JPH0428799B2 - - Google Patents
Info
- Publication number
- JPH0428799B2 JPH0428799B2 JP57174164A JP17416482A JPH0428799B2 JP H0428799 B2 JPH0428799 B2 JP H0428799B2 JP 57174164 A JP57174164 A JP 57174164A JP 17416482 A JP17416482 A JP 17416482A JP H0428799 B2 JPH0428799 B2 JP H0428799B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- tank
- plating
- amount
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 71
- 238000007747 plating Methods 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 19
- 150000002500 ions Chemical class 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 238000009713 electroplating Methods 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 230000001172 regenerating effect Effects 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 22
- 239000011701 zinc Substances 0.000 description 15
- 238000006722 reduction reaction Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000013522 chelant Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- -1 specific gravity Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、鉄系電気メツキ液の再生処理方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for recycling iron-based electroplating solution.
[従来の技術]
鉄系電気メツキ浴の主成分であるFe3+イオン
はきわめて不安定であり、たとえばメツキ浴中の
溶存酸素により、あるいは陽極表面での電極反応
により、容易に酸化されてFe3+イオンとなる。
これらの反応を式に表わせば、次の通りである。[Prior art] Fe 3+ ions, which are the main component of iron-based electroplating baths, are extremely unstable and are easily oxidized, for example, by dissolved oxygen in the plating bath or by electrode reactions on the anode surface. It becomes 3+ ion.
These reactions can be expressed as follows.
Fe2++1/4O2+1/2H2O→Fe3++OH- ……(1)
Fe2+→Fe3++e ……(2)
上記のようにして生成されたFe3+イオンは、
メツキよ沿組成を変動させ、メツキに悪影響を与
えるため、生成量に相当する量を常に還元およ
び/まては除去する必要がある。(1)式の反応によ
る空気酸化は、メツキセル構造を改善したり、メ
ツキセルを密閉N2シールすることにより相当程
度まで減少させることができるが、(2)式の電極反
応による酸化は、不溶性陽極を用いる場合には、
通電量の50〜90%生じる。したがつて、特に後者
の場合には、Fe3+イオンの還元および/または
除去はメツキ操業上不可欠の問題である。 Fe 2+ +1/4O 2 +1/2H 2 O→Fe 3+ +OH - ...(1) Fe 2+ →Fe 3+ +e ...(2) The Fe 3+ ions generated as above are
Since it changes the plating and longitudinal composition and has an adverse effect on the plating, it is necessary to always reduce and/or remove an amount corresponding to the amount produced. The air oxidation caused by the reaction of equation (1) can be reduced to a considerable extent by improving the Metxel structure or sealing the Metxel with N2 , but the oxidation caused by the electrode reaction of equation (2) When using
50 to 90% of the amount of current is generated. Therefore, particularly in the latter case, reduction and/or removal of Fe 3+ ions is an essential problem in plating operation.
従来、亜鉛系メツキ浴中に生成されるFe3+イ
オンを除去する方法としてキレート樹脂法があり
(特公昭57−27960公報)、鉄系メツキ浴中に生成
されるFe3+イオンに対しても、このキレート樹
脂法を適用することが行なわれていたが、鉄系メ
ツキに適用するには主として次のような難点があ
り、必ずしも実用上有効なものではなかつた。す
なわち、(1)除去したFe3+量に相当する量のFe3+
を系外からメツキ浴へ供給する必要がある、(2)キ
レート樹脂法カラムの再生液の中和処理費用が高
い、(3)キレート樹脂の劣化による樹脂交換費用が
高い、(4)キレート樹脂カラムシステムの設置に多
額の費用を要し、かつ大規模なスペースを必要と
する。 Conventionally, there is a chelate resin method as a method for removing Fe 3+ ions generated in zinc-based plating baths (Japanese Patent Publication No. 57-27960). Although this chelate resin method has been applied to iron-based plating, it has the following main drawbacks and is not necessarily practically effective. That is, (1) an amount of Fe 3+ corresponding to the amount of Fe 3+ removed;
needs to be supplied to the plating bath from outside the system, (2) the cost of neutralizing the regenerated liquid in the chelate resin method column is high, (3) the cost of replacing the resin is high due to deterioration of the chelate resin, (4) the chelate resin Column systems are expensive to install and require a large amount of space.
そこで、本発明者らは、先に、鉄系電気メツキ
においてメツキ浴中に生成されるFe3+イオンを
有効かつ有利に還元する方法として、メツキ浴に
補給すべき金属をメツキ液に添加溶解させること
により、Fe3+を還元すると同時にメツキ金属の
補給をも達成することができる方法を提案してい
る(たとえば、特願昭57−52565号(特開昭58−
17153号))。本発明者らはさらに、この方法に関
連して、メツキ液中のFe3+生成率、メツキ電流
効率および溶解反応におけるFe3+還元効率をパ
ラメータとし、これらを実測しながらメツキ浴へ
の金属供給量およびメツキ液捨量を調整すること
により、メツキ浴濃度を制御する方法を提案して
いる。
Therefore, the present inventors first proposed a method for effectively and advantageously reducing Fe 3+ ions generated in the plating bath during iron-based electroplating, by adding and dissolving metals to be supplied to the plating bath into the plating solution. proposed a method that can reduce Fe 3+ and replenish the plating metal at the same time (for example, Japanese Patent Application No. 57-52565)
No. 17153)). In connection with this method, the present inventors also set the Fe 3+ production rate in the plating solution, the plating current efficiency, and the Fe 3+ reduction efficiency in the dissolution reaction as parameters, and while actually measuring these, metal We have proposed a method to control the plating bath concentration by adjusting the supply amount and plating solution waste amount.
この方法の場合には、溶解反応槽内に添加した
金属粉は全て完全溶解することを前提としてお
り、溶解反応槽中に定常的に存在する金属量は、
後述する、必要処理負荷量から化学量論的に計算
される添加当量にほぼ相当する。この溶解反応槽
中の金属粉の反応面積は、添加当量と金属粉の粒
度およびその後の反応による減少とにより決ま
る。そしてこの場合には、反応面積の制約がある
ために、反応槽における時間当り溶解量は制限さ
れることとなる。このため、反応時間が長くかか
り、反応槽容量が大きくなり、設備投資費用およ
び設備スペースが大きくなる欠点がある。 In the case of this method, it is assumed that all the metal powder added to the dissolution reaction tank is completely dissolved, and the amount of metal constantly present in the dissolution reaction tank is
This approximately corresponds to the addition equivalent calculated stoichiometrically from the required processing load amount, which will be described later. The reaction area of the metal powder in this dissolution reactor is determined by the addition equivalent and the particle size of the metal powder and its reduction due to subsequent reactions. In this case, since there is a restriction on the reaction area, the amount of dissolution per hour in the reaction tank is limited. Therefore, there are drawbacks that the reaction time is long, the reaction tank capacity is large, and the equipment investment cost and equipment space are large.
一般に、反応表面積を増加させる方法として
は、微粒径のものを使用することが行なわれる。
しかしながら、工業的経済的に入手可能な粒径
は、数μm程度までである。また、亜鉛粉の場合
には、粉末に凝集性があり、数μm程度の粒度の
ものでは凝集が生じ、却つて反応を阻害してしま
うことになるので、数+μm程度の粒度のものが
適当である。このように、微粒径のものを使用す
るとしても、反応面積増加には自ら制限があり、
メツキ浴への金属溶解反応を促進する上で、必ず
しも有効な方法ではない。 Generally, a method for increasing the reaction surface area is to use particles of fine particle size.
However, the industrially and economically available particle size is up to several μm. In addition, in the case of zinc powder, the powder has cohesive properties, and particles with a particle size of several micrometers will cause aggregation, which will actually inhibit the reaction, so a particle size of several + micrometers is appropriate. It is. In this way, even if particles with a fine particle size are used, there is a limit to the increase in reaction area;
This is not necessarily an effective method for promoting the metal dissolution reaction in the plating bath.
そこで、本発明の目的は、補給すべき金属をメ
ツキ浴に添加溶解させることにより、メツキ浴中
のFe3+イオンを還元するとともにメツキ金属の
補給をも達成する方法において、溶解反応におけ
る金属の反応表面積を大巾に増加させ、時間当り
の溶解量を改善することができる鉄系電気メツキ
液の再生処理方法を提供することにある。 Therefore, an object of the present invention is to provide a method for reducing Fe 3+ ions in a plating bath and replenishing the plating metal by adding and dissolving the metal to be replenished into the plating bath. The object of the present invention is to provide a method for regenerating an iron-based electroplating solution that can greatly increase the reaction surface area and improve the amount of dissolution per hour.
上記問題点を解決し、上記課題を達成するため
の本発明は、金属の補給を行なう鉄系電気メツキ
液の再生処理方法において、Fa3+含有メツキ液
と、補給すべき金属粉を撹拌槽型溶解槽で接触溶
解させることにより、メツキ液中のFe3+イオン
を還元すると同時に金属を補給するに際し、メツ
キ液再生必要処理負荷量から化学量論的に計算さ
れる金属粉添加当量の2〜10倍の金属粉を、たえ
ず、金属の溶解反応に供給することを特徴とした
ものである。
In order to solve the above-mentioned problems and achieve the above-mentioned objects, the present invention provides a method for recycling iron-based electroplating liquid that replenishes metal, in which Fa 3+ -containing plating liquid and metal powder to be replenished are mixed in a stirring tank. By contact melting in the mold melting tank, when reducing Fe 3+ ions in the plating solution and replenishing the metal at the same time, 2 of the metal powder addition equivalent calculated stoichiometrically from the processing load required for plating solution regeneration is used. It is characterized by continuously supplying ~10 times more metal powder to the metal melting reaction.
次に、本発明を図面を参照しながら説明する。
第1図は、本発明のメツキ浴再生方法を鉄―亜鉛
合金電気メツキに適用した例を示す。図において
は、1はFe3+イオンおよびZn2+イオンを主成分
とするメツキ液を満たしたメツキ槽、2は不溶性
陽極、3は被メツキ材たとえば鋼帯、4はメツキ
槽1にメツキ液を補給するためのバツフアー槽、
5は補給すべき金属Fe粉、6はメツキ槽1から
抜き出したメツキ液によりFe粉の溶解を行なう
金属Fe撹拌槽型溶解層、7は補給すべき金属Zn
粉、8は金属Fe撹拌槽型溶解槽6と同様にメツ
キ槽1から抜き出したメツキ液によりZn撹拌槽
型溶解層、9はスラツジ、たとえば不純物として
含まれていた角種酸化物(FeO,MnO等)や炭
化物(Fe3C等)の不溶性残査を分離するための
固液分離装置、10はメツキ液ドレンオフ受槽で
ある。 Next, the present invention will be explained with reference to the drawings.
FIG. 1 shows an example in which the plating bath regeneration method of the present invention is applied to iron-zinc alloy electroplating. In the figure, 1 is a plating tank filled with a plating solution containing Fe 3+ ions and Zn 2+ ions as main components, 2 is an insoluble anode, 3 is a material to be plated, such as a steel strip, and 4 is a plating solution in plating tank 1. Buffer tank for replenishing
5 is the metal Fe powder to be replenished, 6 is the metal Fe stirring tank type dissolution layer in which the Fe powder is dissolved by the plating liquid extracted from the plating tank 1, and 7 is the metal Zn to be replenished.
Powder, 8 is a Zn stirred tank type dissolution layer by the plating solution extracted from the plating tank 1 in the same way as the metal Fe stirred tank type dissolution tank 6, 9 is a Zn stirred tank type dissolution layer, 9 is a sludge, for example, horn seed oxides (FeO, MnO) contained as impurities. etc.) and carbides (Fe 3 C, etc.), and 10 is a plating liquid drain-off receiving tank.
金属Fe撹拌槽型溶解槽6および金属Zn撹拌槽
型溶解槽8における反応は次の通りである。 The reactions in the metal Fe stirred tank type dissolution tank 6 and the metal Zn stirred tank type dissolution tank 8 are as follows.
Fe3++1/2Fe
→3/2Fe2+(Fe3+還元反応) ……(3)
2H++Fe→Fe2++H3(酸溶解) ……(4)
Fe3++1/2Zn
→Fe3+1/2Zn3+(Fe3+還元反応) ……(5)
2H++Zn→Zn3++H2(酸溶解) ……(6)
すなわち、各撹拌型槽溶解槽6および8におい
て、金属Feおよび金属Znをそれぞれメツキ液に
添加撹拌させることにより、メツキ液中のFe3+
イオンを還元するとともに、メツキ液中に金属を
溶解、補給してメツキ液を再生処理するものであ
る。Fe 3+ +1/2Fe →3/2Fe 2+ (Fe 3+ reduction reaction) ...(3) 2H + +Fe→Fe 2+ +H 3 (acid dissolution) ...(4) Fe 3+ +1/2Zn →Fe 3+ 1/2Zn 3+ (Fe 3+ reduction reaction) ...(5) 2H + +Zn→Zn 3+ +H 2 (acid dissolution) ...(6) That is, in each stirring type tank dissolution tank 6 and 8, By adding metallic Fe and metallic Zn to the plating solution and stirring them, Fe 3+ in the plating solution is removed.
In addition to reducing ions, the plating solution is regenerated by dissolving and replenishing metals into the plating solution.
本発明では、上記したような鉄―亜鉛合金電気
メツキ・システムにおいて、撹拌槽型溶解槽6お
よび8にそれぞれFe粉、Zn粉を添加し上記反応
を行なわせるに際し、常に特定量の金属を撹拌槽
型溶解槽中に存在させるようになつている。 In the present invention, in the iron-zinc alloy electroplating system as described above, when Fe powder and Zn powder are added to the stirred tank type melting tanks 6 and 8 respectively and the above reaction is carried out, a specific amount of metal is constantly stirred. It is designed to exist in a bath-type dissolution tank.
すなわち、メツキ液中のFe3+イオン濃度、浴
成分調整に必要な金属粉溶解量とから必要処理液
量が決まるが、この必要処理負荷量から化学量論
的に金属粉の添加当量を計算し、この添加当量の
2〜10倍の金属粉がたえず撹拌槽型溶解槽中に存
在するように、金属粉を添加するものである。好
ましい過剰量は、金属粉の種類、比重、粒径、メ
ツキ浴成分濃度、PH温度、Fe3+濃度等の処理条
件、装置付属機器等に依存し、これらとの関連で
それぞれ個別に最適量が選ばれる。金属粉の撹拌
流動を良好にし、沈降を防止するために、当量の
2〜10倍過剰とするのが効率的である。10倍を越
えると撹拌が困難となる。 In other words, the required amount of treatment liquid is determined from the Fe 3+ ion concentration in the plating solution and the amount of metal powder dissolved necessary for adjusting the bath components, and the equivalent amount of metal powder to be added is calculated stoichiometrically from this required treatment load amount. However, the metal powder is added so that 2 to 10 times the equivalent amount of the metal powder added is constantly present in the stirring tank type dissolving tank. The preferred excess amount depends on the type of metal powder, specific gravity, particle size, plating bath component concentration, PH temperature, processing conditions such as Fe 3+ concentration, equipment attached to the equipment, etc., and the optimum amount should be determined individually in relation to these factors. is selected. In order to improve the stirring flow of the metal powder and prevent sedimentation, it is efficient to use an excess of 2 to 10 times the equivalent amount. If it exceeds 10 times, stirring becomes difficult.
ここで、添加当量の計算法について第1図を例
として述べる。いま撹拌槽型溶解槽への処理液の
入口Fe3+濃度をCin(Kmol/m3)とし、還元処理
を行なつた再生液の目的出口Fe3+濃度をCout
(Kmol/m3)とし、この撹拌槽型溶解層を通過
する処理液流量をQ(m3/hr)とするとFe3+の必
要処理負荷量は次の式で求められる。 Here, a method for calculating the added equivalent will be described using FIG. 1 as an example. The Fe 3+ concentration at the inlet of the treated solution to the stirred tank type dissolution tank is now Cin (Kmol/m 3 ), and the intended outlet Fe 3+ concentration of the regenerated solution after reduction treatment is Cout.
(Kmol/m 3 ), and the flow rate of the treatment liquid passing through this stirred tank type dissolution layer is Q (m 3 /hr), then the required treatment load amount of Fe 3+ can be determined by the following formula.
Q(Cin―Cout) ……(7)
そこで、(3)、(4)、(5)、(6)式より撹拌槽型溶解槽
でのFe3+還元効率Rを次のように定義する。 Q (Cin−Cout) ...(7) Therefore, from equations (3), (4), (5), and (6), the Fe 3+ reduction efficiency R in the stirred tank type dissolution tank is defined as follows. .
R=(Fe3+還元反応による金属溶解量)/{(Fe3+還
元反応による金属溶解量)
+(H+酸との反応による金属溶解量)}
したがつて、金属粉の化学反応論的当量添加量
Eeqは次の通りとなる。 R = (amount of metal dissolved due to Fe 3+ reduction reaction) / {(amount of metal dissolved due to Fe 3+ reduction reaction) + (amount of metal dissolved due to reaction with H + acid)} Therefore, chemical reaction theory of metal powder Equivalent amount added
Eeq is as follows.
Eeq=Q(Cin―Cout)/R ……(8)
かかる下で、本発明は、撹拌槽型溶解槽におけ
る金属粉の添加量を2Eeq〜10Eeqの過剰量を添加
するものである。 Eeq=Q(Cin-Cout)/R...(8) Under such conditions, the present invention adds an excess amount of metal powder of 2Eeq to 10Eeq in the stirred tank type melting tank.
次に、本発明の効果を実験例によつて示す。 Next, the effects of the present invention will be illustrated by experimental examples.
実験例 1
Fe系メツキ浴(組成:Fe2+1kmol/m3,
Zn2+0.3kmol/m3,Na2SO41kmol/m3,PH2.0,
温度50℃,Fe3+初期濃度400mg/)を撹拌槽型
溶解槽に導き、200メツシユのFe粉を2倍当量存
在させた状態で溶解反応させた。結果は第2図に
示す通りである。第2図から明らかなように、当
量添加の場合に比べて時間当りのFe3+還元量し
たがつて金属溶解量が大巾に改善された。Experimental example 1 Fe-based plating bath (composition: Fe 2+ 1kmol/m 3 ,
Zn 2+ 0.3kmol/m 3 , Na 2 SO 4 1kmol/m 3 , PH2.0,
A temperature of 50°C and an initial Fe 3+ concentration of 400 mg/) were introduced into a stirred tank type dissolution tank, and a dissolution reaction was carried out in the presence of twice the equivalent of 200 meshes of Fe powder. The results are shown in FIG. As is clear from FIG. 2, compared to the case of equivalent addition, the amount of Fe 3+ reduction per hour and therefore the amount of metal dissolution were greatly improved.
実験例 2
Fe3+初期濃度が1000mg/であるほかは実験
例1と同様のFe系メツキ浴を用い、5倍当量の
200メツシユZn粉を存在させた状態で溶解反応さ
せた。結果を第3図に示す。当量添加のものと比
較して、Fe3+還元速度したがつて金属溶解速度
が著しく向上した。Experimental Example 2 Using the same Fe-based plating bath as in Experimental Example 1 except that the initial Fe 3+ concentration was 1000 mg/
A dissolution reaction was carried out in the presence of 200 mesh Zn powder. The results are shown in Figure 3. Compared to those with equivalent addition, the Fe 3+ reduction rate and hence the metal dissolution rate were significantly improved.
第1図は本発明を鉄―亜鉛合金電気メツキ方法
に適用した例を示す概要図、第2図は金属Fe溶
解における従来技術と本発明の比較を示す図、第
3図は金属Zn溶解における従来技術と本発明の
比較を示す図である。
1……メツキ槽、2……不溶性陽極、3……被
メツキ材、4……バツフアー槽、5……Fe粉、
6……金属Fe撹拌槽型溶解槽、7……Zn粉、8
……金属Zn撹拌槽型溶解槽、9……固液分離装
置、10……メツキ液ドレンオフ受槽。
Figure 1 is a schematic diagram showing an example in which the present invention is applied to an iron-zinc alloy electroplating method, Figure 2 is a diagram showing a comparison between the conventional technology and the present invention in metal Fe melting, and Figure 3 is a diagram showing a comparison of the present invention in metal Zn melting. FIG. 3 is a diagram showing a comparison between the prior art and the present invention. 1... Plating tank, 2... Insoluble anode, 3... Material to be plated, 4... Buffer tank, 5... Fe powder,
6...Metal Fe stirring tank type dissolution tank, 7...Zn powder, 8
...Metallic Zn stirring tank type dissolution tank, 9...Solid-liquid separator, 10...Plating liquid drain-off receiving tank.
Claims (1)
処理方法において、 Fe3+含有メツキ液と、補給すべき金属粉を撹
拌槽型溶解槽で接触溶解させることにより、メツ
キ液中のFe3+イオンを還元すると同時にメツキ
すべき金属を補給するするとともに、 メツキ液再生必要処理負荷量から化学量論的に
計算される金属粉添加当量の2〜10倍の金属粉
を、たえず、撹拌槽型溶解槽内に存在させること
を特徴とする鉄系電気メツキ液の再生処理方法。[Claims] 1. In a method for regenerating iron-based electroplating liquid that replenishes metal, plating is carried out by contacting and dissolving Fe 3+ -containing plating liquid and metal powder to be replenished in a stirred tank-type dissolving tank. At the same time as reducing Fe 3+ ions in the liquid, replenishing the metal to be plated, add 2 to 10 times the equivalent amount of metal powder added stoichiometrically from the processing load required for plating liquid regeneration. A method for regenerating an iron-based electroplating solution, characterized in that the iron-based electroplating solution is constantly present in a stirring tank type dissolving tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17416482A JPS5964800A (en) | 1982-10-04 | 1982-10-04 | Regeneration treatment of ferrous electroplating bath |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17416482A JPS5964800A (en) | 1982-10-04 | 1982-10-04 | Regeneration treatment of ferrous electroplating bath |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5964800A JPS5964800A (en) | 1984-04-12 |
JPH0428799B2 true JPH0428799B2 (en) | 1992-05-15 |
Family
ID=15973812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17416482A Granted JPS5964800A (en) | 1982-10-04 | 1982-10-04 | Regeneration treatment of ferrous electroplating bath |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5964800A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0765239B2 (en) * | 1987-01-12 | 1995-07-12 | 日新製鋼株式会社 | Iron ion reduction method |
JPH03150400A (en) * | 1989-11-08 | 1991-06-26 | Nkk Corp | Method for replenishing iron ion and zink ion into iron-zinc alloy electroplating solution |
JP5683004B2 (en) * | 2011-03-11 | 2015-03-11 | 新日鉄住金エンジニアリング株式会社 | Sludge separation processing equipment for continuous electroplating equipment |
KR20230159574A (en) * | 2021-03-22 | 2023-11-21 | 주식회사 포스코 | Method for removing ferric ions from sulfate-based iron electroplating solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832729A (en) * | 1954-08-02 | 1958-04-29 | Rockwell Spring & Axle Co | Electrodeposition of iron-zinc alloys |
JPS4974671A (en) * | 1972-10-24 | 1974-07-18 |
-
1982
- 1982-10-04 JP JP17416482A patent/JPS5964800A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832729A (en) * | 1954-08-02 | 1958-04-29 | Rockwell Spring & Axle Co | Electrodeposition of iron-zinc alloys |
JPS4974671A (en) * | 1972-10-24 | 1974-07-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS5964800A (en) | 1984-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106467A (en) | Alkaline leaching of galvanized steel scrap | |
EP0075882B1 (en) | Process for regenerating cleaning fluid | |
US4385969A (en) | Method of regenerating an ammoniacal etching solution | |
US4265722A (en) | Method of processing the surface of workpieces including particularly the etching of surfaces containing copper or copper alloys | |
US5302260A (en) | Galvanic dezincing of galvanized steel | |
JP2002322593A (en) | Electrolytic phosphate chemical conversion treatment method | |
US6869519B2 (en) | Electrolytic process for the production of metallic copper and apparatus therefor | |
KR20030081511A (en) | Method and apparatus for recovering metals by means of pulsating cathode currents, also in combination with anodic coproduction processes | |
JPH0428799B2 (en) | ||
US4035269A (en) | Process for the galvanic purification of the waste waters | |
US4164456A (en) | Electrolytic process | |
US4432844A (en) | Process for regeneration of electrolyte containing tin salts by reducing the same | |
AU577173B2 (en) | An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine | |
JPH11207364A (en) | Treatment of selenium-containing solution | |
JP3597907B2 (en) | Regeneration method of ferric chloride solution | |
JPH0428800B2 (en) | ||
EP4317537A1 (en) | Method for removing ferric ions from sulfate-based iron electroplating solution | |
KR100902521B1 (en) | Electrolytic process for the production of metallic copper and apparatus therefor | |
JPS5893888A (en) | Supplying method for metallic ion in electroplating | |
KR100231680B1 (en) | A process of recovering non-reaction iron by ultrasound treatment | |
JPH08158088A (en) | Recovery of platinum group metal | |
JPH0258212B2 (en) | ||
JPH04218700A (en) | Method for adjusting electrogalvanizing bath | |
US1179522A (en) | Process of extracting metals from their ores. | |
JPS62256996A (en) | Starting material for zinc plating |