JPS5925935B2 - Continuous heat treatment equipment - Google Patents

Continuous heat treatment equipment

Info

Publication number
JPS5925935B2
JPS5925935B2 JP19660081A JP19660081A JPS5925935B2 JP S5925935 B2 JPS5925935 B2 JP S5925935B2 JP 19660081 A JP19660081 A JP 19660081A JP 19660081 A JP19660081 A JP 19660081A JP S5925935 B2 JPS5925935 B2 JP S5925935B2
Authority
JP
Japan
Prior art keywords
air
heat
heat exchange
heat treatment
exchange chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19660081A
Other languages
Japanese (ja)
Other versions
JPS58117818A (en
Inventor
冨 竹田
「巌」 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19660081A priority Critical patent/JPS5925935B2/en
Publication of JPS58117818A publication Critical patent/JPS58117818A/en
Publication of JPS5925935B2 publication Critical patent/JPS5925935B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は加熱処理を完了した被加熱処理物の保有する熱
を回収する燃料を熱源とする連続加熱処理装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous heat treatment apparatus that uses fuel as a heat source and recovers the heat possessed by a heat-treated object that has undergone heat treatment.

連続加熱処理装置は、その長さ方向に加熱処理条件に応
じた温度分布を有する炉中に被処理物を通過させること
により、加熱処理を完了させる装置であり、バッチ式に
比して熱効率、生産性が優れており、各分野に多用され
ている。
Continuous heat treatment equipment is a device that completes heat treatment by passing the object to be treated through a furnace that has a temperature distribution according to the heat treatment conditions in its length direction, and has higher thermal efficiency than batch type equipment. It has excellent productivity and is widely used in various fields.

この装置では高熱効率であることから、熱源からの入熱
量のうち、加熱処理を完了した高温の被処理物が顕熱と
して保有して持出す熱量の割合が多い。
Since this apparatus has high thermal efficiency, a large proportion of the heat input from the heat source is retained and taken out as sensible heat by the high-temperature processed material that has completed the heat treatment.

この被処理物が持出す熱量は、窯業、鉄鋼関係では加熱
温度が高温のため多量である。
The amount of heat taken out by the object to be processed is large because the heating temperature is high in the ceramics and steel industries.

まだ、大容量のこの種装置では、熱コストの面から燃料
を熱源とするものが多い。
However, many large-capacity devices of this type still use fuel as their heat source due to the cost of heat.

従来この連続加熱処理装置から排出される熱のうち、排
ガスの熱回収はなされてきたが、被処理物の保有熱量の
回収は十分なされていなく、熱経済上及び高温の被処理
物を空中放冷するため工場内を暑熱化し、次工程に支障
を与える等の不都合を生じていた。
Conventionally, the heat emitted from this continuous heat treatment equipment has been recovered from the exhaust gas, but the amount of heat retained in the material to be treated has not been sufficiently recovered, and for thermoeconomic reasons, it is necessary to release the high-temperature material into the air. In order to cool down, the inside of the factory became hot, causing problems such as interfering with the next process.

本発明は、加熱処理を完了した被処理材の保有する熱量
を高収率で回収する燃料を熱源とする連続加熱処理装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a continuous heat treatment apparatus using fuel as a heat source, which recovers at a high yield the amount of heat possessed by a material to be treated that has undergone heat treatment.

連続加熱処理装置において、処理を完了した被処理材の
保有する熱量を回収する最も一般的な方法は、この装置
の最終加熱室の後方に熱交換室を設け、ここで被処理物
と空気等の熱媒体を直接接触により熱交換させ、燃料を
熱源とするものではこの熱媒体を空気とし、燃焼用空気
として使用するものであろう。
In continuous heat treatment equipment, the most common method for recovering the amount of heat held by the processed material after processing is to provide a heat exchange chamber behind the final heating chamber of this equipment, where the material to be processed is exchanged with air, etc. In the case where heat is exchanged by direct contact with a heat medium and fuel is used as a heat source, air is used as the heat medium and used as combustion air.

しかし、この種の処理装置では最終加熱室の被処理材出
口は最大断面の被処理物が支障なく通過するように大断
面であり、この開口に対し通常被処理材が占める面積は
少く、もちろん上下動調整可能なドア等を設置して開口
面積を減少する手段を用いてもなお大断面の開口である
However, in this type of processing equipment, the outlet of the material to be processed in the final heating chamber has a large cross section so that the material with the largest cross section can pass through without any problem, and the area normally occupied by the material to be processed relative to this opening is small. Even if a means to reduce the opening area by installing a vertically adjustable door or the like is used, the opening still has a large cross section.

この開口を通して多量の燃焼生成ガスが、フードを通し
直接又は熱交換器等を経て大気中に排出されている。
Through this opening, a large amount of combustion gas is discharged into the atmosphere either directly through the hood or via a heat exchanger or the like.

この状態で熱交換室を設けても、この熱交換室と最終加
熱室との微小な圧力差及び画室の気体の密度差により、
この大面積開口を通して最終加熱室の燃焼生成ガスが熱
交換室に又は熱交換室の空気が最終加熱室に大量に流入
する。
Even if a heat exchange chamber is provided in this state, due to the minute pressure difference between this heat exchange chamber and the final heating chamber and the density difference of the gas in the compartment,
Through this large-area opening, the combustion product gas from the final heating chamber flows into the heat exchange chamber or the air from the heat exchange chamber flows into the final heating chamber in large quantities.

前者の場合抽出された空気は多量の燃焼生成ガスを含み
、またその量が変動するため安定な燃焼は行なえず燃焼
用空気としては使用できない。
In the former case, the extracted air contains a large amount of combustion gas, and the amount fluctuates, so stable combustion cannot be performed and it cannot be used as combustion air.

捷だ後者の場合、低温の空気の流入により最終加熱室の
温度分布が乱され、加熱処理装置としての機能に大きな
影響を与える。
In the latter case, the temperature distribution in the final heating chamber is disturbed by the inflow of low-temperature air, which greatly affects the function of the heat treatment apparatus.

この画室間の流入、流出を少なくする方法として、画室
間の圧力差を少なくすることは理論的に可能であるが、
この圧力差は微少で時間遅れを少々くして検出及び制御
することは非常に困難である。
It is theoretically possible to reduce the pressure difference between compartments as a way to reduce the inflow and outflow between compartments.
This pressure difference is so small that it is very difficult to detect and control it with a slight time delay.

また、従来から炉気等の遮蔽手段として流体力学的に遮
蔽するガスカーテン、フレームカーテン、機械的に遮蔽
するリボン、鎖、耐熱繊維質材等をのれん状に懸垂する
方法が知られている。
Furthermore, as a shielding means for reactor air, etc., methods have been known in which hydrodynamically shielding gas curtains, frame curtains, mechanically shielding ribbons, chains, heat-resistant fibrous materials, etc. are suspended in a curtain-like manner.

しかしガスカーテンでは最終加熱室の温度に影響を与え
ないよう高温のガスを吹き出す必要があり、このガスの
供給及びこれを扱う機器に問題がある。
However, with gas curtains, it is necessary to blow out high-temperature gas so as not to affect the temperature of the final heating chamber, and there are problems with the supply of this gas and the equipment that handles it.

またフレームカーテンでは燃料を必要とし、被処理材を
再加熱するので使用できない。
Also, flame curtains cannot be used because they require fuel and reheat the material to be treated.

更に機械的方法は高温下で常時被処理材と摺動し損傷し
易く保守が困難である。
Furthermore, mechanical methods constantly slide against the treated material at high temperatures, are easily damaged, and are difficult to maintain.

本発明は加熱室の後方に被処理材の通過を許す開口を有
する遮蔽体で覆われて々る熱交換室を設け、この熱交換
室で加熱処理を完了して搬送されて来た被処理材から熱
交換した空気及び前記加熱室からこの熱交換室に流入し
た燃焼生成ガスとの混合ガス中の特定成分濃度を検出す
ることにより前記空気及び燃焼生成ガスの混合比を一定
に保持して抽気するものである。
The present invention provides a heat exchange chamber covered with a shield having an opening that allows passage of the material to be treated at the rear of the heating chamber, and the material to be treated is transported after being heated in this heat exchange chamber. The mixture ratio of the air and the combustion gas is maintained constant by detecting the concentration of a specific component in the mixed gas of the air heat exchanged from the material and the combustion gas flowing into the heat exchange chamber from the heating chamber. It is something that extracts air.

すなわち本発明は、安定に完全燃焼し得る燃焼用空気と
しての条件である酸素濃度の変動を防止し、被処理物の
保有熱量を回収して高温化した空気を得るものであり、
したがって加熱室と熱交換室間の困難なガスの直接的遮
蔽を回避し、画室間のガス流動をある程度許容するもの
である。
That is, the present invention prevents fluctuations in oxygen concentration, which is a condition for combustion air that can stably and completely burn, and recovers the amount of heat held by the material to be treated to obtain high-temperature air.
Thus, difficult direct gas shielding between the heating chamber and the heat exchange chamber is avoided, and some gas flow between the compartments is allowed.

寸だ本発明は、熱回収した空気に混入する燃焼生成ガス
を低比率としてよ9高効率の燃焼を実現するため、この
空気は熱交換室に強制通風して、該室内を加熱室の圧力
に対抗する微正圧として該室に流入する燃焼生成ガス流
量を低下させるものである。
In order to realize highly efficient combustion by reducing the proportion of combustion gas mixed into the heat-recovered air, this air is forced into the heat exchange chamber, and the pressure inside the heating chamber is increased. This is to reduce the flow rate of the combustion product gas flowing into the chamber as a slight positive pressure that opposes the pressure.

次に本発明を実施例で説明する。Next, the present invention will be explained with examples.

図は本発明を応用した鋼材の連続焼鈍装置の断面図であ
る。
The figure is a sectional view of a continuous annealing apparatus for steel materials to which the present invention is applied.

被処理鋼材1は入口ローラテーブル2上で搬送ローラ3
上にクレーン等を使用して並べて供給される。
The steel material 1 to be processed is transferred to the conveyor roller 3 on the entrance roller table 2.
They are then lined up and supplied using a crane or the like.

鋼材は同一条理条件のものは寸法形状にかかわらずまと
めて処理される。
Steel materials with the same grain conditions are processed together regardless of size and shape.

この鋼材は搬送ローラ3の回転により矢印1の方向に低
速で加熱室4を通って搬出テーブル9上に寸で移動する
This steel material is moved at low speed in the direction of arrow 1 by the rotation of the conveyance roller 3 through the heating chamber 4 and onto the take-out table 9.

加熱室4の左右両壁面の被処理材1の上下部には複数の
オイルバーナ及びバーナタイル5が設置されており、こ
れ等のバーナは後述する熱交換により高温化した空気及
び燃焼生成ガスの混合気を保温処理された配管16から
供給され、図示しない温度検出手段により定められた温
度分布となるよう制御されている。
A plurality of oil burners and burner tiles 5 are installed in the upper and lower parts of the material to be treated 1 on both the left and right walls of the heating chamber 4, and these burners burn air and combustion generated gas that have become high in temperature through heat exchange, which will be described later. The air-fuel mixture is supplied from a pipe 16 that has been heat-insulated, and is controlled to have a predetermined temperature distribution by a temperature detection means (not shown).

加熱室は複雑な温度分布曲線も可能とするため複数に区
分されている。
The heating chamber is divided into multiple sections to enable complex temperature distribution curves.

各加熱室で発生した燃焼生成ガスは、その時の燃焼状態
により変化するが、概略矢印のように炉の前方又は後方
に流れて最後にフード7及び7′を径で煙突8及び8′
を通って最終的に大気中に放出されるが、最終加熱室4
−6から後方に排出される燃焼生成ガスの一部は矢印6
′のように熱交換室にも流れる。
The combustion generated gas generated in each heating chamber changes depending on the combustion state at that time, but flows roughly to the front or rear of the furnace as shown by the arrow, and finally passes through the hoods 7 and 7' to the chimneys 8 and 8'.
It is finally released into the atmosphere through the final heating chamber 4.
A part of the combustion generated gas discharged backward from -6 is indicated by the arrow 6.
′, it also flows into the heat exchange chamber.

設定された温度分布とされた加熱室4内を通過すること
により、被処理材1は所定のヒートパターンテ加熱処理
され、搬出テーブル9上に出、図示しない搬出装置によ
り次工程に搬出される。
By passing through the heating chamber 4 which has a set temperature distribution, the material 1 to be treated is heated to a predetermined heat pattern, and then exits onto the carry-out table 9 and is carried out to the next process by a carry-out device (not shown). .

熱交換室12は最終の加熱室4−6の後方のフード7′
に隣接して被処理材1の通過を許す開口を有する固定遮
蔽体10−1と、該遮蔽体と微少な隙間を保って搬出テ
ーブル9に架設した図示しない軌条上を車輪で前後方向
に走行可能な可動遮蔽体10−2で覆われてなる。
The heat exchange chamber 12 is located in the hood 7' behind the final heating chamber 4-6.
A stationary shield 10-1 having an opening adjacent to it that allows the material to be processed 1 to pass through, and a fixed shield 10-1 that runs in the front-rear direction with wheels on a track (not shown) installed on the unloading table 9 with a small gap between the shield and the shield. It is covered with a movable shield 10-2.

可動遮蔽体10−2の後端には複数のそれぞれ圧縮空気
源15から供給され、電磁弁M、Vで後述の送風機13
の吐出側から採取されたガス中の酸素濃度を検出する酸
素濃淡電池式ガス分析計G、Aの出力で制御され、可撓
ゴムホース17を通って供給された圧縮空気で作動する
ベンチュリーインジェクタ11が前方、下方向きに、そ
の下方を被処理材1の通過を許す位置に設置されている
The rear end of the movable shield 10-2 is supplied with compressed air from a plurality of compressed air sources 15, and is connected to a blower 13 (described later) using solenoid valves M and V.
A venturi injector 11 is controlled by the output of oxygen concentration battery type gas analyzers G and A that detect the oxygen concentration in the gas sampled from the discharge side of the venturi injector 11, which is operated by compressed air supplied through a flexible rubber hose 17. It is installed in a position that allows the material to be treated 1 to pass through the lower part in the forward and downward directions.

また固定遮蔽体10−1の前部上方にバーナへの燃焼空
気供給用の主配管16が吐出口に接続された燃焼用空気
送風機13の吸込口と連結された配管14が開口してい
る。
Further, a main pipe 16 for supplying combustion air to the burner is opened above the front part of the fixed shield 10-1, and a pipe 14 is connected to an inlet of a combustion air blower 13 whose discharge port is connected to the main pipe 16.

捷だ両遮蔽体は鋼板製殻体に断熱材を裏張されてはソ気
密状である。
Both shields are made of steel plate and lined with heat insulating material, making them airtight.

ベンチュリーインジェクタ11は圧縮空気を噴出するこ
とにより熱交換室後方の空気を大量に誘引し、熱交換室
12の出口部の加熱処理完了被処理材に噴射し、その熱
を奪って冷却すると同時に、この空気は熱交換により昇
温し、また熱交換室12内を微正圧にし加熱室4−6の
微正圧と対抗させる。
The venturi injector 11 draws a large amount of air from the rear of the heat exchange chamber by ejecting compressed air, and injects it onto the heat-treated treated material at the outlet of the heat exchange chamber 12 to remove the heat and cool it. The temperature of this air is increased by heat exchange, and the inside of the heat exchange chamber 12 is brought into a slight positive pressure to oppose the slight positive pressure in the heating chamber 4-6.

誘引噴射された空気の一部は熱交換室12の正圧のため
矢印20のように逃げるが、大部分は被処理材1の搬送
方向に逆向きに流れ、いわゆる向流熱交換及び直接接触
により高効率熱交換して高温化し、熱交換室12の前部
に達する。
A part of the induced and injected air escapes as shown by the arrow 20 due to the positive pressure in the heat exchange chamber 12, but most of it flows in the opposite direction to the conveyance direction of the material to be treated 1, resulting in so-called countercurrent heat exchange and direct contact. The heat is exchanged with high efficiency to reach a high temperature, which reaches the front part of the heat exchange chamber 12.

高温化したといえども該部と加熱室4−6とのそれぞれ
のガスには温度差による密度差があり、画室の境界であ
るフード7の下部では、熱交換した空気の一部が加熱室
4−6に侵入し、みた前述したように上部では、加熱室
4−6の燃焼生成ガスの一部が熱交換室12に侵入する
Even though the temperature has increased, there is a density difference between the gases in this section and the heating chamber 4-6 due to the temperature difference, and at the lower part of the hood 7, which is the boundary between the compartments, a part of the heat-exchanged air flows into the heating chamber. As described above, a part of the combustion generated gas in the heating chamber 4-6 enters the heat exchange chamber 12 at the upper part.

したがって配管14から吸引抽気される空気中には加熱
室4−6から侵入した燃焼生成ガスが一部含まれる。
Therefore, the air sucked and extracted from the pipe 14 contains a portion of the combustion generated gas that has entered from the heating chamber 4-6.

前述の制御系は吸引抽気中の酸素濃度が低くなれば作動
ベンチュリーインジェクタの数を増加するように、しだ
がって誘引空気量を増加し、侵入燃焼生成ガス量を減少
することにより、酸素濃度を上昇するように作動する。
The aforementioned control system increases the number of operating venturi injectors when the oxygen concentration in the suction bleed air becomes low, thus increasing the amount of induced air and reducing the amount of intruding combustion product gas, thereby reducing the oxygen concentration. It operates to rise.

このため熱交換室12から抽気され、バーナに供給され
る混合気は常に一定の成分範囲内となり、安定な完全燃
焼を継続できる。
Therefore, the air-fuel mixture extracted from the heat exchange chamber 12 and supplied to the burner is always within a certain range of components, and stable complete combustion can be continued.

丑だこの酸素濃度を選定することにより熱交換室12か
ら加熱室4−6に侵入する空気量を制御することができ
、加熱室4−6内の温度分布に悪影響を与えないように
することができる。
By selecting the oxygen concentration of the oxtail, the amount of air entering the heating chamber 4-6 from the heat exchange chamber 12 can be controlled, and the temperature distribution within the heating chamber 4-6 is not adversely affected. I can do it.

本実施例で送風機吐出し側ガス温度は平均300°Cで
燃料低減率約5%を達成することができた。
In this example, the average gas temperature on the blower discharge side was 300°C, and a fuel reduction rate of about 5% could be achieved.

本実施例は既設の連続加熱処理装置の限定された搬送テ
ーブル9上に熱交換室を設けたものであり、このだめ遮
蔽体を二分し伸縮構造としたが、伸縮に伴う可動遮蔽体
の移動中及び短縮中も熱交換室はその機能を継続するも
のである。
In this example, a heat exchange chamber is provided on a limited transfer table 9 of an existing continuous heat treatment apparatus, and the shield is divided into two and has an expandable structure, but the movement of the movable shield due to expansion and contraction is The heat exchange room continues its function during the period and during the shortening period.

スペースに限定されない場合は遮蔽体を固定としてもよ
い。
If the space is not limited, the shield may be fixed.

また本実施例は強制通風手段としてベンチュリーインジ
ェクタを採用し、コンパクト化して有効熱交換室の長さ
を増加し、搬送装置又は被処理材との干渉を防止し、劣
悪環境下で高信頼性とすることができた。
In addition, this embodiment adopts a venturi injector as a forced ventilation means, making it more compact and increasing the length of the effective heat exchange chamber, preventing interference with the conveying device or the material to be processed, and ensuring high reliability even in poor environments. We were able to.

もちろん他の低圧圧送手段を採用すること、また制御系
は送風量を制御するもののみでなく、定風量送風し逃し
弁を設けて逃げ空気量を制御してもよい。
Of course, other low-pressure pressure feeding means may be employed, and the control system may not only control the amount of air blown, but may also include a constant air amount blowing valve and control the amount of escape air.

すなわち通風効果を制御するものであればよい。That is, any material that controls the ventilation effect may be used.

本発明は必ずしも強制通風するものに限定されない。The present invention is not necessarily limited to forced ventilation.

本実施例では加熱室4の燃焼生成ガスの流動状態が熱交
換室新設前後で大巾に変動することを防止するだめ、熱
交換室から吸引される空気量を強制通風により補う方式
としたが、例えば煙突8′に弁18を設け、この開度を
ガス分析計G、Aにより制御し、この煙突の吸引力によ
り通風してもよいことはもちろんである。
In this embodiment, in order to prevent the flow state of the combustion gas in the heating chamber 4 from fluctuating widely between before and after the new heat exchange chamber is installed, a method was adopted in which the amount of air sucked from the heat exchange chamber was supplemented by forced ventilation. It goes without saying that, for example, a valve 18 may be provided in the chimney 8', the degree of opening of the valve 18 may be controlled by gas analyzers G and A, and ventilation may be carried out by the suction force of the chimney.

また本発明で熱回収した高温空気は他の用途に使用する
ことができることは云うまでもない。
It goes without saying that the high-temperature air whose heat is recovered in the present invention can be used for other purposes.

以上述べたように本発明により加熱処理を完了した被処
理材の顕熱を高効率で回収することが可能となり、熱効
率はもちろん、次工程での取扱い、工場内暑熱化防止等
の二次的効果も可能となった。
As described above, the present invention makes it possible to recover the sensible heat of the processed material after heat treatment with high efficiency, which not only improves thermal efficiency but also improves secondary processes such as handling in the next process and preventing overheating in the factory. effect was also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した鋼材の連続加熱処理装置の断
面図である。 1:被処理材、4:加熱室、5:バーナタイル、6.6
’:ガス流れを示す矢印、101.10−2:遮蔽体、
11:ベンチュリーインジェクタ、12:熱交換室、1
3:送風機、14,16:配管、G、A:分析計、M、
V:電磁弁。
FIG. 1 is a sectional view of a continuous heat treatment apparatus for steel materials to which the present invention is applied. 1: Processed material, 4: Heating chamber, 5: Burner tile, 6.6
': Arrow indicating gas flow, 101.10-2: Shielding body,
11: Venturi injector, 12: Heat exchange chamber, 1
3: Blower, 14, 16: Piping, G, A: Analyzer, M,
V: Solenoid valve.

Claims (1)

【特許請求の範囲】 1 燃料を燃焼することにより被加熱物を加熱する連続
加熱処理装置において、加熱室の後方に被処理材の通過
を許す開口を有する遮蔽体で覆われてなる熱交換室を設
け、この熱交換室で加熱処理を完了して搬送されてきた
被処理材から熱交換した空気及び前記加熱室から前記熱
交換室に流入した燃焼生成ガスとの混合ガス中の特定成
分の濃度を検出することにより、前記空気及び燃焼生成
ガスの混合比を一定に保持して抽気することを特徴とす
る連続加熱処理装置。 2 熱交換室で熱交換される空気は強制通風で供給され
、混合ガス中の特定成分濃度により、前記強制通風効果
を制御することを特徴とする特許請求の範囲第1項記載
の連続加熱処理装置。
[Scope of Claims] 1. In a continuous heat treatment device that heats a material to be heated by burning fuel, a heat exchange chamber covered with a shield having an opening at the rear of the heating chamber that allows the material to pass through. is provided, and the specific components in the mixed gas with the air heat-exchanged from the processed material that has been conveyed after completing the heat treatment in this heat exchange chamber and the combustion generated gas that has flowed into the heat exchange chamber from the heating chamber. A continuous heat treatment apparatus characterized in that the mixture ratio of the air and combustion generated gas is kept constant and air is extracted by detecting the concentration. 2. The continuous heat treatment according to claim 1, wherein the air to be heat exchanged in the heat exchange chamber is supplied by forced ventilation, and the forced ventilation effect is controlled by the concentration of a specific component in the mixed gas. Device.
JP19660081A 1981-12-07 1981-12-07 Continuous heat treatment equipment Expired JPS5925935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19660081A JPS5925935B2 (en) 1981-12-07 1981-12-07 Continuous heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19660081A JPS5925935B2 (en) 1981-12-07 1981-12-07 Continuous heat treatment equipment

Publications (2)

Publication Number Publication Date
JPS58117818A JPS58117818A (en) 1983-07-13
JPS5925935B2 true JPS5925935B2 (en) 1984-06-22

Family

ID=16360436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19660081A Expired JPS5925935B2 (en) 1981-12-07 1981-12-07 Continuous heat treatment equipment

Country Status (1)

Country Link
JP (1) JPS5925935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033324A (en) * 1983-07-31 1985-02-20 Matsushita Electric Works Ltd Manufacture of alloy material
JPS6049950U (en) * 1983-09-10 1985-04-08 白川 昭夫 water nozzle

Also Published As

Publication number Publication date
JPS58117818A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
CA1134139A (en) Energy efficient heat-treating furnace system
CN103940213A (en) Coke drying system dry gas temperature and flow self-adjustment control device and method
US3920382A (en) Method and apparatus for heat treating articles in a recirculating type furnace
CN101649378B (en) Method for low-temperature tempering heat treatment by using steel plate continuous heat-treating furnace
US4309171A (en) Billet heating furnace with pressurized entrance seal
US3607173A (en) Method and apparatus for heat treating sheets of glass
US2849221A (en) Heat treating furnace
JPS5925935B2 (en) Continuous heat treatment equipment
GB1027732A (en) Oven for heat treatment of coated articles with catalytic burning of fumes
US3022057A (en) Direct-heating oven
US4444554A (en) Heating method and apparatus
EP0268606A1 (en) Method and device for pre-heating waste metal for furnaces.
JPH04124586A (en) Cooling device for continuous furnace
US2693952A (en) Forge furnace control
US3035824A (en) Furnace with cooled and recirculated atmosphere
SE9303237L (en) Method for hard-burning iron oxide-containing pellet sheets
GB902674A (en) System for baking carbonaceous products or the like
SU681310A1 (en) Method of heating products in a furnace with a finely dispersed bed
GB2187830A (en) Continuous kiln for ceramics
GB1506725A (en) Oven systems
CN219756939U (en) Belt roasting machine capable of graded cooling and gradient utilization of hot air
SU1023187A1 (en) Heating hearth of roasting conveyer machine
CN218155450U (en) Wide-body roller kiln
JP2695444B2 (en) Boiler equipment
CN208475987U (en) A kind of ring-form calcining furnace