状にも悪影響があるので所
定量以下に制御することが極めて重要となる。このため
、従来から検討されてきたことは、可溶性陽極(対極)
を用い、できるたけ酸素の発生を抑えること、エアレー
ションを減じること、あるいはイオン交換膜により3価
の鉄イオンを除去することなどであるが、工業的には必
ずしも満足すべき状態にはなく、特に、高速めっきでは
、これらの方法は適用することが極めて困難であるのが
実情である。そこで、本発明者らは鉄もしくは鉄合金め
っきを高速で連続的に施すことを種々検討した結果、め
っき浴中のFe”+イオンを銀充填槽を用いて還元しな
がらめっきすると、 Fe3+イオンの蓄積がなく、極
めてすぐれためっきが行なえることを見出したものであ
る。
Examples include iron single plating, iron-zinc alloy plating, iron-zinc-nickel alloy plating, and iron-nickel plating. These platings have conventionally been inspected, but when plating is carried out industrially and continuously, the biggest problem is the behavior of trivalent iron ions that are generated and accumulated in the plating bath. In other words, this trivalent iron ion (Fe3+) is generated by oxygen generated at the counter electrode during plating, or by oxidation due to aeration during circulation of the plating solution, but if the amount of Fe3+ increases in the plating bath, the plating efficiency decreases. Furthermore, since it has an adverse effect on the properties of the plated surface, it is extremely important to control it to a predetermined amount or less. For this reason, what has traditionally been considered is the use of soluble anodes (counter electrodes).
However, the situation is not necessarily satisfactory industrially, and in particular The reality is that these methods are extremely difficult to apply in high-speed plating. Therefore, the present inventors conducted various studies on applying iron or iron alloy plating continuously at high speed, and found that when plating is performed while reducing Fe''+ ions in the plating bath using a silver-filled tank, Fe3+ ions are reduced. It was discovered that there is no accumulation and extremely excellent plating can be achieved.

すなわち、めっき液を循環させながら、鉄もしくは鉄合
金めっきを連続的に行なうにあたり、めっき液を銀を充
填した還元槽を通し、浴中のFe3+をFe2+に還元
しながら、これらめっきを鋼板上に施すとめっきが安定
して行なえることを見出したものである。この場合、銀
は適度の粒度を有するものを、めっき液の通過に支障の
ない程度に充填すれば良いが、この銀充填槽、あるいは
めっき液中に02−を少くとも遊離イオンの状態で50
0 ppm−10,OOOppmを含有させることが不
可欠である。
In other words, to continuously perform iron or iron alloy plating while circulating the plating solution, the plating solution is passed through a reduction tank filled with silver, and the plating is applied to the steel sheet while Fe3+ in the bath is reduced to Fe2+. It was discovered that plating can be performed stably by applying this method. In this case, silver with an appropriate particle size may be filled to the extent that it does not interfere with the passage of the plating solution, but in this silver filling tank or in the plating solution, at least 50% of the 02- is in the state of free ions.
It is essential to contain 0 ppm-10,00ppm.

銀の充填量は粒度、すなわち、その表面積により、必要
量は変化するが、循環させるめっき液量と成分濃度を考
慮して決めることができる。Fe”+全還元する事によ
シ銀は酸化されるので還元して再生する必要があるが、
これは別途予備の銀充填槽と切シ替え、めっき液の処理
中に再生を行なうことによシ、再生使用が可能となる。
Although the required amount of silver varies depending on the particle size, that is, its surface area, it can be determined by taking into account the amount of plating solution to be circulated and the concentration of the components. Since silver is oxidized by total reduction of Fe”+, it is necessary to reduce it and regenerate it.
This can be reused by replacing it with a separate spare silver filling tank and regenerating it during processing of the plating solution.

このようにして、鉄系金属めっきを行なう場合に、めっ
き液循環系路に銀還元槽を設け、銀によりFe”+e常
時還元しながら、めっきを行なうことにより、Fe3+
生成に起因する弊害を除き、良好なめっきを得ることが
できる。尚、添加するan−の範囲を500〜10.O
OOppmとしたのは、freθのcIV、−が500
 ppm未満では還元速度が小さく、銀の消耗も大きい
ためであり、また、lo、000 ppm超では効果が
一定となり、多く添加する意味がなくなるためである。
In this way, when performing iron-based metal plating, a silver reduction tank is provided in the plating solution circulation path, and plating is performed while constantly reducing Fe"+e with silver.
Good plating can be obtained by eliminating the adverse effects caused by the formation. In addition, the range of an- to be added is 500 to 10. O
The cIV of freθ, - is 500, which is OOppm.
This is because if it is less than ppm, the reduction rate is low and the consumption of silver is large, and if it exceeds lo, 000 ppm, the effect becomes constant and there is no point in adding a large amount.

aQ−はNH,cLHcj2、xaff%Nacj2な
どの化合物によシ添加することができる。
aQ- can be added by compounds such as NH, cLHcj2, xaff%Nacj2, etc.

以上のように、鉄系めっきを連続的に行う場合にめっき
液を常時銀還元槽により処理し、Fe3+イオンを低減
させながらめっきすることによシ、めっき効率を一定に
でき、めっきも良好に行いうる。
As described above, when performing iron plating continuously, by constantly treating the plating solution in a silver reduction tank and plating while reducing Fe3+ ions, the plating efficiency can be kept constant and the plating can be performed well. I can do it.

次に実施例を挙げてさらに詳細に説明する。Next, a more detailed explanation will be given with reference to examples.

実施例1 第1図に示す装置を用いて、鉄−亜鉛合金連続めっきを
行った。第1図において、めっき液槽1内にめっき液(
FeSO4・7H20380y/ f!、、ZnSO4
・7H20507/n、(Nk)2S0430 l! 
/ 11、pH1,2、F e + 3イオン10y7
1)を満し、陽極(Pb −5n(5)合金)2と陰極
(板厚0.8Mの冷延鋼板を巾6 cm 、長さ15c
rnに切断したもの)3間に通電しく電流密度80A/
dm2、浴温40℃)、めっきを施し、このめっき液の
一部を取出しく流量計10)、溶解槽4へ導き、鉄5、
亜鉛6と接触せしめて、めっき液中へFeイオン、Zn
イオンを補給し、次いで還元槽7(面積50111X5
0語、高さ70μに0.5〜3wL径の銀8を充填)へ
導き、5Q/分で通過させ、このときめつき液中にcQ
−濃度5000〜10000 ppmになるよう塩化ア
ンモニウムを添加しつつ還元し、液中のF e + 3
イオン平均4y/II=に軽減した。
Example 1 Continuous iron-zinc alloy plating was performed using the apparatus shown in FIG. In Figure 1, a plating solution (
FeSO4・7H20380y/f! ,,ZnSO4
・7H20507/n, (Nk)2S0430 l!
/ 11, pH 1,2, Fe + 3 ion 10y7
1), an anode (Pb-5n(5) alloy) 2 and a cathode (cold-rolled steel plate with a thickness of 0.8M, width 6 cm, length 15 cm)
(cut to rn) with current density 80A/
dm2, bath temperature 40°C), plating is applied, a flow meter 10) takes out a part of this plating solution, guides it to the melting tank 4, iron 5,
Fe ions and Zn are brought into contact with zinc 6 into the plating solution.
Ions are replenished, and then reduction tank 7 (area 50111 x 5
0 word, height 70μ filled with silver 8 with a diameter of 0.5 to 3wL) and passed at a rate of 5Q/min. At this time, cQ
- Reduce Fe + 3 in the liquid by adding ammonium chloride to a concentration of 5,000 to 10,000 ppm.
The ion average was reduced to 4y/II=.

この方法で所定量の電気量を通電後に評価用のFe−Z
n合金めつきを行ない、サンプルの評価を行った。比較
示例として、銀還元処理を行わないものについてもサン
プル評価を行った。評価結果は第1表に示す通電である
。この結果から、銀を用いて生成するFe”十を還元し
ながらめっきしたものは、すぐれためつきができること
が明らかである。
Using this method, after energizing a predetermined amount of electricity, the Fe-Z
N-alloy plating was performed and the samples were evaluated. As a comparative example, samples without silver reduction treatment were also evaluated. The evaluation results are the energization shown in Table 1. From this result, it is clear that those plated with silver while reducing Fe'' produced therefrom can have excellent brightness.

しかして溶解槽7の銀8の表面が酸化され還元能力が低
下したとき、還元槽7′に切換え還元槽7の銀8を取換
える。このように交互に溶解槽7.7′を用ることによ
シ、連続的にめっき液中のFe+3を還元するものであ
る。還元後のめつき液はろ過器9を介して不純物を除去
し、めっき液槽l内へ戻す。本発明はこのようにして連
続的に還元し、めっき液のFe+3を軽減するものであ
る。
When the surface of the silver 8 in the dissolving tank 7 is oxidized and the reducing ability is reduced, the silver 8 in the reducing tank 7 is switched to the reducing tank 7'. By alternately using the dissolving tanks 7 and 7' in this way, Fe+3 in the plating solution is continuously reduced. The reduced plating solution passes through a filter 9 to remove impurities, and is returned to the plating solution tank 1. The present invention performs continuous reduction in this manner to reduce Fe+3 in the plating solution.

実施例2 第1図の装置を用い板厚Q、f3mの冷延鋼板に亜鉛を
10 y / m2の厚みにめっきした亜鉛めっき鋼板
を中6crn、長さ15+cnに切断したものをめっき
基板とし、これに、次に示す鉄めっき条件で片面にのみ
鉄めっきを施こし、銀還元の効果を確認した。
Example 2 Using the apparatus shown in Fig. 1, a cold-rolled steel plate with a thickness Q and f3m was plated with zinc to a thickness of 10 y/m2, and a galvanized steel plate was cut into 6 crn in diameter and 15 + cn in length, and this was used as a plated substrate. Iron plating was applied to only one side of this under the following iron plating conditions to confirm the effect of silver reduction.

めっき浴組成u Fe5o4 ・7H20350f/ 
11、(NH4)28041207/1.、Fe+3イ
オン4y/2でありpH1,5(H2SO4で調整)、
電流密度60 A / dm2、浴温30℃とした。
Plating bath composition u Fe5o4 ・7H20350f/
11, (NH4)28041207/1. , Fe+3 ion 4y/2 and pH 1.5 (adjusted with H2SO4),
The current density was 60 A/dm2, and the bath temperature was 30°C.

評価結果は第2表に示すように、銀還元法によれば、鉄
めっきが安定して亜鉛めっき鋼板上に行われることが明
らかである。
As the evaluation results are shown in Table 2, it is clear that iron plating can be stably performed on galvanized steel sheets by the silver reduction method.

以上のように、銀還元法によればFe系の金属めっきが
、安定して得られ、従来法のように添加剤を用いても連
続めっき(浴の長時間使用)が困難であったものが、こ
の方法により容易に行ない得ることが明らかである。ま
た、銀自身も別途再生し、再利用できるもので有利であ
る。
As described above, according to the silver reduction method, Fe-based metal plating can be stably obtained, and continuous plating (long-term use of the bath) was difficult even with the use of additives as in the conventional method. It is clear that this method can be easily carried out. Furthermore, silver itself can be recycled and reused separately, which is advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法実施例の説明図である。 l・・・・めっき液槽、2・・・陽極、3−・・・陰極
、4・・・・溶解槽、−5・・・・鉄、6・・・・亜鉛
、7.7′・・−・還元槽、8・・・・銀、9・・・・
ろ過器、10・・・ 流量計。 特許出願人 新日本製鐵株式會社 代理人   弁理士 井上雅生
FIG. 1 is an explanatory diagram of an embodiment of the method of the present invention. l...Plating solution tank, 2...Anode, 3-...Cathode, 4...Dissolution tank, -5...Iron, 6...Zinc, 7.7'.・-・Reduction tank, 8...Silver, 9...
Filter, 10... Flowmeter. Patent applicant Nippon Steel Corporation Representative Patent attorney Masao Inoue

Claims (1)

【特許請求の範囲】[Claims] ]、鉄もしくは鉄合金めっきを施すにあたり、めっき浴
中に生成する3価鉄イオンを銀を用いて還元しながら連
続的にめっきすることを特徴とする鉄系金属めっき方法
], An iron-based metal plating method characterized by plating continuously while reducing trivalent iron ions generated in a plating bath using silver when applying iron or iron alloy plating.
JP13523282A 1982-08-04 1982-08-04 Method for plating ferrous metal Pending JPS5925990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523282A JPS5925990A (en) 1982-08-04 1982-08-04 Method for plating ferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523282A JPS5925990A (en) 1982-08-04 1982-08-04 Method for plating ferrous metal

Publications (1)

Publication Number Publication Date
JPS5925990A true JPS5925990A (en) 1984-02-10

Family

ID=15146895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523282A Pending JPS5925990A (en) 1982-08-04 1982-08-04 Method for plating ferrous metal

Country Status (1)

Country Link
JP (1) JPS5925990A (en)

Similar Documents

Publication Publication Date Title
CN101215682B (en) Non-poaching-water common hot-dip galvanizing technique
KR20190077437A (en) Electroplating of uncoated steel strip with a plated layer
US20020162752A1 (en) Electrolytic phosphate chemical treatment method
US1972835A (en) Coating ferrous articles with zinc
US5538617A (en) Ferrocyanide-free halogen tin plating process and bath
US3634217A (en) Electrochemical stripping process
US3959099A (en) Electrolytic method of producing one-side-only coated steel
JPS5925990A (en) Method for plating ferrous metal
US4518474A (en) Device for the electrolytic treatment of metal strip
US2241585A (en) Process for removing metallic coatings from metallic parts
US3054737A (en) Process and bath for electrosmoothing ferrous metals
US3915812A (en) Method of manufacturing tinned plates having high corrosion resistant property
EP0612359A1 (en) Method and device for recycling used pickling liquors.
JPS6077988A (en) Manufacture of galvanized steel sheet with blackening resistance
JPS6367559B2 (en)
EP0652981B1 (en) Minimization of mounds in iron-zinc electrogalvanized sheet
US6168670B1 (en) Method of pickling articles of copper and metals less noble than copper
EP4317537A1 (en) Method for removing ferric ions from sulfate-based iron electroplating solution
US1133628A (en) Galvanizing wire, hoops, sheets, and the like.
JPS6023200B2 (en) Manufacturing equipment for iron-zinc alloy electroplated steel sheets
JPS5939515B2 (en) Manufacturing method of bright composite electrogalvanized steel sheet
CA1256357A (en) Method of pickling iron or steel objects
JPH0428799B2 (en)
JPH0369996B2 (en)
JP3258848B2 (en) Method for removing metal impurity ions in electrogalvanizing bath