JPS5925868A - Composition for deicing material - Google Patents

Composition for deicing material

Info

Publication number
JPS5925868A
JPS5925868A JP13657082A JP13657082A JPS5925868A JP S5925868 A JPS5925868 A JP S5925868A JP 13657082 A JP13657082 A JP 13657082A JP 13657082 A JP13657082 A JP 13657082A JP S5925868 A JPS5925868 A JP S5925868A
Authority
JP
Japan
Prior art keywords
icing
composition
formula
group
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13657082A
Other languages
Japanese (ja)
Other versions
JPS6362556B2 (en
Inventor
Heihachi Murase
村瀬 平八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP13657082A priority Critical patent/JPS5925868A/en
Publication of JPS5925868A publication Critical patent/JPS5925868A/en
Publication of JPS6362556B2 publication Critical patent/JPS6362556B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:The titled composition, containing a specific organopolysiloxane and an alkali metallic compound in a specific proportion, capable of completely preventing the sticking of frozen water to the surface of a body, and effective for preventing the danger of the icing on ships or aircraft. CONSTITUTION:A composition prepared by incorporating (A) 70-99.8wt% organopolysiloxane expressed by formula I (R is monofunctional organic group bonded to the silicon atom through a carbon-silicon bond, preferably 1-6C lower alkyl or H; R' is H, 1-20C alkyl, acyl, aryl or oxime residue; n<4; m<4; n+m<4) with (b) 0.2-30wt% alkali metallic compound expressed by formula II{M is alkali metal selected from Li, Na and K; X is inorganic acid radical, e.g. F, Cl or NO3, etc., OH, organic acid radical, e.g. HCOO or a saturated monocarboxylic acid radical of formula III [(n is an integer 0-20); a is an integer 1-4]}. A lithium compound, e.g. lithium acetate is preferred for the component (B).

Description

【発明の詳細な説明】 本発明は着氷防止材料用組成物に関するもので、さらに
詳しくはオルガノポリシロキサン樹脂をペースとして、
そのマトリックス中にアルカリ金属化合物を均一に溶解
または分散した材料で物体表面を被覆することにより、
シリコーン樹脂とアルカリ金属化合物のそれぞれの有す
る氷結防止作用の相乗効果により水の結氷時の物体表面
への強い付着を防止することの可能な着氷防止材料用組
成物に関する◇      ″ 水の氷結現象は低温における水分子の水素結合の形成に
よるもので非常に大きな凝集力を示す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition for anti-icing materials, and more specifically, the present invention relates to a composition for anti-icing materials, and more specifically, a composition containing an organopolysiloxane resin as a pace,
By coating the surface of an object with a material in which an alkali metal compound is uniformly dissolved or dispersed in the matrix,
Regarding a composition for an anti-icing material that can prevent water from strongly adhering to the surface of an object when it freezes due to the synergistic effect of the anti-icing effects of a silicone resin and an alkali metal compound. This is due to the formation of hydrogen bonds between water molecules at low temperatures and exhibits a very large cohesive force.

理論的凝集破壊強度はio、oookり/iであるとい
われているが実際には16〜80kg/cdが測定され
ている。着氷現象はこの水素結合が水と物体表面との間
で形成されるもので、極めて大きな接着力を示す。この
着氷や凍結による被害は寒冷地または冬期には至る所で
発生している。例えば船舶や航空機への着氷による危険
性、道路や鉄道の凍結による車輛の運行不能や事故の危
険性、また積雪による送電線の切断や家屋の倒壊、送受
信機の機能障害など多数にのぼる。中でも船舶への着氷
は最も危険性が大きく、船体への着氷により重心が高く
なり、転覆の事故に至る。このため毎年多数の人命が失
われている。また道路の凍結防止のために凍結防止剤が
散布されるが、米国に例をとればそれが年間1000万
トンにのぼり、それによる車輛のサビと地下水の汚染に
よる損害は1億ドル以上になるといわれている0また石
油資源の枯渇から近年とみに活発化してきた北海油田の
開発のための着氷防止材料の必要性と相俟って、これら
材料の研究開発が盛んになってきている。
The theoretical cohesive failure strength is said to be io, oook/i, but in reality it has been measured to be 16 to 80 kg/cd. The icing phenomenon occurs when hydrogen bonds are formed between water and the surface of an object, and exhibit extremely strong adhesion. Damage caused by icing and freezing occurs everywhere in cold regions and during the winter. For example, there are many dangers such as the danger of ice accretion on ships and aircraft, the danger of vehicle inoperability and accidents due to frozen roads and railways, the cutting of power lines and the collapse of houses due to snow accumulation, and the malfunction of transmitters and receivers. Ice buildup on ships is the most dangerous, as ice buildup on the ship's hull raises the center of gravity, leading to capsizing accidents. Many lives are lost every year because of this. In addition, anti-freeze agents are sprayed to prevent roads from freezing, but in the United States, for example, the amount of anti-freeze used reaches 10 million tons per year, and the resulting damage from rusting vehicles and contamination of groundwater is estimated to be over $100 million. In addition, research and development of these materials is becoming more active in conjunction with the need for anti-icing materials for the development of oil fields in the North Sea, which has become more active in recent years due to the depletion of oil resources.

従来、着氷防止対策の一つとして物体表面に各種の被覆
物を塗布し、これによって着氷力の軽減が試みられてき
た。被覆材料としては、アクリル樹脂系、ゴム系、フッ
素樹脂系およびシリコーン樹脂系等の被覆材料が知られ
ている。この中でもシリコーン系である各種のオルガノ
ポリシロキサン樹脂が特に多く利用されている。例えば
ソ連特許789080号では二層からなるシリコーン系
着氷防止塗料を開示している。また米国特許42712
15号はカルボキシル官能基を有した特定のシリコーン
樹脂にテトラアルコキシチタン化合物を接着触媒として
用いる着氷防止塗料を開示している。
Conventionally, as one of the measures to prevent icing, attempts have been made to reduce the icing force by applying various coatings to the surface of objects. As the coating material, acrylic resin-based, rubber-based, fluororesin-based and silicone resin-based coating materials are known. Among these, various silicone-based organopolysiloxane resins are particularly widely used. For example, Soviet Patent No. 789080 discloses a two-layer silicone anti-icing coating. Also, US Patent No. 42712
No. 15 discloses an anti-icing coating using a tetraalkoxytitanium compound as an adhesion catalyst to a specific silicone resin having carboxyl functional groups.

これらの塗料組成物による物体表面の被覆にょっ 8− て、着氷性を多かれ少なかれ軽減させることは可能であ
るが、氷の水素結合による強い接着を完全に防止するに
は至らず、さらに改良が望まれている。
Although it is possible to more or less reduce icing by coating the surface of an object with these coating compositions, it is not possible to completely prevent strong adhesion due to hydrogen bonding of ice, and further improvements are needed. is desired.

本発明者は着氷のメカニズムを基礎的に研究し、界面科
学的、物理的および熱力学的の三つの要因に分類して検
討した結果シリコーン系ポリマーは他のどのポリマーよ
りも着氷性は低いが、とのポリマーだけによっては、種
類の如何にか\わらず氷の接着力がかなりあることを確
認し、さらに鋭意研究の結果、水素結合開離作用・を有
するプルカリ金属化合物とシリコーン樹脂との組合わせ
による相乗作・用によってはじめて着氷が完全に防止で
きることを見い出し本発明を完成するに至った。
The inventor conducted basic research on the mechanism of icing and classified it into three factors: interface science, physical, and thermodynamic. As a result, silicone polymers have a higher icing property than any other polymer. However, it was confirmed that the adhesion of ice to any type of ice is quite strong, regardless of the type of polymer, and as a result of further intensive research, a prucari metal compound and a silicone resin, which have a hydrogen bond dissociation effect, were discovered. They discovered that icing can be completely prevented only by the synergistic effect of the combination with the above, and have completed the present invention.

かくして、本発明に従えば、 (〜 下記単位式 %式% (式中、艮は炭素−ケイ素結合によりケイ素に結合する
一価有機基または水素を表わす、Zは水素、C1〜C2
0のアルキル基、アシル基アリール基又はオキシム残基
を示す。上式中のn及びmはそれぞれ4以下の値で、か
っn十mは4未満である) で表わされるオルガノポリシロキサン樹脂70〜99.
8重量%及び (ロ)下記式 (式中MはLl、 Na及びKから選ばれるアルカリ金
属、Xは無機酸根、水酸基又は有機酸根を示す。またa
は1〜4の整数である)で表わされるアルカリ金属化合
物0.2〜80重量% からなる着氷防止材料用組成物が提供される。
Thus, according to the invention, (~ the following unit formula % formula % (wherein represents a monovalent organic group or hydrogen bonded to silicon through a carbon-silicon bond, Z is hydrogen, C1-C2
0 alkyl group, acyl group, aryl group, or oxime residue. In the above formula, n and m each have a value of 4 or less, and n0m is less than 4) An organopolysiloxane resin 70 to 99.
8% by weight and (b) the following formula (where M is an alkali metal selected from Ll, Na and K, X represents an inorganic acid group, a hydroxyl group or an organic acid group; and a
is an integer from 1 to 4).

本発明による組成物が着氷防止に及ぼす作用効果は該組
成物の一つの構成成分であるオルガノポリシロキサン樹
脂(5)の表面特性および物理的特性によるものと他の
構成成分であるアルカリ金属化合物(I3)による熱力
学的な作用によるものとの複合効果として〕導われ、完
全に着氷の防止が達成できる。
The effects of the composition according to the present invention on preventing icing are due to the surface properties and physical properties of the organopolysiloxane resin (5), which is one of the constituents of the composition, and the alkali metal compound, which is the other constituent. (I3) as a combined effect with the thermodynamic action, and complete prevention of icing can be achieved.

すなわち、オルガノポリシロキサン樹脂はその表面に炭
化水素の鎖が配列するので、その表面エネルギーは低く
、また水素結合を生じやすい極性成分も極めて少ないた
め撥水性表面を形成する材料として各種の用途に応用さ
れていることは周知の通りである。オルガノポリシロキ
サン樹脂の着氷低減性能はこの低表面エネルギーの他に
、その物理的特性、特に低温物性によるところも大であ
る。すなわち、該オルガノポリシロキサン樹脂の剛性は
小さく、シかもそのガラス転移温度が低いために極低温
、例えばマイナス30°Cの条件下でもその分子運動が
沖結されず、極めて低い剛性を示すため氷結の際に水素
結合の標的になりにくい。
In other words, organopolysiloxane resin has hydrocarbon chains arranged on its surface, so its surface energy is low, and it also has very few polar components that tend to form hydrogen bonds, so it can be used for various purposes as a material for forming water-repellent surfaces. It is well known that this is the case. In addition to this low surface energy, the ability of organopolysiloxane resins to reduce icing is largely due to their physical properties, especially their low-temperature properties. In other words, the rigidity of the organopolysiloxane resin is low, and its low glass transition temperature prevents its molecular motion from freezing even under conditions of extremely low temperatures, for example, minus 30°C. It is difficult to become a target for hydrogen bonding during .

このように塗膜の表面性質のみならず、バルクとしての
低温領域での粘弾性によっても着氷性が左右されるので
、該被覆物の膜厚によっても着氷力が変化する。例えば
50〜200μmの膜厚でマイナス25°Cでは接着力
は1.2〜0.8 kg / cAであるが5〜10μ
mの薄膜では1.0〜2.4 kg/dと増大する。そ
こで該オルガノポリシロキサン樹脂にアルカリ金属化合
物を例えば8PHR添加した場合、5〜10μmの薄膜
でも氷接着カは0となる。
As described above, the icing ability is influenced not only by the surface properties of the coating film but also by the viscoelasticity of the bulk at low temperatures, and therefore the icing ability also changes depending on the thickness of the coating. For example, at -25°C with a film thickness of 50 to 200 μm, the adhesive strength is 1.2 to 0.8 kg/cA, but it is 5 to 10 μm.
For a thin film of m, it increases to 1.0 to 2.4 kg/d. Therefore, when, for example, 8 PHR of an alkali metal compound is added to the organopolysiloxane resin, the ice adhesion force becomes 0 even in a thin film of 5 to 10 μm.

このメカニズムをアルカリ金属化合物の中のリチウム化
合物を例にとって説明すると、L1■のイオン半径は小
さく(0,6A!’)、そのために水和エネルギーはl
 25 kgaA f / Ionと大きイ(因ミニN
aは94.6 kgcsJ f / Ion テあル)
。ソシテL1eイオンのまわりには5分子の水が吸着し
、さらにその外側に10分子の水が吸着しているが、こ
れらの水分子はリチウムイオンとの距シwが近すぎる 
7− ため水素結合より大きなエネルギーで吸着しているので
水素結合は形成されない。すなわち、オルガノポリシロ
キサン樹脂のマトリックス中にトラップさねたリチウム
化合物は、被覆材料表面において吸着した水分子を氷結
させないため、氷は接着しないのである。Na■イオン
及びに■イオンにおいてもこのような作用は見られるが
、L1■イオンの方がはるかに効果が大きく好適である
To explain this mechanism using a lithium compound among alkali metal compounds as an example, the ionic radius of L1■ is small (0,6A!'), and therefore the hydration energy is l
25 kgA f/Ion and large (in mini N
a is 94.6 kgcsJ f/Ion Teal)
. Five molecules of water are adsorbed around the Socite L1e ion, and ten molecules of water are further adsorbed on the outside, but these water molecules are too close to the lithium ion.
7- Therefore, hydrogen bonds are not formed because they are adsorbed with greater energy than hydrogen bonds. That is, the lithium compound trapped in the matrix of the organopolysiloxane resin does not freeze water molecules adsorbed on the surface of the coating material, so ice does not adhere to it. Although such an effect is also seen with Na* ion and Ni* ion, L1* ion is much more effective and suitable.

本発明におけるオルガノポリシロキサン樹脂(へ)わさ
れ、且つ水及び有機溶剤に分散及び/又は溶解して液状
を呈することのできるものである。上記式中のkは炭素
−ケイ素結合によりケイ素に結合する1価の有機基また
は水素である。
The organopolysiloxane resin used in the present invention can be dissolved and dispersed and/or dissolved in water and an organic solvent to form a liquid state. k in the above formula is a monovalent organic group bonded to silicon through a carbon-silicon bond or hydrogen.

該有機基としては、例えばメチル、エチル、プロピル、
ヘキシルなどのアルキル基;シクロヘキシル、シクロブ
チル、シクロペンチルなどのシクロアルキル基iフェニ
ル、トリル、キシI)IL/、す 8− ブチルなどの了り−ル基;ベンジル、フェニルエチル、
メチルベンジル、ナフチルベンジルなどのアラルキル基
iビニル、アリル、オレイルなどのアルケニル基;シク
ロペンタジェニル、2−シクロブテニルなどのシクロア
ルケニル基;ビニルフェニル基の如きアルケニルアリー
ル基などを挙げることができる。中でも炭素数1〜6の
低級アルキル基が着氷防止の面で効果的である。
Examples of the organic group include methyl, ethyl, propyl,
Alkyl groups such as hexyl; cycloalkyl groups such as cyclohexyl, cyclobutyl, cyclopentyl; phenyl, tolyl, xyl groups such as IL/, 8-butyl; benzyl, phenylethyl,
Examples include aralkyl groups such as methylbenzyl and naphthylbenzyl; alkenyl groups such as vinyl, allyl, and oleyl; cycloalkenyl groups such as cyclopentadienyl and 2-cyclobutenyl; and alkenylaryl groups such as vinylphenyl. Among them, lower alkyl groups having 1 to 6 carbon atoms are effective in preventing icing.

また、式中〆は水素の他に、例えばメチル、エチル、プ
ロピル、ブチル、アミル、ヘキシル、オクチルなどの0
1〜C20のアルキル基tアリール基;アセチル、プロ
ピオニル、ブチリルなどCI、、C8のアシル基;オキ
シム残基;などを挙げることができる。
In addition to hydrogen, the terminator in the formula can also be hydrogen, such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, etc.
Examples include a C1-C20 alkyl group, t-aryl group; CI such as acetyl, propionyl, butyryl; C8 acyl group; oxime residue; and the like.

本発明で使用される゛上記したオルガノポリシロキサン
樹脂は、前記した如く水及び有機溶剤に分散及び/又は
溶解するものであれば分子量に制限されることなく使用
可能であるが、通常使用されるものは数平均分子量で約
300〜約1.000.000好適には約1,000〜
約500.000の範囲である。また、該オルガノポリ
シロキサン樹脂は、分子中に水酸基、アルコキシ基のよ
うな反応性基を有するものが好ましく使用される。この
ようなオルガノポリシロキサン樹脂としては、例えば、
Z−6018、Z−6188,5ylkyd 50、D
C−8087(Dow Corning社製品)、Kk
−216、KR−218、KSP−1(信越シリコーン
■製品)、TSR−160、TSR−165(東京芝浦
電気(閑製品)、5E1821.5E1980.5E9
140.5RX2 l l、PRX3 Q 5、SH2
87,5H9551RTV(東しシリコーン■製品)等
が挙げられる。
The above-mentioned organopolysiloxane resin used in the present invention can be used without any restriction on molecular weight as long as it can be dispersed and/or dissolved in water and organic solvents as described above, but it can be used without any restriction on molecular weight. The number average molecular weight is about 300 to about 1.000.000, preferably about 1,000 to about 1.000.000.
The range is approximately 500.000. Preferably, the organopolysiloxane resin has a reactive group such as a hydroxyl group or an alkoxy group in its molecule. Examples of such organopolysiloxane resins include,
Z-6018, Z-6188, 5ylkyd 50, D
C-8087 (Dow Corning product), Kk
-216, KR-218, KSP-1 (Shin-Etsu Silicone ■ product), TSR-160, TSR-165 (Tokyo Shibaura Electric (empty product), 5E1821.5E1980.5E9
140.5RX2 l l, PRX3 Q 5, SH2
Examples include 87,5H9551RTV (Toshi Silicone Product).

オルガノポリシロキサン樹脂の代表的な硬化機構は、(
I)に示される縮重合型および(It)に示される付加
反応型である。
The typical curing mechanism of organopolysiloxane resin is (
They are the condensation type shown in I) and the addition reaction type shown in (It).

1 OH0I−1 ROHI(OR 1111 R 1 SiO−8i−0− 1 OOR I RR RRI(l( 11− 1 RR 1 KR 1 xt             1ζ  12− または 1紀反応式中k及びZは前記したものと同じである。1 OH0I-1 ROHI(OR 1111 R 1 SiO-8i-0- 1 OOR I R.R. RRI(l( 11- 1 R.R. 1 KR 1 xt          1ζ 12- or In the primary reaction formula, k and Z are the same as described above.

該組成物中のオルガノポリシロキサン樹脂の量が99.
8%を越えるか、または70%(重量部)未満になると
着氷性が著るしく増大してくる。
The amount of organopolysiloxane resin in the composition is 99.9%.
When the content exceeds 8% or becomes less than 70% (parts by weight), the icing property increases significantly.

他方、該組成物中における一般式MaXで表わされるア
ルカリ金属化合物[F])におけるMはLl、Na及び
Kから選ばれるアルカリ金属であり、中でもLl が好
適である。また又は無機酸根、水酸基又は有機酸根であ
り、無機酸根とは無機酸の分子から金属と置換し得る水
素原子を1個又はそれ以上除いた残りの部分を意味し、
Fe、Cle、B10及びIθ0’) Jl、 ウナ単
1jlX 子及ヒNO3e、 Co 32e、 P 0
4’ e。
On the other hand, M in the alkali metal compound [F]) represented by the general formula MaX in the composition is an alkali metal selected from Ll, Na and K, with Ll being preferred. It is also an inorganic acid group, a hydroxyl group, or an organic acid group, and an inorganic acid group refers to the remaining portion after removing one or more hydrogen atoms that can be substituted with a metal from an inorganic acid molecule,
Fe, Cle, B10 and Iθ0') Jl, Una single jlX Child and HiNO3e, Co 32e, P 0
4' e.

HPO4””、 SO2”’、 H3O4θ、 Mn0
4e、 Cr2O7”θ9Sin4”’、 5in3”
θ、BO3e、■043e、WO4′eナトノヨうな原
子団を包含することができる。
HPO4””, SO2”’, H3O4θ, Mn0
4e, Cr2O7"θ9Sin4"', 5in3"
It can include atomic groups such as θ, BO3e, ■043e, and WO4'e.

また、有機酸根とは飽和又は不飽和のモノカルボン酸も
しくはポリカルボン酸の分子から金属と置換し得る水素
原子を1個又はそれ以上除いた残りの部分を意味し、例
えばHC:000  及び一般式CHs (CH2)n
cOoθ(n:0〜20の整数)で表わされる飽和モノ
カルボン酸根i一般式 マレイン酸、オレイン酸、リノール酸などの不飽和酸根
;ソノ他酒石酸根eOOC−(CHOH)2−COOe
クエン酸根CHC00e 1′ HO−C−COOe 0H2C00e 多価カルボン酸根; などが挙げられる。
Furthermore, the term "organic acid radical" refers to the remaining portion of a saturated or unsaturated monocarboxylic acid or polycarboxylic acid molecule after removing one or more hydrogen atoms that can be substituted with a metal, such as HC:000 and the general formula CHs (CH2)n
Saturated monocarboxylic acid group expressed by cOoθ (n: an integer of 0 to 20) i General formula: unsaturated acid group such as maleic acid, oleic acid, linoleic acid; sono and other tartaric acid groups eOOC-(CHOH)2-COOe
Citric acid group CHC00e 1' HO-C-COOe 0H2C00e Polyvalent carboxylic acid group; and the like.

また、aは無機酸根または有機酸根の種類によって決ま
り、通常1〜4の整数である。
Further, a is determined depending on the type of inorganic acid radical or organic acid radical, and is usually an integer of 1 to 4.

しかして、前記式で示されるアルカリ金属化合物の代表
例としては次のものを例示することができる。
Therefore, the following can be exemplified as representative examples of the alkali metal compounds represented by the above formula.

LiF、LiC1,Liar、Lit、、NaF、Na
C1,NaBr。
LiF, LiC1, Liar, Lit, , NaF, Na
C1, NaBr.

Na1.、KF、KCI、KBr、KI、LiNO3,
NaNO3゜KNO3,Li2CO3,Na2CO3,
に2NO3,Li3PO4゜ 15− Na3PO4,KPO4,Li2SO4,Na2so4
.に2SO4;L iMnQ4. NaMn 04 、
 KMno 4 、 L i 2 Cr 207 。
Na1. , KF, KCI, KBr, KI, LiNO3,
NaNO3゜KNO3, Li2CO3, Na2CO3,
2NO3, Li3PO4゜ 15- Na3PO4, KPO4, Li2SO4, Na2so4
.. 2SO4; L iMnQ4. NaMn04,
KMno 4, L i 2 Cr 207.

Na2Cr2O7,に2C1’207.Li4SiO4
,Li2SiO3゜Na4SiO4,Na2SiO3,
に4Si04.に2Si03゜LiBO2,NaBO2
,KBO2,Li3VO4,Na3VO4゜K3VO4
,Li2WO4,Na 2wo4.に2WO4HHCO
OLi。
Na2Cr2O7, 2C1'207. Li4SiO4
, Li2SiO3゜Na4SiO4, Na2SiO3,
4Si04. 2Si03゜LiBO2, NaBO2
, KBO2, Li3VO4, Na3VO4゜K3VO4
, Li2WO4, Na2wo4. 2WO4HHCO
OLi.

HCOONa 、 HCOOK 、 L 12 C20
4、Na 2 C204。
HCOONa, HCOOK, L 12 C20
4, Na2C204.

K2C2O4,CH3COOLi、CH3COONa、
CH3COOK。
K2C2O4, CH3COOLi, CH3COONa,
CH3COOK.

C2H,COOLi、 Li0OC−CH2−COOL
i、  クエン酸リチウム、クエン酸ナトリウム、クエ
ン酸カリウム、酒石酸リチウム、トリメリット酸リチウ
ム、ピロメリット酸リチウムなど。
C2H,COOLi, Li0OC-CH2-COOL
i. Lithium citrate, sodium citrate, potassium citrate, lithium tartrate, lithium trimellitate, lithium pyromellitate, etc.

これらアルカリ金属化合物の中でも着氷防止作用の最も
大きなものは塩化物である。しかし、このような強酸の
塩を使用した場合には金属素材に発錆を生じさせる性質
があるので使用に際しては注意を要する。次いで、着氷
防止作用効果の大きなものは炭酸塩、珪酸塙詔よび酢酸
塩であり、こ 16− れらは着氷防止作用の持続性もあり、且つ錆を発生させ
ることも少ないので好適である。さらにこれらのアルカ
リ金属化合物の中でもリチウム化合物が他のナトリウム
化合物やカリウム化合物に比較して着氷防止効果が大き
く好適である。
Among these alkali metal compounds, chloride has the greatest anti-icing effect. However, when such strong acid salts are used, they have the property of causing rust on metal materials, so care must be taken when using them. Next, carbonates, silicates, and acetates have the greatest anti-icing effect, and these are preferred because they have a long-lasting anti-icing effect and do not cause much rust. be. Further, among these alkali metal compounds, lithium compounds are preferred because they have a greater anti-icing effect than other sodium compounds and potassium compounds.

これらアルカリ金属化合物は、それぞれ単独で又は2種
もしくはそれ以上組合せて使用すること    □がで
き、その配合量は0.2〜80重量%、好ましくは0.
5〜10重景%である。該アルカリ金属化合物の配合量
が0.2重量%未満では着氷防止効果が著しく低下し、
逆に80重量%を越えると塗膜の物性が低下し、長期間
の使用に耐えなくなる欠点がある。
These alkali metal compounds can be used alone or in combination of two or more, and their blending amount is 0.2 to 80% by weight, preferably 0.2 to 80% by weight.
The ratio is 5-10%. If the amount of the alkali metal compound is less than 0.2% by weight, the anti-icing effect will be significantly reduced,
On the other hand, if it exceeds 80% by weight, the physical properties of the coating film will deteriorate and it will not be able to withstand long-term use.

本発明の組成物の製造に際し、オルガノポリシロキサン
樹脂とアルカリ金属化合物の混合は、一般の分散方法で
あるスチールボールミル、ペブルミルや、アトライター
などを利用して行なわれる。
In producing the composition of the present invention, the organopolysiloxane resin and the alkali metal compound are mixed using a steel ball mill, a pebble mill, an attritor, etc., which are common dispersion methods.

組成物を塗料用に調整する場合には溶剤が適宜用いられ
る。溶剤は基体樹脂であるオルガノポリシロキサン樹脂
を溶解できる溶剤であればよく、例えば鎖状または環状
の炭化水素やケトン系、エステル系、アルコール系など
通常塗料に用いられる溶剤を用いることができる。塗料
が水分散系の場合には当然水が使用される。
When preparing the composition for use as a paint, a solvent is appropriately used. The solvent may be any solvent as long as it can dissolve the organopolysiloxane resin as the base resin, and for example, solvents commonly used in paints such as chain or cyclic hydrocarbons, ketones, esters, and alcohols can be used. Water is naturally used when the paint is a water dispersion system.

該組成物は上塗り塗料として下塗り塗膜の上に塗装され
る他に、金属やプラスチック、ガラス、木質材料等に直
接塗布することが可能である。また該組成物は成型品と
して物体表面にラミネートして使用することもでき、必
要に応じて該組成物に顔料、体質顔料、または染料が成
分(へ)と成分に)の合計!100重量部に対して12
0重量部以下の範囲で添加することができる。その他界
面活性剤や添加剤なども適宜加えることができる。
The composition can be applied as a top coat on an undercoat film, or it can also be applied directly to metals, plastics, glass, wood materials, and the like. The composition can also be used as a molded product by being laminated onto the surface of an object, and if necessary, pigments, extender pigments, or dyes can be added to the composition (total of ingredients). 12 per 100 parts by weight
It can be added in an amount of 0 parts by weight or less. Other surfactants and additives can also be added as appropriate.

なお、着氷性の試験は第1図に示す銅板lを内張すした
発泡スチロール容器2中に、本発明の組成物を塗装した
100X100XIO,wの大きさのステンレス製塗板
8を貨ぎ、その塗膜4上にステンレス製の平面底部を有
する接着端子5を被接着面積81.17dになるように
のせ、該接着端子と塗膜の間に水の5〜10μmの薄層
6をはさみ、その状態で−20〜−80’(!の冷凍庫
内で5〜72時間放量する。次いで冷凍庫内で英国エル
コメ−ター社製接着試験機7で前記接着端子を上方に引
張ることにより氷−塗膜界面での界面破壊力を計測筒9
で測定して評価した(単位:kg/〜)。
In addition, the icing property test was carried out by placing a stainless steel coated plate 8 coated with the composition of the present invention and having a size of 100 x 100 An adhesive terminal 5 having a flat bottom made of stainless steel is placed on the coating film 4 so that the adhesive area is 81.17 d, and a thin layer 6 of 5 to 10 μm of water is sandwiched between the adhesive terminal and the coating film. The ice-paint interface is then left in a freezer at -20 to -80' (!) for 5 to 72 hours.Then, in the freezer, the adhesive terminal is pulled upward using an adhesive tester 7 manufactured by Elcometer, UK. Measure the interfacial breaking force at tube 9
It was measured and evaluated (unit: kg/~).

以下、実施例をあげて本発明をさらに具体的に説明する
。部および%は特に断らないかぎり重量部及び電量%を
示す。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Parts and % indicate parts by weight and coulometric % unless otherwise specified.

実施例1 付加重合型オルガノポリシロキサン樹脂(商品名:東し
シリコーン5E−1821.不揮発分40%)100部
および酢酸リチウム2部を直径5 WIHの珪酸アルミ
ナビーズとともにRed Devil型塗料コンディシ
ョナーに加え、80分間分散さ 19− せた。ついて、これに硬化剤として5E−1821Ca
t (東しシリコーン社製、白金系触媒)10部を加え
て得られた組成物を着氷試験用特殊銅板上にアプリケー
ターにて塗装し、100°C5分間焼付をした。このと
きの乾燥塗膜厚は12μmであった。前述の試験方法に
より一29℃に16時間凍結させたときの着氷強度を測
定した。
Example 1 100 parts of an addition-polymerized organopolysiloxane resin (trade name: Toshi Silicone 5E-1821, 40% non-volatile content) and 2 parts of lithium acetate were added to a Red Devil type paint conditioner along with alumina silicate beads having a diameter of 5 WIH. Dispersed for 80 minutes. Then, 5E-1821Ca was added as a curing agent to this.
A composition obtained by adding 10 parts of t (manufactured by Toshi Silicone Co., Ltd., platinum-based catalyst) was applied onto a special copper plate for icing tests using an applicator, and baked at 100°C for 5 minutes. The dry coating thickness at this time was 12 μm. The icing strength was measured when frozen at -29°C for 16 hours using the test method described above.

なお、比較例として酢酸リチウムを使用しない以外は実
施例1と同様の方法で調製した組成物を用いたもの(比
較例1−1)、酢酸リチウムの代わりに硫醗バリウムを
同偕使用した以外は実施例1と同様の方法で調製した組
成物を用いたもの(比較例1−2)およびテフ四ン樹脂
(ポリテトラフルオロエチレン)を2#!1の厚さに圧
着したもの(比較例1−8)についても同様の条件で着
氷強度を測定した。これらの試験結果を下記に示す。
In addition, as a comparative example, a composition prepared in the same manner as in Example 1 was used except that lithium acetate was not used (Comparative Example 1-1), and barium sulfate was used instead of lithium acetate. A composition using a composition prepared in the same manner as in Example 1 (Comparative Example 1-2) and a 2#! The icing strength of the material crimped to a thickness of 1 (Comparative Example 1-8) was also measured under the same conditions. The results of these tests are shown below.

 20 一 実施例2 付加重合型オルガノポリシロキサン樹脂(商品名:東し
シリコーン5RX−211.不揮発分40%、数平均分
子量約80万以上)100部と塩化リチウム0.5部を
実施例1と同様の方法で分散させた。ついで、このもの
に白金系触媒5RX−212Cat(東しシリコーン社
製)を0.6部添加して得た組成物を実施例1と同様に
塗装し、150℃8分間加熱して、20μmの乾燥塗膜
を得た。前述の試験方法によって一25℃に44時間凍
結させたときの着氷強度を測定した。
20 Example 2 100 parts of addition polymerization type organopolysiloxane resin (trade name: Toshi Silicone 5RX-211. Non-volatile content 40%, number average molecular weight about 800,000 or more) and 0.5 part of lithium chloride were added as in Example 1. Dispersed in a similar manner. Next, a composition obtained by adding 0.6 parts of platinum-based catalyst 5RX-212Cat (manufactured by Toshi Silicone Co., Ltd.) was applied to this material in the same manner as in Example 1, and heated at 150°C for 8 minutes to form a 20 μm thick film. A dried coating film was obtained. The icing strength when frozen at -25°C for 44 hours was measured using the test method described above.

なお、比較例として塩化リチウムを使用しない以外は実
施例2と同様の方法で調製した組成物を用いたもの(比
較例2 1)%塩化リチウムの代わりに塩化カルシウム
を同量使用した以外は実施例1と同様の方法で調製した
組成物を用いたもの(比較例2−2)およびテフロン樹
脂を2朋の厚さに圧着したもの(比較例2−8)につい
ても同様の条件で着氷強度を測定した。これらの試験結
果を下記に示す。
As a comparative example, a composition prepared in the same manner as in Example 2 was used, except that lithium chloride was not used (Comparative Example 2 1)%. Ice was formed under the same conditions using the composition prepared in the same manner as in Example 1 (Comparative Example 2-2) and the one using Teflon resin crimped to a thickness of 2 mm (Comparative Example 2-8). The strength was measured. The results of these tests are shown below.

実施例3 縮重合型オルガノポリシロキサン樹脂(商品名:東しシ
リコーン5E−9140.不揮発分40%)100部と
炭酸カリウム4部を実施例1と同様の方法で分散および
塗装し、室温で48時間乾燥させた。このときの乾燥塗
膜は7μmであった。
Example 3 100 parts of polycondensation type organopolysiloxane resin (trade name: Toshi Silicone 5E-9140. Non-volatile content 40%) and 4 parts of potassium carbonate were dispersed and coated in the same manner as in Example 1, and 48 Let dry for an hour. The dry coating film at this time was 7 μm.

−20℃に5時間凍結させたときの着氷強度を測定した
The icing strength was measured when frozen at -20°C for 5 hours.

なお、比較例として炭酸カリウムを使用しない以外は実
施例8と同様の方法で調製した組成物を用いたもの(比
較例8−1)およびテフロン樹脂を2 mmの厚さに圧
着したもの(比較例8−2)についても同様の条件で着
氷強度を測定した。これらの試験結果を下記に示す。
Comparative examples include one using a composition prepared in the same manner as in Example 8 except that potassium carbonate was not used (Comparative Example 8-1), and one using a composition prepared by pressing Teflon resin to a thickness of 2 mm (Comparative Example 8-1). The icing strength of Example 8-2) was also measured under the same conditions. The results of these tests are shown below.

実施例4 縮重合型オルガノポリシロキサン樹脂(商品名:東しシ
リコーンPRX−805.不揮発分40%、数平均分子
量約80万)100部とクエン酸リチウム1.0部を実
施例1と同様の方法で分散、塗装し、室温に24時間放
置して80μmの乾燥塗膜を得た0このものを一21°
Cで5時間凍結させたときの着氷強度を測定した。
Example 4 100 parts of condensation type organopolysiloxane resin (trade name: Toshi Silicone PRX-805. Non-volatile content 40%, number average molecular weight approximately 800,000) and 1.0 part of lithium citrate were mixed in the same manner as in Example 1. This was dispersed and painted according to the method and left at room temperature for 24 hours to obtain a dry coating film of 80 μm.
The icing strength was measured after freezing at C for 5 hours.

 28− なお、比較例としてクエン酸リチウムを使用しない以外
は実施例1と同様の方法で調製した組成物を用いたもの
(比較例4−1)およびテフロン樹脂を2鮎の厚さに圧
着したもの(比較例4−2)についても同様の条件で着
氷強度を測定した。これらの試験結果を下g6に示す。
28- As a comparative example, a composition prepared in the same manner as in Example 1 except that lithium citrate was not used (Comparative Example 4-1) was used, and a Teflon resin was crimped to the thickness of two sweetfish. The icing strength of the sample (Comparative Example 4-2) was also measured under the same conditions. These test results are shown in g6 below.

実施例5 縮重合型オルガノポリシロキサン樹脂(商品名:東しシ
リコーン5)(−287,不揮発分40%。
Example 5 Polycondensation type organopolysiloxane resin (trade name: Toshi Silicone 5) (-287, nonvolatile content 40%).

数平均分子量約17.000)100部、シュウ酸リチ
ウム2.5部及び二酸化チタン40部を実施例1と同様
の方法で分散、塗装し、50°Cで5時間乾燥させ、1
5μmの塗膜を得た。このものを−26°Cで22時間
凍結させたときの着氷強度を測 24一 定した。
100 parts (number average molecular weight approximately 17.000), 2.5 parts of lithium oxalate and 40 parts of titanium dioxide were dispersed and coated in the same manner as in Example 1, dried at 50°C for 5 hours,
A coating film of 5 μm was obtained. When this material was frozen at -26°C for 22 hours, the icing strength was measured and was kept constant for 24 hours.

なお、比較例としてシュウ酸リチウムを使用しない以外
は実施例1と同様の方法で調製した組成物を用いたもの
(比較例5−1)およびテフロン樹脂を21!rIII
の厚さに圧着したもの(比較例5−2)についても同様
の条件で着氷強度を測定した。これらの試験結果を下F
に示す。
In addition, as a comparative example, a composition using a composition prepared in the same manner as in Example 1 except that lithium oxalate was not used (Comparative Example 5-1) and a Teflon resin were used. rIII
(Comparative Example 5-2), the icing strength was measured under the same conditions. These test results are below.
Shown below.

実施例6 縮重合型オルガノポリシロキサン水性コーテイング材(
商品名:東しシリコーン、8E−1980不揮発分45
%)100部と塩化ナトリウム1.2部を実施例1と同
様の方法で分散、塗装し、室温で48時間放置した後、
50℃で8時間乾燥させて80μmの塗膜を得た・この
ものを−20℃で5時間凍結させたときの着氷力を測定
した。
Example 6 Polycondensation type organopolysiloxane aqueous coating material (
Product name: Toshi Silicone, 8E-1980 Non-volatile content 45
%) and 1.2 parts of sodium chloride were dispersed and coated in the same manner as in Example 1, and left at room temperature for 48 hours.
A coating film of 80 μm was obtained by drying at 50°C for 8 hours.The icing power was measured when this product was frozen at -20°C for 5 hours.

なお、比較例として塩化ナトリウムを使用しない以外は
実施例1と同様の方法で調製した組成物を用いたもの(
比較例6−1)およびテフロン樹脂を2uの厚さに圧着
したもの(比較例6−2)についても同様の条件で着氷
強度を測定した。これらの試験結果を下記に示す0 実施例7 付加重合型オルガノボリシロキザン樹脂(商品名二乗レ
シリコーン5H9551RTV、不揮発分100%)1
00部と炭酸リチウム10部を実施例1と同様の方法で
分散させたものに白金系触媒(実施例1と同じもの)1
0部を添加攪拌して得られた組成物を接着試験用基板上
で27部M厚で均一平面になるように成型した。このも
のを常温で48時間乾燥した後−29°Cで18時間凍
結させたときの着氷力を測定した。
As a comparative example, a composition prepared in the same manner as in Example 1 except that sodium chloride was not used (
The icing strength was also measured under the same conditions for Comparative Example 6-1) and one in which Teflon resin was pressed to a thickness of 2u (Comparative Example 6-2). These test results are shown below. Example 7 Addition polymerization type organoborisiloxane resin (trade name Square Resilicone 5H9551RTV, non-volatile content 100%) 1
00 parts and 10 parts of lithium carbonate were dispersed in the same manner as in Example 1, and 1 platinum-based catalyst (same as in Example 1) was added.
The composition obtained by adding 0 parts and stirring was molded onto a substrate for adhesion testing so that it had a uniform plane thickness of 27 parts M. This product was dried at room temperature for 48 hours and then frozen at -29°C for 18 hours, and the icing power was measured.

なお、比較例として炭酸リチウムを使用しない以外は実
施例1と同様の方法で調製した組成物を用いて成型した
もの(比較例7−1)およびテフロン樹脂を2 myの
厚さに圧着したもの(比較例7−2)についても同様の
条件で着氷強度を測定した。これらの試験結果を下記に
示す。
In addition, as comparative examples, one was molded using a composition prepared in the same manner as in Example 1 except that lithium carbonate was not used (Comparative Example 7-1), and one was molded with Teflon resin to a thickness of 2 my. The icing strength of Comparative Example 7-2 was also measured under the same conditions. The results of these tests are shown below.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の着氷防止材料用組成物の着氷性を試験
する装置の一部断面図である。 1・・・銅板、      2・・・発泡スチロール容
器、8・・・ステンレス製塗板、  27− 4・・・塗膜、      5・・・接着端子、6・・
・水の薄膜、   7・・・接着試験機、8・・・支持
台、     9・・・計測筒、lO・・・コイルスフ
リング、 11・・・ゴムパツキン。 (以 上)  28−
FIG. 1 is a partial cross-sectional view of an apparatus for testing the icing properties of the composition for anti-icing materials of the present invention. 1... Copper plate, 2... Styrofoam container, 8... Stainless steel coated plate, 27- 4... Paint film, 5... Adhesive terminal, 6...
- Thin film of water, 7... Adhesion tester, 8... Support stand, 9... Measuring tube, lO... Coil string, 11... Rubber gasket. (and above) 28-

Claims (1)

【特許請求の範囲】 ■ (へ)下記単位式 (式中には炭素−ケイ素結合によりケイ素に結合する一
価有機基、または水素を表わし、Kは水素、c1〜C2
0のアルキル基、アシル基、アリール基又はオキシム残
基を示す。上式中のn及びmはそれぞれ4未満の値で、
かっn十mは4未満である) で表わされるオルガノポリシロキサン樹脂70〜99.
8重量%及び (ロ)下記式 (式中MはLi、Na及びKから選ばれるアルカリ金属
、Xは無機酸根、水酸基又は有機酸根を示す。また、a
は1〜4の整数である)で表わされるアルカリ金属化合
物0.2〜80重量% からなる着氷防止材料用組成物。 ■ 該アルカリ金属化合物がリチウム化合物である特許
請求の範囲第1項記載の着氷防止材料用組成物。
[Claims] ■ (f) The following unit formula (in the formula, represents a monovalent organic group bonded to silicon through a carbon-silicon bond, or hydrogen, K is hydrogen, c1 to C2
0 alkyl group, acyl group, aryl group or oxime residue. n and m in the above formula each have a value of less than 4,
(n0m is less than 4) An organopolysiloxane resin represented by 70 to 99.
8% by weight and (b) the following formula (where M is an alkali metal selected from Li, Na and K, and X represents an inorganic acid group, a hydroxyl group or an organic acid group. Also, a
is an integer from 1 to 4). (2) The composition for anti-icing material according to claim 1, wherein the alkali metal compound is a lithium compound.
JP13657082A 1982-08-04 1982-08-04 Composition for deicing material Granted JPS5925868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13657082A JPS5925868A (en) 1982-08-04 1982-08-04 Composition for deicing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13657082A JPS5925868A (en) 1982-08-04 1982-08-04 Composition for deicing material

Publications (2)

Publication Number Publication Date
JPS5925868A true JPS5925868A (en) 1984-02-09
JPS6362556B2 JPS6362556B2 (en) 1988-12-02

Family

ID=15178340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13657082A Granted JPS5925868A (en) 1982-08-04 1982-08-04 Composition for deicing material

Country Status (1)

Country Link
JP (1) JPS5925868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123657A (en) * 1984-07-11 1986-02-01 Kansai Paint Co Ltd Anti-icing organic resin coating composition
JPS6123656A (en) * 1984-07-11 1986-02-01 Kansai Paint Co Ltd Anti-icing organic coating composition
JPS6151069A (en) * 1984-08-20 1986-03-13 Kansai Paint Co Ltd Anti-icing paint composition
JPS6157659A (en) * 1984-08-30 1986-03-24 Kansai Paint Co Ltd Icing proof organic synthetic resin coating composition
JPS61254675A (en) * 1985-05-02 1986-11-12 Daikin Ind Ltd Icing-preventive coating composition
WO2007038221A1 (en) * 2005-09-22 2007-04-05 Fmc Corporation Deicing composition
JP2011026473A (en) * 2009-07-27 2011-02-10 Nitto Boseki Co Ltd Surface protective agent
WO2020031300A1 (en) * 2018-08-08 2020-02-13 日立化成株式会社 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU739080A1 (en) * 1976-06-21 1980-06-05 Киевский Ордена Ленина Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Two-layer anti-icing coating
US4271215A (en) * 1979-10-31 1981-06-02 Dow Corning Corporation Method for releasing frozen water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU739080A1 (en) * 1976-06-21 1980-06-05 Киевский Ордена Ленина Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Two-layer anti-icing coating
US4271215A (en) * 1979-10-31 1981-06-02 Dow Corning Corporation Method for releasing frozen water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123657A (en) * 1984-07-11 1986-02-01 Kansai Paint Co Ltd Anti-icing organic resin coating composition
JPS6123656A (en) * 1984-07-11 1986-02-01 Kansai Paint Co Ltd Anti-icing organic coating composition
JPS6151069A (en) * 1984-08-20 1986-03-13 Kansai Paint Co Ltd Anti-icing paint composition
JPS6157659A (en) * 1984-08-30 1986-03-24 Kansai Paint Co Ltd Icing proof organic synthetic resin coating composition
JPS61254675A (en) * 1985-05-02 1986-11-12 Daikin Ind Ltd Icing-preventive coating composition
WO2007038221A1 (en) * 2005-09-22 2007-04-05 Fmc Corporation Deicing composition
EP2261294A3 (en) * 2005-09-22 2010-12-22 Fmc Corporation Deicing composition
US7943057B2 (en) 2005-09-22 2011-05-17 Fmc Corporation Deicing composition
US8128835B2 (en) 2005-09-22 2012-03-06 Fmc Corporation, Lithium Division Deicing composition
JP2011026473A (en) * 2009-07-27 2011-02-10 Nitto Boseki Co Ltd Surface protective agent
WO2020031300A1 (en) * 2018-08-08 2020-02-13 日立化成株式会社 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure
JPWO2020031300A1 (en) * 2018-08-08 2021-08-02 昭和電工マテリアルズ株式会社 Manufacturing method of snow ice prevention agent, snow ice prevention structure, snow ice prevention structure

Also Published As

Publication number Publication date
JPS6362556B2 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
EP2890746B1 (en) Anti-corrosive zinc primer coating compositions comprising hollow glass spheres and a conductive pigment
TW464679B (en) Water-borne road marking paint and method of accelerating the drying of a water-borne road marking paint
CN111320918A (en) Curable wear-resistant super-hydrophobic coating system, product, preparation method and application thereof
BR112012007380B1 (en) cold cover system
JPS5925868A (en) Composition for deicing material
CN107298906B (en) High-weather-resistance anti-icing protective coating and preparation method thereof
CN105713476B (en) A kind of ultra-smooth ice-covering-proof coating with heat energy deicing performance
BR112018015357B1 (en) AQUEOUS PRECONSTRUCTION PRIMERS, PROCESS TO PROTECT A SUBSTRATE FROM CORROSION, SUBSTRATE AND KIT
US4774112A (en) Use of silicone masses to prevent the formation of ice on substrates
CN105164221A (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
Makki et al. Superhydrophobic antiicing and ice-release polymer coatings
US4448919A (en) Anti-icing compositions
JPS62252477A (en) Anti-icing paint composition
JPH06240174A (en) Coating liquid for forming film and paint composition
CA1090210A (en) Process for producing good adherence between metal and polysulphide material, and articles obtained thereby
CN115725223B (en) Anti-icing hydrophobic coating, application thereof and preparation method of anti-icing hydrophobic coating
JPS5865779A (en) Anti-icing material composition
Mack Physico-Chemical Aspects of Asphalt Pavements
RU2572974C1 (en) Super-hydrophobic coating composition and method of producing super-hydrophobic coating therefrom
ES2734583A1 (en) Obtaining a hielophobic surface using the Sol-Gel method without fluorides on commercial polyurethane paints (Machine-translation by Google Translate, not legally binding)
US3489596A (en) Method of reducing adhesion of ice
CN104804208B (en) A kind of preparation method on anti-freeze silicon rubber composite material surface
BR112020001431B1 (en) AQUEOUS PRIMER
WO2021225129A1 (en) Coating material and laminate
CN106062108B (en) Emulsion type coating