WO2020031300A1 - Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure - Google Patents

Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure Download PDF

Info

Publication number
WO2020031300A1
WO2020031300A1 PCT/JP2018/029804 JP2018029804W WO2020031300A1 WO 2020031300 A1 WO2020031300 A1 WO 2020031300A1 JP 2018029804 W JP2018029804 W JP 2018029804W WO 2020031300 A1 WO2020031300 A1 WO 2020031300A1
Authority
WO
WIPO (PCT)
Prior art keywords
snow
ice
group
ice prevention
prevention
Prior art date
Application number
PCT/JP2018/029804
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 長井
智彦 小竹
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/029804 priority Critical patent/WO2020031300A1/en
Priority to JP2020535400A priority patent/JP7279720B2/en
Publication of WO2020031300A1 publication Critical patent/WO2020031300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a snow and ice prevention agent, a snow and ice prevention structure, and a method for manufacturing a snow and ice prevention structure.
  • Patent Document 1 discloses a snow-prevention paint in which a fluorine-based powder is mixed with a fluorine resin or the like.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a liquid composition containing a polysiloxane compound having a reactive group (hydrolyzable functional group or condensable functional group) in the molecule.
  • the present inventors have found that a snow and ice preventing agent obtained by using the above exhibits excellent snow and ice preventing properties, and have completed the present invention.
  • the present invention provides a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the polysiloxane compound having the hydrolyzable functional group.
  • the present invention provides a snow and ice inhibitor comprising a liquid composition containing: According to such a snow and ice preventing agent, excellent snow and ice preventing properties can be imparted to the surface of the object to be treated. In addition, the snow and ice prevention part formed from the snow and ice prevention agent has excellent adhesion to the surface to be processed.
  • the polysiloxane compound includes a compound represented by the following formula (B). Thereby, more excellent snow and ice prevention and adhesion can be achieved.
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • m represents an integer of 1 to 50.
  • the liquid composition is a group consisting of a silane monomer having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silane monomer having the hydrolyzable functional group. It may further contain at least one selected from more. As a result, it is possible to achieve more excellent snow and ice prevention and adhesion.
  • the liquid composition may further contain airgel particles. As a result, the ability to prevent snow and ice is further improved.
  • the snow / ice prevention agent may be used to form a snow / ice prevention part on the surface of the object to be processed. By forming such a snow and ice prevention part, further excellent snow and ice prevention can be achieved.
  • the snow and ice prevention part may include aerogel.
  • the present invention also provides a snow and ice preventing agent having a ladder-type structure including a support portion and a bridge portion, wherein the bridge portion includes a snow and ice preventing component containing a compound represented by the following formula (2). provide.
  • a snow and ice prevention agent has excellent snow and ice prevention and durability due to the ladder type structure.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • a compound having a structure represented by the following formula (3) can be given. Thereby, more excellent snow and ice prevention and durability can be achieved.
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b represents 1 to 50 Indicates an integer.
  • the snow and ice prevention unit may include aerogel.
  • the snow and ice prevention component may be aerogel. Thereby, more excellent snow and ice prevention properties can be achieved.
  • the present invention also includes an object and a snow and ice prevention unit on a surface to be processed of the object, wherein the snow and ice prevention unit includes a dried product (reactant) of the snow and ice prevention agent.
  • the snow and ice prevention unit includes a dried product (reactant) of the snow and ice prevention agent.
  • the snow and ice prevention structure has a snow and ice prevention portion containing a dried product of the snow and ice prevention agent, and thus has excellent snow and ice prevention properties, and also has excellent adhesion between the surface to be processed and the snow and ice prevention portion. .
  • the present invention also provides a method for manufacturing a snow and ice preventing structure, comprising a step of applying the snow and ice preventing agent to a surface to be processed of an object.
  • the present invention it is possible to provide a novel snow and ice preventing agent capable of imparting excellent snow and ice preventing properties to a surface to be processed of an object. Further, according to the present invention, it is possible to provide a snow and ice prevention structure using the snow and ice prevention agent and a method for manufacturing the snow and ice prevention structure.
  • the snow and ice protection agent of the present invention can be used, for example, for structures such as bridge girders, steel towers, buildings, houses, ships, vehicles, aircraft, telecommunications facilities, road traffic signs, traffic lights, electric wires, snow gutters, and pipelines. It can be applied to prevent snow and ice from adhering to these structures.
  • FIG. 3 is a diagram illustrating a method for calculating a biaxial average primary particle diameter of particles.
  • FIG. 3 is a view showing a solid-state 29 Si-NMR spectrum of a snow and ice preventing component contained in a snow and ice preventing agent 12 measured by a DD / MAS method. It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. It is a figure showing typically the test method of the icing power test.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • the upper limit or the lower limit of a numerical range in one step may be replaced with the upper limit or the lower limit of a numerical range in another step.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • “A or B” may include one of A and B, and may include both.
  • the materials exemplified in the present specification can be used alone or in combination of two or more, unless otherwise specified.
  • the content of each component in the composition when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the plurality of substances present in the composition means.
  • Examples of the snow and ice prevention agent of the present embodiment include the following first to fourth aspects. By adopting each of the aspects, it is possible to obtain the snow-and-ice prevention property and the adhesiveness according to each of the aspects.
  • the snow and ice protection agent comprises a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in a molecule), and hydrolysis of the polysiloxane compound having the hydrolyzable functional group.
  • a liquid composition containing at least one selected from the group consisting of products (hereinafter, sometimes referred to as “polysiloxane compound group”) is included (the snow and ice inhibitor may be the liquid composition).
  • the snow and ice protection agent is also selected from the group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group.
  • snow and ice preventing agent excellent snow and ice preventing properties can be imparted to the surface of the object to be treated.
  • the snow and ice prevention agent may be used to form a snow and ice prevention part on the surface to be processed of the object.
  • the snow and ice prevention part formed from the snow and ice prevention agent has excellent snow and ice prevention properties and also has excellent adhesion to the surface to be processed.
  • the snow / ice prevention unit is, for example, at least a film-shaped snow / ice prevention unit (hereinafter, also referred to as “snow / ice prevention film”) and a particulate snow / ice prevention unit (hereinafter, also referred to as “snow / ice prevention particles”). It may be a form including one. That is, the snow and ice prevention agent according to the present embodiment may form a snow and ice prevention film and / or snow and ice prevention particles on the surface to be processed of the object.
  • a snow and ice protection film formed of a fluorine-based material as in Patent Document 1 has low adhesion to an object, in order to enhance the adhesion of such a snow and ice protection film, the surface to be treated is required. It is considered necessary to form an adhesion layer (for example, an oxide film and a film having a hydroxyl group) on the substrate.
  • an adhesion layer for example, an oxide film and a film having a hydroxyl group
  • the snow and ice prevention agent of the present embodiment has high adhesion to an object, such an adhesion layer is not necessarily required. Further, the snow and ice prevention agent of the present embodiment can maintain the snow and ice prevention function for a long period of time because of its excellent adhesion and adhesion.
  • the snow and ice prevention part formed from the snow and ice prevention agent of the present embodiment does not easily adhere to hydrophilic stains and easily removes such stains. Therefore, it is considered that the snow and ice prevention agent can be easily applied to applications to which hydrophilic dirt is likely to adhere.
  • the snow and ice prevention film using the conventional fluorine-based material has adhesiveness and chemical resistance, but is considered to be easily scratched due to low film hardness and softness.
  • the temperature for curing such a snow and ice prevention film is several hundred degrees or more, it is considered that the application site and the base material are limited.
  • the snow and ice prevention part formed from the snow and ice prevention agent of the present embodiment is excellent in adhesiveness and chemical resistance, is hardly damaged, and is hardly limited in application places and base materials.
  • the present inventors speculate as follows why the snow and ice prevention agent of the present embodiment exhibits excellent snow and ice prevention properties. Since the snow and ice prevention agent of this embodiment contains a polysiloxane compound group, it is considered that the base material surface can be made hydrophobic. It is conceivable that a water film is formed at the interface between the snow and the base material as a condition for the start of snow sliding.However, on the surface of the hydrophobized base material, the slipperiness of water after the formation of the water film is high, so that the icing power is low. It is estimated to decrease. From the above, it is considered that excellent snow and ice prevention properties are exhibited.
  • hydrolyzable functional group examples include an alkoxy group.
  • examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group (hydrolyzable functional group or condensable functional group) different from the hydrolyzable functional group or the condensable functional group.
  • a functional group that does not correspond to a functional group examples include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be included in an epoxy group-containing group such as a glycidoxy group.
  • These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more.
  • an alkoxy group, a silanol group, and a hydroxyalkyl group can improve the compatibility of the snow and ice inhibitor and suppress layer separation.
  • the alkoxy group and the hydroxyalkyl group may have, for example, 1 to 6 carbon atoms.
  • Examples of the polysiloxane compound having a hydroxyalkyl group include a compound having a structure represented by the following general formula (A).
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represent an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a may be the same or different, and similarly, two R 2a may be the same or different.
  • two or more R 3a may be the same or different, and similarly, two or more R 4a may be the same or different.
  • R 1a a hydroxyalkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the hydroxyalkyl group, a hydroxyethyl group and a hydroxypropyl group can be mentioned.
  • R 2a includes an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group and a propylene group.
  • R 3a and R 4a each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like.
  • n may be, for example, 2 to 30, or 5 to 20.
  • polysiloxane compound having the structure represented by the above formula (A) commercially available products can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of which are described below) Shin-Etsu Chemical Co., Ltd.), compounds such as XF42-B0970, XF42-C5277, Fluid ⁇ OFOH ⁇ 702-4% (all manufactured by Momentive).
  • Examples of the polysiloxane compound having an alkoxy group include a compound having a structure represented by the following general formula (B).
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b may be the same or different
  • two R 2b may be the same or different.
  • 3b may be the same or different.
  • when m is an integer of 2 or more
  • two or more R 4b may be the same or different
  • similarly, two or more R 5b may be the same. May also be different.
  • R 1b an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and the like can be mentioned, and the alkyl group or the alkoxy group is methyl.
  • R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group and an ethoxy group.
  • R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like.
  • m may be, for example, 2 to 30, or 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A-2000-26609 and JP-A-2012-233110. Can be.
  • the alkoxy group-containing polysiloxane compound may be present as a hydrolysis product in the liquid composition, and the alkoxy group-containing polysiloxane compound and its hydrolysis product May be mixed.
  • the polysiloxane compound having an alkoxy group all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • polysiloxane compounds having a hydrolyzable functional group or a condensable functional group, and hydrolysis products of a polysiloxane compound having a hydrolyzable functional group may be used alone or as a mixture of two or more. May be used.
  • the snow and ice inhibitor of the present embodiment may further contain silica particles from the viewpoint of further improving the snow and ice prevention and the adhesion. That is, the liquid composition comprises silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. And at least one selected from the group.
  • the reason why the snow / ice preventing property is improved in such a snow / ice preventing agent is that when the snow / ice preventing agent contains silica particles, it is easy to control Q + T: D described later in the compound constituting the snow / ice preventing part. Further, it is considered that the amount of the hydroxyl group in the compound is easily reduced.
  • the silica particles can be used without any particular limitation, and include, for example, amorphous silica particles.
  • amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles.
  • the colloidal silica particles have high monodispersibility and easily suppress aggregation in a snow and ice prevention agent.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cocoon shape, and an association type. Among them, the use of spherical particles as the silica particles makes it easier to suppress aggregation in the snow and ice prevention agent.
  • the average primary particle diameter of the silica particles is, for example, 1 nm or more from the viewpoint that it is easy to obtain a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness, and it is easy to improve durability against thermal shock and scratches. May be 5 nm or more, or may be 20 nm or more.
  • the average primary particle diameter of the silica particles is, for example, 200 nm or less, 150 nm or less, or 100 nm or less from the viewpoint of easily obtaining a transparent snow and ice prevention film and / or snow and ice prevention particles. There may be. From these viewpoints, the average primary particle diameter of the silica particles may be, for example, 1 to 200 nm, 5 to 150 nm, or 20 to 100 nm. Further, the silica particles may be particles having a hollow structure, a porous structure, or the like.
  • the average particle size of the silica particles can be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, when colloidal silica particles having a solid content of 5 to 40% by mass and usually dispersed in water are taken as an example, a chip obtained by cutting a wafer with a pattern wiring into 2 cm square is added to a dispersion of colloidal silica particles. After soaking for about 30 seconds, the chip is rinsed with pure water for about 30 seconds and dried with nitrogen blow. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000, and an image is taken.
  • silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of the particles is defined as the average particle diameter.
  • the selected silica particle has a shape as shown in FIG. 1, a rectangle (circumscribed rectangle L) circumscribing the silica particle P and arranged so that the long side is the longest is led.
  • the long side of the circumscribed rectangle L is set to X
  • the short side is set to Y
  • (X + Y) / 2 is used to calculate the biaxial average primary particle diameter, which is defined as the particle diameter of the particle.
  • the number of silanol groups per 1 g of the silica particles is, for example, 10 ⁇ 10 18 / g from the viewpoint of having good reactivity and easily imparting excellent snow and ice prevention properties and adhesion at a low temperature in a short time. Or more, may be 50 ⁇ 10 18 / g or more, or may be 100 ⁇ 10 18 / g or more.
  • the number of silanol groups per gram of the silica particles is, for example, 1000 ⁇ 10 3 from the viewpoint that it is easy to suppress abrupt gelation during the snow and ice prevention treatment and to easily obtain a uniform snow and ice prevention film and / or snow and ice prevention particles.
  • the number may be 18 / g or less, 800 ⁇ 10 18 / g or less, or 700 ⁇ 10 18 / g or less.
  • the number of silanol groups per 1 g of the silica particles may be, for example, 10 ⁇ 10 18 to 1000 ⁇ 10 18 / g, or 50 ⁇ 10 18 to 800 ⁇ 10 18 / g. And may be 100 ⁇ 10 18 to 700 ⁇ 10 18 / g.
  • the content of the silica particles is, from the viewpoint of improving the reactivity of the snow and ice inhibitor, and from the viewpoint of easily imparting excellent snow and ice prevention properties and adhesion in a short time at a low temperature, the total amount of the liquid composition is 100 mass Per part, for example, it may be 0.01 part by mass or more, 0.1 part by mass or more, or 0.5 part by mass or more.
  • the content of the silica particles is preferably 100 parts by mass in terms of the total amount of the liquid composition from the viewpoint that a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved.
  • the content of the silica particles may be, for example, 0.01 to 30 parts by mass or 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition. It may be 0.5 to 10 parts by mass.
  • the liquid composition may further contain a silicon compound (excluding the polysiloxane compound) other than the polysiloxane compound, for example, from the viewpoint of further improving the snow-ice protection property and the adhesion.
  • the liquid composition is a silane monomer having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of a hydrolysis product of a silane monomer having a hydrolyzable functional group. (Hereinafter, sometimes referred to as “silane monomer group”).
  • silane monomer group The number of silicon atoms in the molecule of the silane monomer can be 1 to 6.
  • the silane monomer having a hydrolyzable functional group is not particularly limited, but examples include an alkyl silicon alkoxide.
  • alkyl silicon alkoxides those having three or less hydrolyzable functional groups can further improve the water resistance.
  • examples of such an alkyl silicon alkoxide include monoalkyl trialkoxysilane, monoalkyl dialkoxy silane, dialkyl dialkoxy silane, monoalkyl monoalkoxy silane, dialkyl monoalkoxy silane, and trialkyl monoalkoxy silane. Examples thereof include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
  • the silane monomer having a condensable functional group is not particularly limited. Examples thereof include silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, Hexylsilanetriol, octylsilanetriol, decylsilanetriol, trifluoropropylsilanetriol and the like can be mentioned.
  • the silane monomer having a hydrolyzable functional group or a condensable functional group may further have the above-described reactive group different from the hydrolyzable functional group and the condensable functional group.
  • the number of hydrolyzable functional groups is 3 or less, and as a silane monomer having a reactive group, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
  • silane monomer having a condensable functional group and having a reactive group vinyl silane triol, 3-glycidoxypropyl silane triol, 3-glycidoxy propyl methyl silane diol, 3-methacryloxy propyl silane triol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • silane monomers having three or less hydrolyzable functional groups at the molecular terminals such as bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, and vinyltrimethoxysilane. Can be.
  • silane monomers having a hydrolyzable functional group or a condensable functional group and the hydrolysis products of the silane monomers having a hydrolyzable functional group may be used alone or as a mixture of two or more. You may.
  • a silane monomer having a hydrolyzable functional group may be present as a hydrolysis product in the liquid composition, The silane monomer having the above functional group and its hydrolysis product may be mixed. In the silane monomer having a hydrolyzable functional group, all of the hydrolyzable functional groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • Content of polysiloxane compound group (content of polysiloxane compound having hydrolyzable functional group or condensable functional group, and content of hydrolysis product of polysiloxane compound having hydrolyzable functional group) Of the liquid composition may be, for example, 0.01 parts by mass or more, or 0.1 parts by mass or more based on 100 parts by mass of the total amount of the liquid composition, from the viewpoint of further improving the snow and ice prevention properties. And may be 0.5 parts by mass or more.
  • the content of the polysiloxane compound group is preferably 100% in terms of the total amount of the liquid composition, from the viewpoint that a snow- and ice-preventing film and / or snow-and-ice prevention particles having appropriate hardness are easily obtained and the durability against thermal shock and scratches is easily improved.
  • the amount may be 50 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to parts by mass.
  • the content of the polysiloxane compound group may be, for example, 0.01 to 50 parts by mass, or 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition. And 0.5 to 10 parts by mass.
  • the snow and ice protection agent of the present embodiment further contains a silane monomer group in the liquid composition
  • the content of the polysiloxane compound group and the content of the silane monomer group (hydrolyzable functional group or condensable
  • the ratio of the content of the silane monomer having a functional group and the total content of the hydrolysis products of the silane monomer having a hydrolyzable functional group) is favorable from the viewpoint that the snow-and-ice prevention property is further improved.
  • the ratio may be 1: 0.1 or more, or 1: 1 or more.
  • the ratio of the content of these compounds is, for example, 1:10 or less from the viewpoint that a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved. And may be 1: 5 or less. From these viewpoints, the ratio of the content of the polysiloxane compound group to the content of the silane monomer group may be, for example, from 1: 0.1 to 1:10, or from 1: 1 to 1: 5. There may be.
  • the sum of the contents of the polysiloxane compound group and the silane monomer group is, from the viewpoint of further improving the snow and ice prevention properties, based on 100 parts by mass of the total amount of the liquid composition, for example, even 0.01 parts by mass or more. It may be 0.1 parts by mass or more, or 0.5 parts by mass or more.
  • the sum of the contents is preferably 100 parts by mass of the total amount of the liquid composition from the viewpoint that a snow- and ice-preventing film and / or snow and ice-preventing particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved. On the other hand, for example, it may be 60 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, or 10 parts by mass or less.
  • the total content of the polysiloxane compound group and the silane monomer group may be, for example, 0.01 to 60 parts by mass, or 0.01 to 60 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition.
  • the amount may be 30 parts by mass, 0.1 to 20 parts by mass, or 0.5 to 10 parts by mass.
  • the ratio of the content of the polysiloxane compound group to the content of the silane monomer group can be within the above range.
  • the snow and ice prevention agent of the present embodiment may contain airgel particles from the viewpoint of improving snow and ice prevention. That is, the liquid composition comprises airgel particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. And at least one selected from the group.
  • Airgel is a porous body having nanometer-sized micropores. The airgel particles are considered to exhibit excellent snow and ice prevention properties because the surface has few hydroxyl groups and water hardly enters the micropores.
  • airgel particles conventionally known airgel particles can be used without any particular limitation, and airgel particles formed using a polysiloxane compound, a silane monomer, or the like contained in the liquid composition as a raw material may be used. Note that such aerogels (particles) can be obtained by drying a wet gel that is a condensate of a sol containing a polysiloxane compound or the like.
  • the average primary particle size of the airgel particles is, for example, 0.1 to 10000 nm, 1 to 1000 nm, or 2 to 100 nm from the viewpoint that good snow and ice prevention properties are easily obtained. You may.
  • the content of the airgel particles may be, for example, 0.1 to 10 parts by mass, or 0.5 to 5 parts by mass based on 100 parts by mass of the total amount of the liquid composition, from the viewpoint that good dispersibility is easily obtained. It may be parts by mass, or 0.8 to 3 parts by mass.
  • the snow and ice prevention agent according to another embodiment may be a mode including a snow and ice prevention component.
  • the snow and ice prevention component may be, for example, a condensate of the liquid composition described above.
  • the shape of the snow and ice prevention component according to the present embodiment may be, for example, particulate.
  • specific embodiments of the snow and ice prevention agent containing the snow and ice prevention component will be described as the second to fourth embodiments.
  • the snow and ice prevention agent of the present embodiment may include a snow and ice prevention component containing a polysiloxane having a main chain containing a siloxane bond (Si—O—Si).
  • the snow and ice prevention component can have the following M unit, D unit, T unit or Q unit as a structural unit.
  • R represents an atom bonded to a silicon atom (such as a hydrogen atom) or an atomic group (such as an alkyl group).
  • the M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom.
  • the D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms.
  • the T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms.
  • the Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
  • the snow and ice inhibitor of the present embodiment is derived from Q and T when the silicon-containing bonding units Q, T and D are defined as follows in a solid-state 29 Si-NMR spectrum measured by the DD / MAS method. And a ratio of the signal area derived from D to the signal area derived from D, Q + T: D, in a ratio of 1: 0.01 to 1: 0.70.
  • Q a silicon-containing bonding unit having four oxygen atoms bonded to one silicon atom.
  • T a silicon-containing bonding unit in which three oxygen atoms are bonded to one silicon atom and one hydrogen atom or a monovalent organic group is one.
  • D a silicon-containing bonding unit having two oxygen atoms bonded to one silicon atom and two hydrogen atoms or monovalent organic groups.
  • the organic group is a monovalent organic group in which an atom bonded to a silicon atom is a carbon atom.
  • Such a snow and ice protection agent is excellent in snow and ice prevention and adhesion.
  • the ratio of the signal area derived from Q and T to the signal area derived from D, Q + T: D may be, for example, from 1: 0.01 to 1: 0.50, and from 1: 0.01 to 1 : 0.30, 1: 0.02 to 1: 0.20, or 1: 0.03 to 1: 0.10.
  • the signal area ratio is 1: 0.01 or more, more excellent snow and ice prevention properties tend to be easily obtained, and when the signal area ratio is 1: 0.50 or less, adhesion tends to be more easily obtained.
  • The“ oxygen atom ”in the following Q, T and D is an oxygen atom mainly bonding between two silicon atoms, but for example, an oxygen atom of a hydroxyl group bonded to a silicon atom may be considered.
  • the “organic group” is a monovalent organic group in which the atom bonded to the silicon atom is a carbon atom, and examples include an unsubstituted or substituted monovalent organic group having 1 to 10 carbon atoms. Examples of the unsubstituted monovalent organic group include hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • Examples of the substituted monovalent organic group include a hydrocarbon group (substituted organic group) in which a hydrogen atom of these hydrocarbon groups is substituted with a halogen atom, a predetermined functional group, a predetermined functional group-containing organic group, or the like. And hydrocarbon groups in which ring hydrogen atoms such as an alkyl group, an aryl group, and an aralkyl group are substituted with an alkyl group.
  • Examples of the halogen atom include a chlorine atom, a fluorine atom and the like (that is, a halogen atom-substituted organic group such as a chloroalkyl group and a polyfluoroalkyl group).
  • Examples of the functional group include a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an amino group, a cyano group, an acryloyloxy group, and a methacryloyloxy group.
  • Examples of the functional group-containing organic group include an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a glycidyl group, an epoxycyclohexyl group, an alkylamino group, a dialkylamino group, an arylamino group, and an N-aminoalkyl-substituted aminoalkyl group. Is mentioned.
  • the signal area ratio can be confirmed by a solid-state 29 Si-NMR spectrum.
  • the method of measuring solid 29 Si-NMR is not particularly limited, and includes, for example, the CP / MAS method and the DD / MAS method.
  • the DD / MAS method is adopted from the viewpoint of quantitativeness. ing.
  • the chemical shifts of the silicon-containing bonding units Q, T and D in the solid-state 29 Si-NMR spectrum are as follows: Q unit: -90 to -120 ppm, T unit: -45 to -80 ppm, D unit: 0 to -40 ppm, respectively.
  • Q unit -90 to -120 ppm
  • T unit -45 to -80 ppm
  • D unit 0 to -40 ppm
  • FIG. 2 is a diagram showing a solid-state 29 Si-NMR spectrum of a snow and ice preventing component contained in the snow and ice preventing agent 12 measured using the DD / MAS method.
  • the signals of the silicon-containing bonding units Q, T and D can be separated by solid-state 29 Si-NMR using the DD / MAS method.
  • a method for calculating the signal area ratio will be described with reference to FIG.
  • a Q unit signal derived from silica is observed in the chemical shift range of -90 to -120 ppm.
  • a signal of a T unit derived from the polysiloxane compound and the trimethoxysilane reactant is observed.
  • signals of D units derived from the polysiloxane compound and the dimethyldimethoxysilane reactant are observed.
  • the signal area (integral value) is obtained by integrating the signal in each chemical shift range.
  • the signal area ratio Q + T: D in FIG. 2 is calculated to be 1: 0.15.
  • the signal area is calculated by using general spectrum analysis software (for example, NMR software “TopSpin” (TopSpin is a registered trademark) manufactured by Bruker).
  • the snow and ice prevention agent of the present embodiment may contain a snow and ice prevention component including a compound having a structure represented by the following formula (1).
  • the snow and ice prevention component according to the present embodiment can include a compound having a structure represented by the following formula (1a) as a structure including the structure represented by the formula (1).
  • the condensate of the liquid composition containing the polysiloxane compound having the structure represented by the formula (A) includes a compound having the structure represented by the formula (1) and the formula (1a) in the skeleton.
  • a snow and ice protection component may be included.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 may be the same or different, and similarly, two or more R 2 may be the same or different.
  • two R 3 may be the same or different, and similarly, two R 4 may be the same or different.
  • the snow and ice prevention agent contains a snow and ice prevention component containing a compound having the structure represented by the above formula (1) or (1a), the snow and ice prevention and the adhesion are further improved.
  • R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like. And a methyl group.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group, a propylene group, and the like. Is mentioned.
  • p may be 2 to 30, or 5 to 20.
  • the snow and ice prevention agent of the present embodiment has a ladder-type structure including a support portion and a bridge portion, and the bridge portion includes a snow and ice prevention component including a compound represented by the following formula (2). It may be.
  • the snow-and-ice prevention component can further improve the snow-and-ice prevention properties and the mechanical strength. That is, the snow and ice prevention agent of the present embodiment has excellent snow and ice prevention and durability due to the ladder type structure.
  • a compound having a ladder type structure having a crosslinked portion represented by the formula (2) in the skeleton is used as a condensate of a liquid composition containing a polysiloxane compound having a structure represented by the above formula (B).
  • a compound having a ladder type structure having a crosslinked portion represented by the formula (2) in the skeleton is used as a condensate of a liquid composition containing a polysiloxane compound having a structure represented by the above formula (B)
  • Including snow and ice protection components can be included.
  • the “ladder type structure” refers to a structure having two struts and bridges connecting the struts (bridges) (having a so-called “ladder” form). It is.
  • the ladder structure may be an embodiment included in a part of the compound.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 may be the same or different, and similarly, two or more R 6 may be the same. May also be different.
  • the structure to be the support part and the chain length thereof, and the interval between the structures to be the bridge part are not particularly limited, but from the viewpoint of further improving snow and ice prevention, mechanical strength and durability, the ladder type structure is as follows.
  • a ladder-type structure represented by the general formula (3) is given.
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b represents 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 may be the same or different
  • two or more R 6 may be the same. May also be different.
  • a is an integer of 2 or more
  • two or more R 7 may be the same or different
  • similarly, when c is an integer of 2 or more, two or more R 7 R 8 may be the same or different.
  • R 5 , R 6 , R 7 and R 8 in the formulas (2) and (3) Independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like.
  • a and c may each independently be, for example, 6 to 2000 or 10 to 1000.
  • b may be, for example, 2 to 30, or 5 to 20.
  • the snow / ice prevention component contained in the snow / ice prevention agent may be composed of aerogel from the viewpoint of improving the snow / ice prevention properties. Since airgel has a high porosity, the snow- and ice-preventing component composed of aerogel (and the snow and ice-preventing film and the snow-and-ice preventing particles formed thereby) have a small refractive index and high transparency. Conceivable.
  • a snow and ice prevention structure obtained by using the above snow and ice prevention agent will be described.
  • a snow and ice prevention part is formed on the surface to be processed, and the snow and ice prevention part includes a dried product of the snow and ice prevention agent.
  • the snow and ice prevention agent contains a condensate of the above liquid composition, the condensation reaction is considered to proceed further when the snow and ice prevention part is formed, and the snow and ice prevention agent is not liquid.
  • the snow and ice prevention unit includes a reactant of the snow and ice prevention agent.
  • the snow and ice prevention unit may be in a form including at least one of a snow and ice prevention film and a snow and ice prevention particle.
  • the snow and ice prevention structure according to the present embodiment has a snow and ice prevention portion containing a dried product of the snow and ice prevention agent of the present embodiment, and thus has excellent snow and ice prevention properties, and has a surface to be processed and a snow and ice prevention portion. Excellent adhesion with Further, such a snow and ice prevention structure has excellent durability.
  • the snow and ice prevention structure of the present embodiment may be, for example, a snow and ice prevention film and / or snow and ice prevention particles formed on the surface to be processed by the above-described snow and ice prevention agent.
  • the preferred form of the snow and ice prevention part (snow and ice prevention particles and the like) formed on the surface to be processed may be, for example, the same as the snow and ice prevention component described above.
  • the snow / ice prevention portions (snow / ice prevention films, snow / ice prevention particles, etc.) formed on the surface to be processed may include aerogel from the viewpoint of further improving the snow / ice prevention properties. That is, for example, the snow and ice prevention film and the snow and ice prevention particles formed on the surface to be processed may be a film containing aerogel and a particle containing aerogel, respectively.
  • FIG. 3 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention.
  • the snow and ice prevention structure 100 shown in FIG. 3 has a structure in which a snow and ice prevention part 10 made of a snow and ice prevention film 1 is formed on a processing surface 2 a of a snow and ice prevention target 2.
  • the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment.
  • the snow / ice prevention structure 100 includes a snow / ice prevention unit 10 made of the snow / ice prevention film 1 on the surface 2a to be processed, thereby imparting snow / ice prevention properties, which are chemical characteristics of the snow / ice prevention film. It is thought that it becomes.
  • the snow and ice prevention unit in this embodiment is not a monolithic film but a film formed by depositing minute snow and ice prevention particles (snow and ice prevention components).
  • FIG. 4 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention.
  • the snow and ice prevention structure 200 shown in FIG. 4 has a structure in which a snow and ice prevention part 10 made of snow and ice prevention particles 3 is formed on a processing surface 2 a of a snow and ice prevention target 2.
  • the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment. Since the snow-and-ice prevention structure 200 includes the snow-and-ice prevention unit 10 made of the snow-and-ice prevention particles 3 on the surface 2a to be processed, the Lotus effect due to the fine unevenness which is a physical characteristic of the snow-and-ice prevention particles is reduced.
  • the snow and ice prevention part in the present embodiment is formed by snow and ice prevention particles (snow and ice prevention components) that have grown to a somewhat large size adhere to the surface to be processed.
  • FIG. 5 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention.
  • the snow / ice prevention structure 300 shown in FIG. 5 has a structure in which a snow / ice prevention part 10 including a snow / ice prevention film 1 and snow / ice prevention particles 3 is formed on a surface 2a to be processed of a snow / ice prevention object 2.
  • the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment.
  • the snow / ice prevention structure 300 includes the snow / ice prevention part 10 including the snow / ice prevention film 1 and the snow / ice prevention particles 3 on the surface 2a to be processed, thereby forming the snow and ice prevention particles having the chemical characteristics. It is considered that a more excellent snow and ice prevention property is provided because the snow and ice prevention property is imparted and the lotus effect is obtained by the fine irregularities which are the physical characteristics of the snow and ice prevention particles.
  • snow / ice prevention portions having various aspects depending on the size of the particles formed from the snow / ice prevention agent. That is, when the snow and ice prevention particles are minute, the film-like appearance is deposited with a predetermined thickness, and when the snow and ice prevention particles are somewhat large, the particle appearance is individually arranged in a plane. In such a case, a snow- and ice-preventing portion is formed in a combined appearance.
  • the heat conductivity of the snow / ice prevention structure of the present embodiment has the same thermal conductivity as that of the object.
  • the thermal conductivity of the snow and ice prevention structure of this embodiment using an object having a thermal conductivity of about 1.0 W / (m ⁇ K) is 1.0 W / (m ⁇ K), which is equivalent to that of the object. It is about.
  • the thickness of the snow / ice prevention film may be, for example, 1 to 500 nm or 20 to 200 nm. By setting the thickness to 1 nm or more, more excellent snow and ice prevention properties can be achieved, and by setting the thickness to 500 nm or less, more excellent adhesion can be achieved.
  • the size of the snow / ice prevention particles may be, for example, 0.1 to 10000 nm or 1 to 1000 nm.
  • the size of the snow and ice prevention particles is 0.1 nm or more, more excellent snow and ice prevention properties can be achieved, and when it is 10000 nm or less, more excellent adhesion can be achieved. .
  • the number of snow and ice prevention particles adhering to the surface to be treated is, for example, one or more per 1 mm square from the viewpoint of achieving even better snow and ice prevention properties. Is also good.
  • the number of snow and ice prevention particles adhering to the surface to be processed can be calculated using, for example, a scanning electron microscope (SEM). For example, in the case of snow and ice prevention particles having an average particle diameter of 100 nm, a square area A (1.0 ⁇ 10 ⁇ 4 ) having a length 100 times the average particle diameter (1.0 ⁇ 10 ⁇ 2 mm) as one side. mm 2 ).
  • the number B (pieces) of the particles in the square is measured, and B / A is calculated. This is repeated 10 times, and the average value of the obtained B / A is defined as the amount of particles attached.
  • the thickness of the snow and ice prevention portion may be, for example, 1 to 10000 nm or 20 to 1000 nm.
  • the method for producing the snow and ice inhibitor is not particularly limited, but for example, it can be produced by the following method.
  • the snow and ice protection agent of the present embodiment can be manufactured by, for example, a manufacturing method mainly including a compounding step and, if necessary, a condensation reaction step.
  • the compounding step is a step of mixing the above-mentioned polysiloxane compound and, if necessary, silica particles, a silane monomer, a solvent and the like.
  • a hydrolysis reaction of a silicon compound such as a polysiloxane compound can be performed.
  • the silica particles may be mixed in a state of a dispersion liquid dispersed in a solvent.
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant can be added to the solvent.
  • the hydrolysis reaction is not always essential.
  • the solvent for example, water or a mixture of water and alcohols can be used.
  • alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • the alcohols may have a low surface tension and a low boiling point, for example.
  • the alcohol having a low surface tension and a low boiling point include methanol, ethanol and 2-propanol. These may be used alone or as a mixture of two or more.
  • the acid catalyst examples include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, and hypochlorous acid; Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid And the like. Among them, organic carboxylic acids can be mentioned as an acid catalyst capable of promoting a hydrolysis reaction in consideration of environmental pollution.
  • the organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid, or the like. These may be used alone or as a mixture of two or more.
  • the hydrolysis reaction of the polysiloxane compound and the silane monomer is promoted, and a hydrolysis solution can be obtained in a shorter time.
  • the amount of the acid catalyst may be, for example, 0.001 to 600.0 parts by mass based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant or the like can be used. These may be used alone or as a mixture of two or more.
  • a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group a compound containing a hydrophilic part such as polyoxypropylene and the like can be used.
  • the compound containing a hydrophilic portion such as polyoxyethylene and a hydrophobic portion mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound containing a hydrophilic portion, such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate.
  • examples of the amphoteric surfactant include an amino acid-based surfactant, a betaine-based surfactant, and an amine oxide-based surfactant.
  • Examples of the amino acid-based surfactant include acylglutamic acid.
  • Examples of the betaine-based surfactant include betaine lauryldimethylaminoacetate and betaine stearyldimethylaminoacetate.
  • Examples of the amine oxide-based surfactant include lauryl dimethylamine oxide.
  • These surfactants are considered to have an effect of improving the dispersibility of the polysiloxane compound and, in some cases, silica particles and silane monomers in the solvent in the compounding step.
  • these surfactants act to reduce the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the condensation reaction step described below, thereby improving dispersibility. It is considered to have
  • the amount of the surfactant added depends on the type of the surfactant, or the type and amount of the polysiloxane compound and the silane monomer.For example, with respect to the total amount of 100 parts by mass of the polysiloxane compound group and the silane monomer group, The amount may be 1 to 100 parts by mass, or 5 to 60 parts by mass.
  • the hydrolysis in the compounding step depends on the types and amounts of the polysiloxane compound, silane monomer, silica particles, acid catalyst, surfactant and the like in the mixed solution, but, for example, under a temperature environment of 20 to 60 ° C. It may be performed for 10 minutes to 24 hours, or may be performed for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C. As a result, the hydrolyzable functional groups in the polysiloxane compound and the silane monomer are sufficiently hydrolyzed, and the hydrolysis product of the polysiloxane compound and the hydrolysis product of the silane monomer can be obtained more reliably.
  • a snow- and ice-preventing agent comprising a liquid composition containing
  • condensation reaction step If necessary, a condensation reaction of the polysiloxane compound having a condensable functional group and a silane monomer, a hydrolysis reaction product obtained in the compounding step, and the like can be performed by a condensation reaction step.
  • a base catalyst can be used to promote the condensation reaction.
  • a thermohydrolyzable compound that generates a base catalyst by thermohydrolysis can also be added.
  • the base catalyst examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Sodium phosphates such as sodium, sodium pyrophosphate and sodium polyphosphate; calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, carbonate Carbonates such as silver (I); hydrogencarbonates such as calcium hydrogencarbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, ammonium hydrogencarbonate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine Ruamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diis
  • carbonate or hydrogen carbonate is preferable from the viewpoint of safety in handling and odor
  • sodium carbonate or sodium hydrogen carbonate is more preferable from the viewpoint of economy.
  • the above base catalysts may be used alone or in combination of two or more.
  • the polysiloxane compound group in the hydrolysis solution, the silane monomer group and the silica particles can promote the dehydration condensation reaction, the dealcoholization condensation reaction, or the reaction of both, in a shorter time.
  • a snow and ice protection agent can be obtained.
  • the addition amount of the base catalyst may be, for example, 0.1 to 500 parts by mass or 1.0 to 200 parts by mass with respect to 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group. .
  • the addition amount of the base catalyst may be, for example, 0.1 to 500 parts by mass or 1.0 to 200 parts by mass with respect to 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
  • the thermally hydrolyzable compound generates a basic catalyst by thermal hydrolysis, makes the reaction solution basic, and promotes the condensation reaction. Therefore, the thermally hydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after the thermal hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, Acid amides such as N-methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above-mentioned promoting effect.
  • the amount of the thermally hydrolyzable compound to be added is not particularly limited as long as the condensation reaction can be sufficiently promoted.
  • its addition amount may be 1 to 200 parts by mass, or 2 to 150 parts by mass, based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group. It may be parts by mass.
  • the reaction in the condensation reaction step may be performed in a closed container so that the solvent and the base catalyst do not volatilize.
  • the reaction temperature may be, for example, from 20 to 90 ° C, or from 40 to 80 ° C. By setting the reaction temperature to 20 ° C. or higher, the condensation reaction can be performed in a shorter time. Further, by setting the reaction temperature to 90 ° C. or lower, the volatilization of the solvent (particularly, alcohols) is easily suppressed, so that the condensation reaction can be performed while suppressing the layer separation.
  • the condensation reaction time depends on the type of the polysiloxane compound group, the silane monomer group, etc. and the reaction temperature, but may be, for example, 2 to 480 hours or 6 to 120 hours. By setting the reaction time to 2 hours or more, more excellent snow and ice prevention and adhesion can be achieved, and by setting the reaction time to 480 hours or less, layer separation is easily suppressed.
  • the condensation reaction time can be further reduced.
  • the silanol group, the reactive group, or both of the polysiloxane compound group and the silane monomer group in the hydrolysis solution have a hydrogen bond, a chemical bond, or a combination of these bonds with the silanol group of the silica particles. It is inferred that this is to form In this case, the condensation reaction time may be, for example, 10 minutes to 24 hours, or 30 minutes to 12 hours. By setting the reaction time to 10 minutes or more, more excellent snow and ice prevention properties and adhesion can be achieved. By setting the reaction time to 24 hours or less, layer separation is easily suppressed.
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the polysiloxane compound having the hydrolyzable functional group It is possible to obtain a snow and ice inhibitor containing a condensate of a liquid composition containing one kind. Further, by this step, a snow and ice preventing agent containing the above-described snow and ice preventing component can be obtained.
  • the size of the snow and ice prevention particles can be adjusted by, for example, changing the condensation reaction time, the size of the silica particles, the size of the airgel particles, and the like. Thus, a desired snow and ice prevention structure can be obtained.
  • the method for manufacturing the snow-and-ice prevention structure is not particularly limited, but can be manufactured, for example, by the following method.
  • the snow and ice prevention structure of the present embodiment can be manufactured by, for example, a manufacturing method including a step of applying the snow and ice prevention agent to a surface to be processed (hereinafter, also referred to as an “application step”).
  • the method for manufacturing a snow-and-ice prevention structure according to the present embodiment may include, for example, a coating step and a drying step (aging step), and include a coating step, a cleaning step, and a drying step (preliminary drying step and aging step). Step).
  • the application step is, for example, a step of applying the snow and ice prevention agent to the surface to be treated.
  • the surface to be treated may be dried after application to evaporate the solvent.
  • a snow and ice prevention part can be formed on the surface to be processed by this step.
  • the snow and ice protection agent may be applied to the entire surface to be processed or may be selectively applied to a part of the surface to be processed.
  • the coating method is not particularly limited, and examples thereof include a spin coating method, a dip coating method, a spray coating method, a flow coating method, a bar coating method, and a gravure coating method.
  • the spray coating method is preferable from the viewpoint that a snow- and ice-preventing film having a uniform thickness is easily formed even on a surface to be processed having irregularities, that the productivity is high, and that the use efficiency of the snow-and-ice preventing agent is high. These methods may be used alone or in combination of two or more.
  • the snow and ice preventing agent may be applied to the surface to be treated by applying or impregnating the film or cloth with the snow and ice preventing agent in advance to the surface to be treated.
  • the application method can be freely selected depending on the amount of the snow and ice prevention agent used, the area of the surface to be treated, the characteristics, and the like.
  • the temperature of the snow and ice inhibitor used in the coating step may be, for example, 20 to 80 ° C. or 40 to 60 ° C.
  • the treatment time with the snow and ice inhibitor can be, for example, 0.5 to 4 hours.
  • the material constituting the surface to be treated is not particularly limited, but examples thereof include metal, ceramics, glass, plastic, and materials combining these (composite materials, laminated materials, etc.).
  • the snow and ice prevention agent of the present embodiment can be applied to paper, fiber, cloth, nonwoven fabric, rubber, leather, and the like.
  • the material constituting the surface to be treated may be, for example, a water-soluble organic compound or a water-soluble inorganic compound.
  • the material constituting the surface to be processed is preferably a transparent material such as glass or plastic.
  • Examples of the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron.
  • Examples of the ceramic include alumina, barium titanate, boron nitride, and silicon nitride.
  • Examples of the glass include ordinary soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and aluminosilicate glass.
  • Examples of the plastics include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
  • water-soluble organic compound examples include glucose, sucrose, starch, polyacrylamide, polyvinyl alcohol, and methylcellulose.
  • water-soluble inorganic compound examples include water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, potassium chloride, potassium carbonate, and a sulfate compound.
  • the drying temperature at this time is not particularly limited and varies depending on the heat-resistant temperature of the surface to be treated.
  • the drying temperature may be 20 to 250 ° C., 60 to 250 ° C., There may be. By setting the temperature to 60 ° C. or higher, better adhesion can be achieved, and by setting the temperature to 250 ° C. or lower, deterioration due to heat can be suppressed.
  • the cleaning step is, for example, a step of cleaning the structure obtained in the coating step.
  • impurities such as unreacted substances and by-products in the snow and ice prevention unit can be reduced, and a snow and ice prevention unit with higher purity can be obtained.
  • the washing step can be repeatedly performed using, for example, water and / or an organic solvent. At this time, the cleaning efficiency can be improved by heating.
  • organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran,
  • organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, and formic acid can be used.
  • the above organic solvents may be used alone or in combination of two or more.
  • organic solvents have extremely low mutual solubility with water. Therefore, when washing with an organic solvent after washing with water, a hydrophilic organic solvent having high mutual solubility in water is preferable.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane and the like.
  • methanol, ethanol, methyl ethyl ketone, etc. are preferable in terms of economic efficiency.
  • the amount of water and / or organic solvent used in the washing step may be, for example, 3 to 10 times the total mass of the snow and ice prevention unit.
  • the washing can be repeated until the water content of the surface to be treated becomes 10% by mass or less.
  • the washing temperature can be set to a temperature equal to or lower than the boiling point of the solvent used for washing. For example, when methanol is used, it may be about 20 to 60 ° C.
  • the cleaning efficiency can be improved by heating.
  • the washing time can be, for example, 3 to 30 minutes.
  • the pre-drying step is, for example, a step of pre-drying the structure cleaned in the cleaning step.
  • the method of drying is not particularly limited, and for example, a known drying method under atmospheric pressure can be used.
  • the drying temperature varies depending on the heat resistant temperature of the surface to be treated and the type of the cleaning solvent.
  • the drying temperature may be, for example, from 20 to 250 ° C. or from 60 to 180 ° C., from the viewpoint that the evaporation rate of the solvent is sufficiently fast and deterioration of the snow and ice prevention unit is easily prevented.
  • the drying time varies depending on the mass of the snow and ice prevention unit and the drying temperature, but may be, for example, 1 to 24 hours.
  • the aging step is, for example, a step of aging (heating aging, etc.) the snow-and-ice prevention unit dried in the preliminary drying step. Thereby, a final snow and ice prevention structure can be obtained.
  • the snow-and-ice prevention property and the adhesion of the snow-and-ice prevention structure are further improved.
  • the washing step and the preliminary drying step are omitted, for example, the snow and ice prevention unit formed in the coating step may be aged.
  • This step may be performed, for example, as additional drying after the preliminary drying step. It is considered that the aging reduces the number of hydrophilic groups in the snow and ice prevention part, and further improves the snow and ice prevention. Further, when the snow and ice prevention unit has contracted in volume in the preliminary drying step and the transparency has been reduced, the transparency may be improved by restoring the volume by springback.
  • the aging temperature varies depending on the heat-resistant temperature of the surface to be treated, and may be, for example, 100 to 250 ° C or 120 to 180 ° C. By setting the aging temperature to 100 ° C. or higher, more excellent snow and ice prevention properties and adhesion can be achieved. By setting the aging temperature to 250 ° C. or lower, deterioration due to heat can be suppressed.
  • the aging time varies depending on the mass of the snow and ice prevention part and the aging temperature, but may be, for example, 1 to 10 hours or 2 to 6 hours.
  • the aging time By setting the aging time to 1 hour or more, it is easy to achieve more excellent snow and ice prevention properties and adhesion, and by setting the aging time to 10 hours or less, the productivity is not easily reduced.
  • the method for manufacturing the snow and ice preventing agent and the method for manufacturing the snow and ice preventing structure has been described above, the method for manufacturing the snow and ice preventing agent and the method for manufacturing the snow and ice preventing structure is not limited thereto.
  • FIG. 6 is a diagram schematically illustrating a test method of the icing power test.
  • the icing power test was performed as follows. (1) The temperature of the thermostat in which the load measuring device was set was set to -9 ° C. (2) The sample and the stainless steel ring were set in a thermostat and allowed to stand for 2 hours. (3) Water was injected into the stainless steel ring, and left still for 30 minutes. Thereby, as shown in FIG. 6, ice 22 was formed in the stainless steel ring 21 placed on the sample 23. (4) A load S was applied from outside the stainless ring, and the maximum load point was measured. (5) The maximum load was converted per unit area to obtain the icing power (N / cm 2 ). The stainless steel ring had an inner diameter of 2.5 cm and an icing area of 4.9 cm 2 .
  • the icing power was about 19 N / cm 2 .
  • the slide glass S7213 was used as the sample, the icing power was about 36 N / cm 2 .
  • the icing power was greatly reduced by using snow and ice inhibitors.
  • the snow and ice preventing agent of the present invention can impart excellent snow and ice preventing properties to the surface to be treated.
  • L circumscribed rectangle
  • P silica particles
  • 1 snow and ice prevention film
  • 2 snow and ice prevention target object
  • 2a surface to be treated
  • 3 snow and ice prevention particles
  • 10 snow and ice prevention part
  • 21 stainless steel ring
  • 22 ... ice
  • 23 ... sample, 100, 200, 300 ... snow and ice prevention structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

The present invention pertains to a snow-ice accretion preventing agent that comprises a liquid composition containing at least one selected from the group consisting of: polysiloxane compounds having a hydrolyzable functional group or a condensed functional group; and hydrolysate products of said polysiloxane compounds having a hydrolyzable functional group.

Description

着雪氷防止剤、着雪氷防止構造体、着雪氷防止構造体の製造方法Snow- and ice-preventing agent, snow-and-ice prevention structure, method for manufacturing snow-and-ice prevention structure
 本発明は、着雪氷防止剤、着雪氷防止構造体、及び着雪氷防止構造体の製造方法に関する。 The present invention relates to a snow and ice prevention agent, a snow and ice prevention structure, and a method for manufacturing a snow and ice prevention structure.
 積雪寒冷地城においては、対象構造物表面に雪及び氷が付着したままとなる着雪氷の問題がある。付着した雪及び氷は対象構造物の機能低下だけでなく、対象構造物の破断、倒壊等を引き起こす虞がある。また、付着した雪及び氷が落下することによる事故も想定される。 In snowy and cold districts, there is the problem of snow and ice that causes snow and ice to remain attached to the surface of the target structure. The attached snow and ice may cause not only deterioration of the function of the target structure, but also breakage and collapse of the target structure. In addition, an accident due to falling of attached snow and ice is also assumed.
 このような着雪氷への対策のため、着雪防止塗料が知られている(例えば、特許文献1)。特許文献1には、フッ素系の粉末をフッ素樹脂等と混合した着雪防止塗料が開示されている。 雪 As a countermeasure against such snow and ice, a snow prevention paint is known (for example, Patent Document 1). Patent Document 1 discloses a snow-prevention paint in which a fluorine-based powder is mixed with a fluorine resin or the like.
特開平8-3479号公報JP-A-8-3479
 本発明は、対象物の被処理面に優れた着雪氷防止性を付与することができる、新規な着雪氷防止剤を提供することを目的とする。本発明はまた、当該着雪氷防止剤を用いた着雪氷防止構造体及び着雪氷防止構造体の製造方法を提供することを目的とする。 An object of the present invention is to provide a novel snow and ice preventing agent capable of imparting excellent snow and ice preventing properties to a surface to be treated of an object. Another object of the present invention is to provide a snow and ice prevention structure using the snow and ice prevention agent and a method of manufacturing the snow and ice prevention structure.
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、分子内に反応性基(加水分解性の官能基又は縮合性の官能基)を有するポリシロキサン化合物を含む液状組成物を用いて得られる着雪氷防止剤において、優れた着雪氷防止性が発現されることを見出し、本発明の完成に至った。 The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a liquid composition containing a polysiloxane compound having a reactive group (hydrolyzable functional group or condensable functional group) in the molecule. The present inventors have found that a snow and ice preventing agent obtained by using the above exhibits excellent snow and ice preventing properties, and have completed the present invention.
 本発明は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する液状組成物を含む、着雪氷防止剤を提供する。このような着雪氷防止剤によれば、対象物の被処理面に優れた着雪氷防止性を付与することができる。また、上記着雪氷防止剤から形成される着雪氷防止部は、被処理面との密着性にも優れる。 The present invention provides a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the polysiloxane compound having the hydrolyzable functional group. The present invention provides a snow and ice inhibitor comprising a liquid composition containing: According to such a snow and ice preventing agent, excellent snow and ice preventing properties can be imparted to the surface of the object to be treated. In addition, the snow and ice prevention part formed from the snow and ice prevention agent has excellent adhesion to the surface to be processed.
 上記加水分解性の官能基がアルコキシ基である場合、上記ポリシロキサン化合物としては、下記式(B)で表される化合物が挙げられる。これにより、更に優れた着雪氷防止性及び密着性を達成することができる。 When the hydrolyzable functional group is an alkoxy group, the polysiloxane compound includes a compound represented by the following formula (B). Thereby, more excellent snow and ice prevention and adhesion can be achieved.
Figure JPOXMLDOC01-appb-C000004
[式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000004
[In the formula (B), R 1b represents an alkyl group, an alkoxy group or an aryl group, R 2b and R 3b each independently represent an alkoxy group, and R 4b and R 5b each independently represent an alkyl group or an aryl group. And m represents an integer of 1 to 50. ]
 上記着雪氷防止剤において、液状組成物が、加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、該加水分解性の官能基を有するシランモノマーの加水分解生成物からなる群より選択される少なくとも一種を更に含有していてもよい。これにより、更に優れた着雪氷防止性と密着性とを達成することができる。 In the snow and ice prevention agent, the liquid composition is a group consisting of a silane monomer having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silane monomer having the hydrolyzable functional group. It may further contain at least one selected from more. As a result, it is possible to achieve more excellent snow and ice prevention and adhesion.
 上記着雪氷防止剤において、液状組成物が、エアロゲル粒子を更に含有していてもよい。これにより、着雪氷防止性がより向上する。 に お い て In the snow and ice prevention agent, the liquid composition may further contain airgel particles. As a result, the ability to prevent snow and ice is further improved.
 上記着雪氷防止剤は、対象物の被処理面に着雪氷防止部を形成するために用いられてもよい。このような着雪氷防止部を形成することにより、更に優れた着雪氷防止性を達成することができる。この際、着雪氷防止部はエアロゲルを含んでいてもよい。 The snow / ice prevention agent may be used to form a snow / ice prevention part on the surface of the object to be processed. By forming such a snow and ice prevention part, further excellent snow and ice prevention can be achieved. In this case, the snow and ice prevention part may include aerogel.
 本発明はまた、支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が下記式(2)で表される化合物を含む着雪氷防止成分、を含有する着雪氷防止剤を提供する。このような着雪氷防止剤は、ラダー型構造に起因する優れた着雪氷防止性及び耐久性を有している。 The present invention also provides a snow and ice preventing agent having a ladder-type structure including a support portion and a bridge portion, wherein the bridge portion includes a snow and ice preventing component containing a compound represented by the following formula (2). provide. Such a snow and ice prevention agent has excellent snow and ice prevention and durability due to the ladder type structure.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。] [In the formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50. ]
 なお、ラダー型構造を有する化合物としては、下記式(3)で表される構造を有する化合物が挙げられる。これにより、更に優れた着雪氷防止性及び耐久性を達成することができる。 化合物 As the compound having a ladder structure, a compound having a structure represented by the following formula (3) can be given. Thereby, more excellent snow and ice prevention and durability can be achieved.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。] [In the formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b represents 1 to 50 Indicates an integer. ]
 上記着雪氷防止部はエアロゲルを含んでいてもよい。また、上記着雪氷防止成分はエアロゲルであってもよい。これにより、更に優れた着雪氷防止性を達成することができる。 The snow and ice prevention unit may include aerogel. The snow and ice prevention component may be aerogel. Thereby, more excellent snow and ice prevention properties can be achieved.
 本発明はまた、対象物と、対象物の被処理面上に着雪氷防止部と、を備え、着雪氷防止部が、上記着雪氷防止剤の乾燥物(反応物)を含む、着雪氷防止構造体を提供する。当該着雪氷防止構造体は、上記着雪氷防止剤の乾燥物を含む着雪氷防止部を有することにより、着雪氷防止性に優れると共に、被処理面と、着雪氷防止部との密着性に優れる。 The present invention also includes an object and a snow and ice prevention unit on a surface to be processed of the object, wherein the snow and ice prevention unit includes a dried product (reactant) of the snow and ice prevention agent. Provide a structure. The snow and ice prevention structure has a snow and ice prevention portion containing a dried product of the snow and ice prevention agent, and thus has excellent snow and ice prevention properties, and also has excellent adhesion between the surface to be processed and the snow and ice prevention portion. .
 本発明はまた、上記着雪氷防止剤を対象物の被処理面に塗布する工程を備える、着雪氷防止構造体の製造方法を提供する。 The present invention also provides a method for manufacturing a snow and ice preventing structure, comprising a step of applying the snow and ice preventing agent to a surface to be processed of an object.
 本発明によれば、対象物の被処理面に優れた着雪氷防止性を付与することができる新規な着雪氷防止剤を提供することができる。また、本発明によれば、当該着雪氷防止剤を用いた着雪氷防止構造体及び着雪氷防止構造体の製造方法を提供することができる。 According to the present invention, it is possible to provide a novel snow and ice preventing agent capable of imparting excellent snow and ice preventing properties to a surface to be processed of an object. Further, according to the present invention, it is possible to provide a snow and ice prevention structure using the snow and ice prevention agent and a method for manufacturing the snow and ice prevention structure.
 本発明の着雪氷防止剤は、例えば、橋桁、鉄塔、ビル、住宅、船舶、車両、航空機、電気通信施設、道路交通標識、信号機、電線、流雪溝、パイプライン等の構造物に対して適用することができ、これらの構造物への雪及び氷の付着を防止することができる。 The snow and ice protection agent of the present invention can be used, for example, for structures such as bridge girders, steel towers, buildings, houses, ships, vehicles, aircraft, telecommunications facilities, road traffic signs, traffic lights, electric wires, snow gutters, and pipelines. It can be applied to prevent snow and ice from adhering to these structures.
粒子の二軸平均一次粒子径の算出方法を示す図である。FIG. 3 is a diagram illustrating a method for calculating a biaxial average primary particle diameter of particles. DD/MAS法を用いて測定された、着雪氷防止剤12に含有される着雪氷防止成分の固体29Si-NMRスペクトルを示す図である。FIG. 3 is a view showing a solid-state 29 Si-NMR spectrum of a snow and ice preventing component contained in a snow and ice preventing agent 12 measured by a DD / MAS method. 本発明の一実施形態に係る着雪氷防止構造体を模式的に表す図である。It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. 本発明の一実施形態に係る着雪氷防止構造体を模式的に表す図である。It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. 本発明の一実施形態に係る着雪氷防止構造体を模式的に表す図である。It is a figure showing typically the snow-and-ice prevention structure concerning one embodiment of the present invention. 着氷力試験の試験方法を模式的に表す図である。It is a figure showing typically the test method of the icing power test.
 以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments.
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
<Definition>
In the present specification, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit or the lower limit of a numerical range in one step may be replaced with the upper limit or the lower limit of a numerical range in another step. In the numerical ranges described in this specification, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment. “A or B” may include one of A and B, and may include both. The materials exemplified in the present specification can be used alone or in combination of two or more, unless otherwise specified. In the present specification, the content of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the plurality of substances present in the composition means.
<着雪氷防止剤>
 本実施形態の着雪氷防止剤としては、例えば、下記第一~第四の態様が挙げられる。各々の態様を採用することで、各々の態様に応じた着雪氷防止性及び密着性を得ることができる。
<Snow and ice protection agent>
Examples of the snow and ice prevention agent of the present embodiment include the following first to fourth aspects. By adopting each of the aspects, it is possible to obtain the snow-and-ice prevention property and the adhesiveness according to each of the aspects.
(第一の態様)
 一実施形態の着雪氷防止剤は、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ポリシロキサン化合物群」という)を含有する液状組成物を含む(着雪氷防止剤が当該液状組成物であってもよい)。着雪氷防止剤は、また、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する液状組成物の縮合物を含んでいてもよい。このような着雪氷防止剤によれば、対象物の被処理面に優れた着雪氷防止性を付与することができる。上記着雪氷防止剤は、対象物の被処理面に着雪氷防止部を形成するために用いられてもよい。上記着雪氷防止剤から形成される着雪氷防止部は、優れた着雪氷防止性を有すると共に、被処理面との密着性にも優れる。上記着雪氷防止部は、例えば、膜状の着雪氷防止部(以下、「着雪氷防止膜」ともいう)及び粒子状の着雪氷防止部(以下、「着雪氷防止粒子」ともいう)の少なくとも一方を含む形態であってもよい。すなわち、本実施形態に係る着雪氷防止剤は、対象物の被処理面に着雪氷防止膜及び/又は着雪氷防止粒子を形成するものであってもよい。
(First embodiment)
In one embodiment, the snow and ice protection agent comprises a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in a molecule), and hydrolysis of the polysiloxane compound having the hydrolyzable functional group. A liquid composition containing at least one selected from the group consisting of products (hereinafter, sometimes referred to as “polysiloxane compound group”) is included (the snow and ice inhibitor may be the liquid composition). The snow and ice protection agent is also selected from the group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. And a condensate of a liquid composition containing at least one of the above. According to such a snow and ice preventing agent, excellent snow and ice preventing properties can be imparted to the surface of the object to be treated. The snow and ice prevention agent may be used to form a snow and ice prevention part on the surface to be processed of the object. The snow and ice prevention part formed from the snow and ice prevention agent has excellent snow and ice prevention properties and also has excellent adhesion to the surface to be processed. The snow / ice prevention unit is, for example, at least a film-shaped snow / ice prevention unit (hereinafter, also referred to as “snow / ice prevention film”) and a particulate snow / ice prevention unit (hereinafter, also referred to as “snow / ice prevention particles”). It may be a form including one. That is, the snow and ice prevention agent according to the present embodiment may form a snow and ice prevention film and / or snow and ice prevention particles on the surface to be processed of the object.
 例えば、特許文献1のようなフッ素系材料から形成される着雪氷防止膜は、対象との密着性が低いことから、このような着雪氷防止膜の密着性を高めるためには、被処理面に密着層(例えば、酸化被膜及び水酸基を有する被膜)を形成する必要があると考えられる。一方で、本実施形態の着雪氷防止剤は、対象との密着性が高いことから、このような密着層は必ずしも必要ではない。また、本実施形態の着雪氷防止剤は、密着性及び接着性に優れることから、着雪氷防止機能を長期間維持することができる。 For example, since a snow and ice protection film formed of a fluorine-based material as in Patent Document 1 has low adhesion to an object, in order to enhance the adhesion of such a snow and ice protection film, the surface to be treated is required. It is considered necessary to form an adhesion layer (for example, an oxide film and a film having a hydroxyl group) on the substrate. On the other hand, since the snow and ice prevention agent of the present embodiment has high adhesion to an object, such an adhesion layer is not necessarily required. Further, the snow and ice prevention agent of the present embodiment can maintain the snow and ice prevention function for a long period of time because of its excellent adhesion and adhesion.
 さらに、本実施形態の着雪氷防止剤から形成される着雪氷防止部は、親水性の汚れが付着し難く、かつ、このような汚れを除去し易いと考えられる。したがって、上記着雪氷防止剤は、親水性の汚れが付着し易い用途への適用も容易であると考えられる。 Furthermore, it is considered that the snow and ice prevention part formed from the snow and ice prevention agent of the present embodiment does not easily adhere to hydrophilic stains and easily removes such stains. Therefore, it is considered that the snow and ice prevention agent can be easily applied to applications to which hydrophilic dirt is likely to adhere.
 従来のフッ素系材料を用いた着雪氷防止膜は、接着性及び耐薬品性はあるものの、膜硬度が低く柔らかいため傷がつき易いと考えられる。また、このような着雪氷防止膜は、硬化させるための温度が数百度以上であるために、適用する箇所及び基材が限定されると考えられる。一方で、本実施形態の着雪氷防止剤から形成される着雪氷防止部は、接着性及び耐薬品性に優れると共に、傷がつき難く、適用する箇所及び基材が限定されにくいと考えられる。 雪 The snow and ice prevention film using the conventional fluorine-based material has adhesiveness and chemical resistance, but is considered to be easily scratched due to low film hardness and softness. In addition, since the temperature for curing such a snow and ice prevention film is several hundred degrees or more, it is considered that the application site and the base material are limited. On the other hand, it is considered that the snow and ice prevention part formed from the snow and ice prevention agent of the present embodiment is excellent in adhesiveness and chemical resistance, is hardly damaged, and is hardly limited in application places and base materials.
 ここで、本発明者らは、本実施形態の着雪氷防止剤が優れた着雪氷防止性を発揮する理由を、以下のように推測している。本実施形態の着雪氷防止剤は、ポリシロキサン化合物群を含有していることから、基材表面を疎水化することができると考えられる。滑雪が開始する条件として雪と基材の界面に水膜が生じることが考えられるが、疎水化された基材表面では水膜が生じた後の水の滑り性が高いため、着氷力が低減すると推定される。以上により、優れた着雪氷防止性を発揮すると考えられる。 Here, the present inventors speculate as follows why the snow and ice prevention agent of the present embodiment exhibits excellent snow and ice prevention properties. Since the snow and ice prevention agent of this embodiment contains a polysiloxane compound group, it is considered that the base material surface can be made hydrophobic. It is conceivable that a water film is formed at the interface between the snow and the base material as a condition for the start of snow sliding.However, on the surface of the hydrophobized base material, the slipperiness of water after the formation of the water film is high, so that the icing power is low. It is estimated to decrease. From the above, it is considered that excellent snow and ice prevention properties are exhibited.
 加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基(加水分解性の官能基に該当する官能基を除く)としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、あるいは2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、アルコキシ基、シラノール基、及びヒドロキシアルキル基は、着雪氷防止剤の相容性を向上することができ、層分離を抑制することができる。また、ポリシロキサン化合物の反応性向上の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は、例えば、1~6であってもよい。 ア ル コ キ シ Examples of the hydrolyzable functional group include an alkoxy group. Examples of the condensable functional group (excluding the functional group corresponding to the hydrolyzable functional group) include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group. The hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group. The polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group (hydrolyzable functional group or condensable functional group) different from the hydrolyzable functional group or the condensable functional group. (A functional group that does not correspond to a functional group). Examples of the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group. The epoxy group may be included in an epoxy group-containing group such as a glycidoxy group. These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more. Among these functional groups and reactive groups, an alkoxy group, a silanol group, and a hydroxyalkyl group can improve the compatibility of the snow and ice inhibitor and suppress layer separation. Further, from the viewpoint of improving the reactivity of the polysiloxane compound, the alkoxy group and the hydroxyalkyl group may have, for example, 1 to 6 carbon atoms.
 ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有する化合物が挙げられる。 Examples of the polysiloxane compound having a hydroxyalkyl group include a compound having a structure represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。 In the formula (A), R 1a represents a hydroxyalkyl group, R 2a represents an alkylene group, R 3a and R 4a each independently represent an alkyl group or an aryl group, and n represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In the formula (A), two R 1a may be the same or different, and similarly, two R 2a may be the same or different. In formula (A), two or more R 3a may be the same or different, and similarly, two or more R 4a may be the same or different.
 上記構造のポリシロキサン化合物を含有する着雪氷防止剤を用いることにより、優れた着雪氷防止性と密着性とを更に得易くなる。このような観点から、式(A)中、R1aとしては、炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としては、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては、炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(A)中、nは、例えば、2~30であってもよく、5~20であってもよい。 By using the snow and ice inhibitor containing the polysiloxane compound having the above structure, it becomes easier to obtain excellent snow and ice prevention and adhesion. From such a viewpoint, in the formula (A), as R 1a , a hydroxyalkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the hydroxyalkyl group, a hydroxyethyl group and a hydroxypropyl group can be mentioned. . In the formula (A), R 2a includes an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group and a propylene group. In the formula (A), R 3a and R 4a each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like. In the formula (A), n may be, for example, 2 to 30, or 5 to 20.
 上記式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、XF42-C5277、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。 As the polysiloxane compound having the structure represented by the above formula (A), commercially available products can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of which are described below) Shin-Etsu Chemical Co., Ltd.), compounds such as XF42-B0970, XF42-C5277, Fluid {OFOH} 702-4% (all manufactured by Momentive).
 アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有する化合物が挙げられる。 {Examples of the polysiloxane compound having an alkoxy group include a compound having a structure represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。 In the formula (B), R 1b represents an alkyl group, an alkoxy group or an aryl group, R 2b and R 3b each independently represent an alkoxy group, and R 4b and R 5b each independently represent an alkyl group or an aryl group. , M represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In the formula (B), two R 1b may be the same or different, and two R 2b may be the same or different. 3b may be the same or different. In the formula (B), when m is an integer of 2 or more, two or more R 4b may be the same or different, and similarly, two or more R 5b may be the same. May also be different.
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有する着雪氷防止剤を用いることにより、優れた着雪氷防止性と密着性とを更に得易くなる。このような観点から、式(B)中、R1bとしては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としては、メチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしては、それぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。式(B)中、mは、例えば、2~30であってもよく、5~20であってもよい。 By using a snow- and ice-protecting agent containing the polysiloxane compound having the above structure or a hydrolysis product thereof, it becomes easier to obtain excellent snow-and-ice protection and adhesion. From such a viewpoint, in the formula (B), as R 1b , an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and the like can be mentioned, and the alkyl group or the alkoxy group is methyl. Group, methoxy group, ethoxy group and the like. In the formula (B), R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group and an ethoxy group. In the formula (B), R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like. In the formula (B), m may be, for example, 2 to 30, or 5 to 20.
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。 The polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A-2000-26609 and JP-A-2012-233110. Can be.
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物は液状組成物中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。 Since the alkoxy group hydrolyzes, the alkoxy group-containing polysiloxane compound may be present as a hydrolysis product in the liquid composition, and the alkoxy group-containing polysiloxane compound and its hydrolysis product May be mixed. In the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。 These polysiloxane compounds having a hydrolyzable functional group or a condensable functional group, and hydrolysis products of a polysiloxane compound having a hydrolyzable functional group may be used alone or as a mixture of two or more. May be used.
 本実施形態の着雪氷防止剤は、着雪氷防止性と密着性とが更に向上する観点から、シリカ粒子を更に含有していてもよい。すなわち、液状組成物は、シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有していてもよい。このような着雪氷防止剤において、着雪氷防止性が向上する理由としては、着雪氷防止剤がシリカ粒子を含有すると、着雪氷防止部を構成する化合物において、後述のQ+T:Dを制御し易く、かつ、上記化合物における水酸基の量を低減し易いこと等が考えられる。 雪 The snow and ice inhibitor of the present embodiment may further contain silica particles from the viewpoint of further improving the snow and ice prevention and the adhesion. That is, the liquid composition comprises silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. And at least one selected from the group. The reason why the snow / ice preventing property is improved in such a snow / ice preventing agent is that when the snow / ice preventing agent contains silica particles, it is easy to control Q + T: D described later in the compound constituting the snow / ice preventing part. Further, it is considered that the amount of the hydroxyl group in the compound is easily reduced.
 シリカ粒子としては、特に制限なく用いることができ、例えば非晶質シリカ粒子が挙げられる。非晶質シリカ粒子としては、例えば、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子が挙げられる。これらのうち、コロイダルシリカ粒子は、単分散性が高く、着雪氷防止剤中での凝集を抑制し易い。 The silica particles can be used without any particular limitation, and include, for example, amorphous silica particles. Examples of the amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles. Among these, the colloidal silica particles have high monodispersibility and easily suppress aggregation in a snow and ice prevention agent.
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、着雪氷防止剤中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な硬度の着雪氷防止膜及び/又は着雪氷防止粒子を得易くなり、熱衝撃及び傷に対する耐久性が向上し易くなる観点から、例えば、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、透明な着雪氷防止膜及び/又は着雪氷防止粒子を得易くなる観点から、例えば、200nm以下であってもよく、150nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、例えば、1~200nmであってもよく、5~150nmであってもよく、20~100nmであってもよい。また、シリカ粒子は、中空構造、多孔質構造等を有する粒子であってもよい。 形状 The shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cocoon shape, and an association type. Among them, the use of spherical particles as the silica particles makes it easier to suppress aggregation in the snow and ice prevention agent. The average primary particle diameter of the silica particles is, for example, 1 nm or more from the viewpoint that it is easy to obtain a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness, and it is easy to improve durability against thermal shock and scratches. May be 5 nm or more, or may be 20 nm or more. The average primary particle diameter of the silica particles is, for example, 200 nm or less, 150 nm or less, or 100 nm or less from the viewpoint of easily obtaining a transparent snow and ice prevention film and / or snow and ice prevention particles. There may be. From these viewpoints, the average primary particle diameter of the silica particles may be, for example, 1 to 200 nm, 5 to 150 nm, or 20 to 100 nm. Further, the silica particles may be particles having a hollow structure, a porous structure, or the like.
 なお、シリカ粒子の平均粒子径は、原料から測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度が5~40質量%のコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図1に示すような形状であった場合、シリカ粒子Pに外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。 平均 The average particle size of the silica particles can be measured from the raw material. For example, the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, when colloidal silica particles having a solid content of 5 to 40% by mass and usually dispersed in water are taken as an example, a chip obtained by cutting a wafer with a pattern wiring into 2 cm square is added to a dispersion of colloidal silica particles. After soaking for about 30 seconds, the chip is rinsed with pure water for about 30 seconds and dried with nitrogen blow. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000, and an image is taken. 20 silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of the particles is defined as the average particle diameter. At this time, when the selected silica particle has a shape as shown in FIG. 1, a rectangle (circumscribed rectangle L) circumscribing the silica particle P and arranged so that the long side is the longest is led. Then, the long side of the circumscribed rectangle L is set to X, the short side is set to Y, and (X + Y) / 2 is used to calculate the biaxial average primary particle diameter, which is defined as the particle diameter of the particle.
 上記シリカ粒子の1g当りのシラノール基数は、良好な反応性を有すると共に、低温、短時間で優れた着雪氷防止性と密着性とを付与し易い観点から、例えば、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。上記シリカ粒子の1g当りのシラノール基数は、着雪氷防止処理時の急なゲル化を抑制し易く、均質な着雪氷防止膜及び/又は着雪氷防止粒子を得易い観点から、例えば、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。これらの観点から、上記シリカ粒子の1g当りのシラノール基数は、例えば、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。 The number of silanol groups per 1 g of the silica particles is, for example, 10 × 10 18 / g from the viewpoint of having good reactivity and easily imparting excellent snow and ice prevention properties and adhesion at a low temperature in a short time. Or more, may be 50 × 10 18 / g or more, or may be 100 × 10 18 / g or more. The number of silanol groups per gram of the silica particles is, for example, 1000 × 10 3 from the viewpoint that it is easy to suppress abrupt gelation during the snow and ice prevention treatment and to easily obtain a uniform snow and ice prevention film and / or snow and ice prevention particles. The number may be 18 / g or less, 800 × 10 18 / g or less, or 700 × 10 18 / g or less. From these viewpoints, the number of silanol groups per 1 g of the silica particles may be, for example, 10 × 10 18 to 1000 × 10 18 / g, or 50 × 10 18 to 800 × 10 18 / g. And may be 100 × 10 18 to 700 × 10 18 / g.
 シリカ粒子の含有量は、着雪氷防止剤の反応性が向上する観点、及び、低温、短時間で優れた着雪氷防止性と密着性とを付与し易い観点から、液状組成物の総量100質量部に対し、例えば、0.01質量部以上であってもよく、0.1質量部以上であってもよく、0.5質量部以上であってもよい。上記シリカ粒子の含有量は、適度な硬度の着雪氷防止膜及び/又は着雪氷防止粒子が得られ易く、熱衝撃及び傷に対する耐久性が向上し易い観点から、液状組成物の総量100質量部に対し、例えば、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。これらの観点から、上記シリカ粒子の含有量は、液状組成物の総量100質量部に対し、例えば、0.01~30質量部であってもよく、0.1~20質量部であってもよく、0.5~10質量部であってもよい。 The content of the silica particles is, from the viewpoint of improving the reactivity of the snow and ice inhibitor, and from the viewpoint of easily imparting excellent snow and ice prevention properties and adhesion in a short time at a low temperature, the total amount of the liquid composition is 100 mass Per part, for example, it may be 0.01 part by mass or more, 0.1 part by mass or more, or 0.5 part by mass or more. The content of the silica particles is preferably 100 parts by mass in terms of the total amount of the liquid composition from the viewpoint that a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved. On the other hand, for example, it may be 30 parts by mass or less, 20 parts by mass or less, or 10 parts by mass or less. From these viewpoints, the content of the silica particles may be, for example, 0.01 to 30 parts by mass or 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition. It may be 0.5 to 10 parts by mass.
 液状組成物は、例えば、着雪氷防止性と密着性とを更に向上させる観点から、ポリシロキサン化合物以外の(ポリシロキサン化合物を除く)ケイ素化合物を更に含んでいてもよい。すなわち、液状組成物は、加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、加水分解性の官能基を有するシランモノマーの加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「シランモノマー群」という)を更に含有していてもよい。シランモノマーにおける分子内のケイ素数は1~6とすることができる。 The liquid composition may further contain a silicon compound (excluding the polysiloxane compound) other than the polysiloxane compound, for example, from the viewpoint of further improving the snow-ice protection property and the adhesion. That is, the liquid composition is a silane monomer having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of a hydrolysis product of a silane monomer having a hydrolyzable functional group. (Hereinafter, sometimes referred to as “silane monomer group”). The number of silicon atoms in the molecule of the silane monomer can be 1 to 6.
 加水分解性の官能基を有するシランモノマーとしては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドの中でも、加水分解性の官能基の数が3個以下のものは耐水性をより向上することができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン等が挙げられる。 シ ラ ン The silane monomer having a hydrolyzable functional group is not particularly limited, but examples include an alkyl silicon alkoxide. Among the alkyl silicon alkoxides, those having three or less hydrolyzable functional groups can further improve the water resistance. Examples of such an alkyl silicon alkoxide include monoalkyl trialkoxysilane, monoalkyl dialkoxy silane, dialkyl dialkoxy silane, monoalkyl monoalkoxy silane, dialkyl monoalkoxy silane, and trialkyl monoalkoxy silane. Examples thereof include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
 縮合性の官能基を有するシランモノマーとしては、特に限定されないが、例えば、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。 The silane monomer having a condensable functional group is not particularly limited. Examples thereof include silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, Hexylsilanetriol, octylsilanetriol, decylsilanetriol, trifluoropropylsilanetriol and the like can be mentioned.
 加水分解性の官能基又は縮合性の官能基を有するシランモノマーは、加水分解性の官能基及び縮合性の官能基とは異なる、上述の反応性基を更に有していてもよい。 (4) The silane monomer having a hydrolyzable functional group or a condensable functional group may further have the above-described reactive group different from the hydrolyzable functional group and the condensable functional group.
 加水分解性の官能基の数が3個以下であり、反応性基を有するシランモノマーとして、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。 The number of hydrolyzable functional groups is 3 or less, and as a silane monomer having a reactive group, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
 また、縮合性の官能基を有し、反応性基を有するシランモノマーとして、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。 Further, as a silane monomer having a condensable functional group and having a reactive group, vinyl silane triol, 3-glycidoxypropyl silane triol, 3-glycidoxy propyl methyl silane diol, 3-methacryloxy propyl silane triol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
 また、分子末端の加水分解性の官能基の数が3個以下のシランモノマーであるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。 Also, use is made of silane monomers having three or less hydrolyzable functional groups at the molecular terminals, such as bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, and vinyltrimethoxysilane. Can be.
 これら、加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、加水分解性の官能基を有するシランモノマーの加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。 These silane monomers having a hydrolyzable functional group or a condensable functional group, and the hydrolysis products of the silane monomers having a hydrolyzable functional group may be used alone or as a mixture of two or more. You may.
 なお、アルコキシ基等の加水分解性の官能基は加水分解するため、加水分解性の官能基を有するシランモノマーは液状組成物中にて加水分解生成物として存在する可能性があり、加水分解性の官能基を有するシランモノマーとその加水分解生成物とは混在していてもよい。また、加水分解性の官能基を有するシランモノマーにおいて、分子中の加水分解性の官能基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。 Since a hydrolyzable functional group such as an alkoxy group hydrolyzes, a silane monomer having a hydrolyzable functional group may be present as a hydrolysis product in the liquid composition, The silane monomer having the above functional group and its hydrolysis product may be mixed. In the silane monomer having a hydrolyzable functional group, all of the hydrolyzable functional groups in the molecule may be hydrolyzed or partially hydrolyzed.
 ポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、着雪氷防止性が更に向上し易い観点から、液状組成物の総量100質量部に対し、例えば、0.01質量部以上であってもよく、0.1質量部以上であってもよく、0.5質量部以上であってもよい。ポリシロキサン化合物群の前記含有量は、適度な硬度の着雪氷防止膜及び/又は着雪氷防止粒子が得られ易く、熱衝撃及び傷に対する耐久性が向上し易い観点から、液状組成物の総量100質量部に対し、例えば、50質量部以下であってもよく、30質量部以下であってもよく、10質量部以下であってもよい。これらの観点から、ポリシロキサン化合物群の前記含有量は、液状組成物の総量100質量部に対し、例えば、0.01~50質量部であってもよく、0.1~30質量部であってもよく、0.5~10質量部であってもよい。 Content of polysiloxane compound group (content of polysiloxane compound having hydrolyzable functional group or condensable functional group, and content of hydrolysis product of polysiloxane compound having hydrolyzable functional group) Of the liquid composition may be, for example, 0.01 parts by mass or more, or 0.1 parts by mass or more based on 100 parts by mass of the total amount of the liquid composition, from the viewpoint of further improving the snow and ice prevention properties. And may be 0.5 parts by mass or more. The content of the polysiloxane compound group is preferably 100% in terms of the total amount of the liquid composition, from the viewpoint that a snow- and ice-preventing film and / or snow-and-ice prevention particles having appropriate hardness are easily obtained and the durability against thermal shock and scratches is easily improved. For example, the amount may be 50 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to parts by mass. From these viewpoints, the content of the polysiloxane compound group may be, for example, 0.01 to 50 parts by mass, or 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition. And 0.5 to 10 parts by mass.
 本実施形態の着雪氷防止剤が、液状組成物中にシランモノマー群を更に含有する場合、ポリシロキサン化合物群の含有量と、シランモノマー群の含有量(加水分解性の官能基又は縮合性の官能基を有するシランモノマーの含有量、及び、加水分解性の官能基を有するシランモノマーの加水分解生成物の含有量の総和)との比は、着雪氷防止性が更に向上し易い観点及び良好な相溶性が得られ易い観点から、例えば、1:0.1以上であってもよく、1:1以上であってもよい。これらの化合物の含有量の比は、適度な硬度の着雪氷防止膜及び/又は着雪氷防止粒子が得られ易く、熱衝撃及び傷に対する耐久性が向上し易い観点から、例えば、1:10以下であってもよく、1:5以下であってもよい。これらの観点から、ポリシロキサン化合物群の含有量と、シランモノマー群の含有量との比は、例えば、1:0.1~1:10であってもよく、1:1~1:5であってもよい。 When the snow and ice protection agent of the present embodiment further contains a silane monomer group in the liquid composition, the content of the polysiloxane compound group and the content of the silane monomer group (hydrolyzable functional group or condensable The ratio of the content of the silane monomer having a functional group and the total content of the hydrolysis products of the silane monomer having a hydrolyzable functional group) is favorable from the viewpoint that the snow-and-ice prevention property is further improved. From the viewpoint that easy compatibility is easily obtained, for example, the ratio may be 1: 0.1 or more, or 1: 1 or more. The ratio of the content of these compounds is, for example, 1:10 or less from the viewpoint that a snow and ice prevention film and / or snow and ice prevention particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved. And may be 1: 5 or less. From these viewpoints, the ratio of the content of the polysiloxane compound group to the content of the silane monomer group may be, for example, from 1: 0.1 to 1:10, or from 1: 1 to 1: 5. There may be.
 ポリシロキサン化合物群及びシランモノマー群の含有量の総和は、着雪氷防止性が更に向上し易い観点から、液状組成物の総量100質量部に対し、例えば、0.01質量部以上であってもよく、0.1質量部以上であってもよく、0.5質量部以上であってもよい。当該含有量の総和は、適度な硬度の着雪氷防止膜及び/又は着雪氷防止粒子が得られ易く、熱衝撃及び傷に対する耐久性が向上し易い観点から、液状組成物の総量100質量部に対し、例えば、60質量部以下であってもよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。これらの観点から、ポリシロキサン化合物群及びシランモノマー群の含有量の総和は、液状組成物の総量100質量部に対し、例えば、0.01~60質量部であってもよく、0.01~30質量部であってもよく、0.1~20質量部であってもよく、0.5~10質量部であってもよい。この際、ポリシロキサン化合物群及びシランモノマー群の含有量の比は上記範囲内とすることができる。 The sum of the contents of the polysiloxane compound group and the silane monomer group is, from the viewpoint of further improving the snow and ice prevention properties, based on 100 parts by mass of the total amount of the liquid composition, for example, even 0.01 parts by mass or more. It may be 0.1 parts by mass or more, or 0.5 parts by mass or more. The sum of the contents is preferably 100 parts by mass of the total amount of the liquid composition from the viewpoint that a snow- and ice-preventing film and / or snow and ice-preventing particles having appropriate hardness are easily obtained and durability against thermal shock and scratches is easily improved. On the other hand, for example, it may be 60 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, or 10 parts by mass or less. From these viewpoints, the total content of the polysiloxane compound group and the silane monomer group may be, for example, 0.01 to 60 parts by mass, or 0.01 to 60 parts by mass with respect to 100 parts by mass of the total amount of the liquid composition. The amount may be 30 parts by mass, 0.1 to 20 parts by mass, or 0.5 to 10 parts by mass. At this time, the ratio of the content of the polysiloxane compound group to the content of the silane monomer group can be within the above range.
 本実施形態の着雪氷防止剤は、着雪氷防止性が向上する観点から、エアロゲル粒子を含んでいてもよい。すなわち、液状組成物は、エアロゲル粒子と、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有していてもよい。エアロゲルは、ナノメートルサイズの微細孔を有する多孔質体である。エアロゲル粒子は、その表面の水酸基が少ないこと、微細孔に水が入り込み難いことから、優れた着雪氷防止性を発揮すると考えられる。 雪 The snow and ice prevention agent of the present embodiment may contain airgel particles from the viewpoint of improving snow and ice prevention. That is, the liquid composition comprises airgel particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. And at least one selected from the group. Airgel is a porous body having nanometer-sized micropores. The airgel particles are considered to exhibit excellent snow and ice prevention properties because the surface has few hydroxyl groups and water hardly enters the micropores.
 エアロゲル粒子としては、従来公知のエアロゲル粒子を特に制限なく用いることができるが、液状組成物中に含まれるポリシロキサン化合物、シランモノマー等を原料として形成されるエアロゲル粒子であってもよい。なお、そのようなエアロゲル(粒子)は、ポリシロキサン化合物等を含有するゾルの縮合物である湿潤ゲルを乾燥することで得ることができる。 As the airgel particles, conventionally known airgel particles can be used without any particular limitation, and airgel particles formed using a polysiloxane compound, a silane monomer, or the like contained in the liquid composition as a raw material may be used. Note that such aerogels (particles) can be obtained by drying a wet gel that is a condensate of a sol containing a polysiloxane compound or the like.
 エアロゲル粒子の平均一次粒子径は、良好な着雪氷防止性が得られ易いという観点から、例えば、0.1~10000nmであってもよく、1~1000nmであってもよく、2~100nmであってもよい。 The average primary particle size of the airgel particles is, for example, 0.1 to 10000 nm, 1 to 1000 nm, or 2 to 100 nm from the viewpoint that good snow and ice prevention properties are easily obtained. You may.
 エアロゲル粒子の含有量は、良好な分散性が得られ易いという観点から、液状組成物の総量100質量部に対し、例えば、0.1~10質量部であってもよく、0.5~5質量部であってもよく、0.8~3質量部であってもよい。 The content of the airgel particles may be, for example, 0.1 to 10 parts by mass, or 0.5 to 5 parts by mass based on 100 parts by mass of the total amount of the liquid composition, from the viewpoint that good dispersibility is easily obtained. It may be parts by mass, or 0.8 to 3 parts by mass.
 他の実施形態に係る着雪氷防止剤は、着雪氷防止成分を含む態様であってもよい。着雪氷防止成分は、例えば、これまで述べてきた液状組成物の縮合物であってもよい。本実施形態に係る着雪氷防止成分の形状は、例えば、粒子状であってもよい。以下、第二~第四の態様として、着雪氷防止成分を含む着雪氷防止剤の具体的態様について説明する。 雪 The snow and ice prevention agent according to another embodiment may be a mode including a snow and ice prevention component. The snow and ice prevention component may be, for example, a condensate of the liquid composition described above. The shape of the snow and ice prevention component according to the present embodiment may be, for example, particulate. Hereinafter, specific embodiments of the snow and ice prevention agent containing the snow and ice prevention component will be described as the second to fourth embodiments.
(第二の態様)
 本実施形態の着雪氷防止剤は、シロキサン結合(Si-O-Si)を含む主鎖を有するポリシロキサンを含有する着雪氷防止成分を含むことかできる。当該着雪氷防止成分は、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。
(Second aspect)
The snow and ice prevention agent of the present embodiment may include a snow and ice prevention component containing a polysiloxane having a main chain containing a siloxane bond (Si—O—Si). The snow and ice prevention component can have the following M unit, D unit, T unit or Q unit as a structural unit.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。 中 In the above formula, R represents an atom bonded to a silicon atom (such as a hydrogen atom) or an atomic group (such as an alkyl group). The M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom. The D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms. The T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms. The Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
 本実施形態の着雪氷防止剤は、DD/MAS法を用いて測定された固体29Si-NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを以下の通り規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比Q+T:Dが1:0.01~1:0.70である着雪氷防止成分、を含有していてもよい。 The snow and ice inhibitor of the present embodiment is derived from Q and T when the silicon-containing bonding units Q, T and D are defined as follows in a solid-state 29 Si-NMR spectrum measured by the DD / MAS method. And a ratio of the signal area derived from D to the signal area derived from D, Q + T: D, in a ratio of 1: 0.01 to 1: 0.70.
Q:1個のケイ素原子に結合した酸素原子が4個の含ケイ素結合単位。
T:1個のケイ素原子に結合した酸素原子が3個と水素原子又は1価の有機基が1個の含ケイ素結合単位。
D:1個のケイ素原子に結合した酸素原子が2個と水素原子又は1価の有機基が2個の含ケイ素結合単位。
Q: a silicon-containing bonding unit having four oxygen atoms bonded to one silicon atom.
T: a silicon-containing bonding unit in which three oxygen atoms are bonded to one silicon atom and one hydrogen atom or a monovalent organic group is one.
D: a silicon-containing bonding unit having two oxygen atoms bonded to one silicon atom and two hydrogen atoms or monovalent organic groups.
 ただし、前記有機基とはケイ素原子に結合する原子が炭素原子である1価の有機基である。 However, the organic group is a monovalent organic group in which an atom bonded to a silicon atom is a carbon atom.
 このような着雪氷防止剤は、着雪氷防止性と密着性とに優れる。 Such a snow and ice protection agent is excellent in snow and ice prevention and adhesion.
 Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比Q+T:Dは、例えば、1:0.01~1:0.50であってもよく、1:0.01~1:0.30であってもよく、1:0.02~1:0.20であってもよく、1:0.03~1:0.10であってもよい。シグナル面積比を1:0.01以上とすることにより、より優れた着雪氷防止性を得易い傾向があり、1:0.50以下とすることにより、より密着性を得易い傾向がある。 The ratio of the signal area derived from Q and T to the signal area derived from D, Q + T: D, may be, for example, from 1: 0.01 to 1: 0.50, and from 1: 0.01 to 1 : 0.30, 1: 0.02 to 1: 0.20, or 1: 0.03 to 1: 0.10. When the signal area ratio is 1: 0.01 or more, more excellent snow and ice prevention properties tend to be easily obtained, and when the signal area ratio is 1: 0.50 or less, adhesion tends to be more easily obtained.
 下記Q、T及びDにおける「酸素原子」とは、主として2個のケイ素原子間を結合する酸素原子であるが、例えばケイ素原子に結合した水酸基が有する酸素原子である場合も考えられる。「有機基」とはケイ素原子に結合する原子が炭素原子である1価の有機基であり、例えば、炭素数が1~10の非置換又は置換の1価の有機基が挙げられる。非置換の1価の有機基としては、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基等の炭化水素基が挙げられる。置換の1価の有機基としては、これら炭化水素基の水素原子がハロゲン原子、所定の官能基、所定の官能基含有有機基等で置換された炭化水素基(置換有機基)、あるいは特にシクロアルキル基、アリール基、アラルキル基等の環の水素原子がアルキル基で置換された炭化水素基、などが挙げられる。上記ハロゲン原子としては、塩素原子、フッ素原子等(すなわち、クロロアルキル基、ポリフルオロアルキル基等のハロゲン原子置換有機基となる)が挙げられる。上記官能基としては、水酸基、メルカプト基、カルボキシル基、エポキシ基、アミノ基、シアノ基、アクリロイルオキシ基、メタクリロイルオキシ基等が挙げられる。上記官能基含有有機基としては、アルコキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、グリシジル基、エポキシシクロヘキシル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、N-アミノアルキル置換アミノアルキル基等が挙げられる。 「The“ oxygen atom ”in the following Q, T and D is an oxygen atom mainly bonding between two silicon atoms, but for example, an oxygen atom of a hydroxyl group bonded to a silicon atom may be considered. The “organic group” is a monovalent organic group in which the atom bonded to the silicon atom is a carbon atom, and examples include an unsubstituted or substituted monovalent organic group having 1 to 10 carbon atoms. Examples of the unsubstituted monovalent organic group include hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and an aralkyl group. Examples of the substituted monovalent organic group include a hydrocarbon group (substituted organic group) in which a hydrogen atom of these hydrocarbon groups is substituted with a halogen atom, a predetermined functional group, a predetermined functional group-containing organic group, or the like. And hydrocarbon groups in which ring hydrogen atoms such as an alkyl group, an aryl group, and an aralkyl group are substituted with an alkyl group. Examples of the halogen atom include a chlorine atom, a fluorine atom and the like (that is, a halogen atom-substituted organic group such as a chloroalkyl group and a polyfluoroalkyl group). Examples of the functional group include a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an amino group, a cyano group, an acryloyloxy group, and a methacryloyloxy group. Examples of the functional group-containing organic group include an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a glycidyl group, an epoxycyclohexyl group, an alkylamino group, a dialkylamino group, an arylamino group, and an N-aminoalkyl-substituted aminoalkyl group. Is mentioned.
 シグナル面積比は、固体29Si-NMRスペクトルにより確認することができる。一般的に固体29Si-NMRの測定手法は特に限定されず、例えば、CP/MAS法とDD/MAS法が挙げられるが、本実施形態においては定量性の点からDD/MAS法を採用している。 The signal area ratio can be confirmed by a solid-state 29 Si-NMR spectrum. In general, the method of measuring solid 29 Si-NMR is not particularly limited, and includes, for example, the CP / MAS method and the DD / MAS method. In the present embodiment, the DD / MAS method is adopted from the viewpoint of quantitativeness. ing.
 固体29Si-NMRスペクトルにおける含ケイ素結合単位Q、T及びDの化学シフトは、Q単位:-90~-120ppm、T単位:-45~-80ppm、D単位:0~-40ppmの範囲にそれぞれ観察されるため、含ケイ素結合単位Q、T及びDのシグナルを分離し、各単位に由来するシグナル面積を計算することが可能である。なお、スペクトル解析に際しては、解析精度向上の点から、Window関数として指数関数を採用し、なおかつLine Broadening係数を0~50Hzの範囲に設定することができる。 The chemical shifts of the silicon-containing bonding units Q, T and D in the solid-state 29 Si-NMR spectrum are as follows: Q unit: -90 to -120 ppm, T unit: -45 to -80 ppm, D unit: 0 to -40 ppm, respectively. As observed, it is possible to separate the signals of the silicon-containing bonding units Q, T and D and calculate the signal area derived from each unit. At the time of spectrum analysis, an exponential function can be used as a Window function, and a Line Broadening coefficient can be set in a range of 0 to 50 Hz from the viewpoint of improving analysis accuracy.
 例えば、図2は、DD/MAS法を用いて測定された、着雪氷防止剤12に含有される着雪氷防止成分の固体29Si-NMRスペクトルを示す図である。図2が示すように、DD/MAS法を用いた固体29Si-NMRにより、含ケイ素結合単位Q、T及びDのシグナルの分離は可能である。 For example, FIG. 2 is a diagram showing a solid-state 29 Si-NMR spectrum of a snow and ice preventing component contained in the snow and ice preventing agent 12 measured using the DD / MAS method. As shown in FIG. 2, the signals of the silicon-containing bonding units Q, T and D can be separated by solid-state 29 Si-NMR using the DD / MAS method.
 ここで、図2を用いて、シグナル面積比の計算方法を説明する。例えば、図2においては、-90~-120ppmの化学シフト範囲において、シリカ由来のQ単位シグナルが観測されている。また、-45~-80ppmの化学シフト範囲において、ポリシロキサン化合物及びトリメトキシシラン反応物に由来するT単位のシグナルが観測されている。さらに、0~-40ppmの化学シフト範囲において、ポリシロキサン化合物及びジメチルジメトキシシラン反応物に由来するD単位のシグナルが観測されている。シグナル面積(積分値)は、それぞれの化学シフト範囲において、シグナルを積分することにより得られる。Q単位及びT単位の和のシグナル面積を1とした場合、図2のシグナル面積比Q+T:Dは、1:0.15と計算される。なお、シグナル面積は一般的なスペクトル解析ソフト(例えば、ブルカー社製のNMRソフトウェア「TopSpin」(TopSpinは登録商標))を用いて算出されるものである。 Here, a method for calculating the signal area ratio will be described with reference to FIG. For example, in FIG. 2, a Q unit signal derived from silica is observed in the chemical shift range of -90 to -120 ppm. Further, in the chemical shift range of -45 to -80 ppm, a signal of a T unit derived from the polysiloxane compound and the trimethoxysilane reactant is observed. Further, in the chemical shift range of 0 to -40 ppm, signals of D units derived from the polysiloxane compound and the dimethyldimethoxysilane reactant are observed. The signal area (integral value) is obtained by integrating the signal in each chemical shift range. Assuming that the signal area of the sum of the Q unit and the T unit is 1, the signal area ratio Q + T: D in FIG. 2 is calculated to be 1: 0.15. The signal area is calculated by using general spectrum analysis software (for example, NMR software “TopSpin” (TopSpin is a registered trademark) manufactured by Bruker).
(第三の態様)
 本実施形態の着雪氷防止剤は、下記式(1)で表される構造を有する化合物を含む着雪氷防止成分を含有していてもよい。本実施形態に係る着雪氷防止成分は、式(1)で表される構造を含む構造として、下記式(1a)で表される構造を有する化合物を含むことができる。例えば、上記式(A)で表される構造を有するポリシロキサン化合物を含む液状組成物の縮合物には、式(1)及び式(1a)で表される構造を骨格中に有する化合物を含む着雪氷防止成分が含まれ得る。
(Third aspect)
The snow and ice prevention agent of the present embodiment may contain a snow and ice prevention component including a compound having a structure represented by the following formula (1). The snow and ice prevention component according to the present embodiment can include a compound having a structure represented by the following formula (1a) as a structure including the structure represented by the formula (1). For example, the condensate of the liquid composition containing the polysiloxane compound having the structure represented by the formula (A) includes a compound having the structure represented by the formula (1) and the formula (1a) in the skeleton. A snow and ice protection component may be included.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。 In Formula (1) and Formula (1a), R 1 and R 2 each independently represent an alkyl group or an aryl group, and R 3 and R 4 each independently represent an alkylene group. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. In addition, examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. p represents an integer of 1 to 50. In formula (1a), two or more R 1 may be the same or different, and similarly, two or more R 2 may be the same or different. In the formula (1a), two R 3 may be the same or different, and similarly, two R 4 may be the same or different.
 着雪氷防止剤が、上記式(1)又は式(1a)で表される構造を有する化合物を含む着雪氷防止成分を含有すると、着雪氷防止性と密着性とが更に向上する。このような観点から、式(1)及び式(1a)中、R及びRとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしては、それぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。式(1a)中、例えば、pは2~30であってもよく、5~20であってもよい。 When the snow and ice prevention agent contains a snow and ice prevention component containing a compound having the structure represented by the above formula (1) or (1a), the snow and ice prevention and the adhesion are further improved. From such a viewpoint, in the formulas (1) and (1a), R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like. And a methyl group. In the formulas (1) and (1a), R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group, a propylene group, and the like. Is mentioned. In the formula (1a), for example, p may be 2 to 30, or 5 to 20.
(第四の態様)
 本実施形態の着雪氷防止剤は、支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が下記式(2)で表される化合物、を含む着雪氷防止成分、を含有していてもよい。着雪氷防止成分が、骨格中にこのようなラダー型構造を有する化合物を含むことにより、着雪氷防止性を更に向上させると共に、機械的強度を向上させることができる。すなわち、本実施形態の着雪氷防止剤は、ラダー型構造に起因する優れた着雪氷防止性及び耐久性を有している。例えば、上記式(B)で表される構造を有するポリシロキサン化合物を含む液状組成物の縮合物には、式(2)で表される橋かけ部を有するラダー型構造を骨格中有する化合物を含む着雪氷防止成分が含まれ得る。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、ラダー型構造は、化合物の一部に含まれる態様であってもよい。
(Fourth aspect)
The snow and ice prevention agent of the present embodiment has a ladder-type structure including a support portion and a bridge portion, and the bridge portion includes a snow and ice prevention component including a compound represented by the following formula (2). It may be. By including the compound having such a ladder-type structure in the skeleton, the snow-and-ice prevention component can further improve the snow-and-ice prevention properties and the mechanical strength. That is, the snow and ice prevention agent of the present embodiment has excellent snow and ice prevention and durability due to the ladder type structure. For example, as a condensate of a liquid composition containing a polysiloxane compound having a structure represented by the above formula (B), a compound having a ladder type structure having a crosslinked portion represented by the formula (2) in the skeleton is used. Including snow and ice protection components can be included. In the present embodiment, the “ladder type structure” refers to a structure having two struts and bridges connecting the struts (bridges) (having a so-called “ladder” form). It is. In this embodiment, the ladder structure may be an embodiment included in a part of the compound.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。 In the formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In addition, in Formula (2), when b is an integer of 2 or more, two or more R 5 may be the same or different, and similarly, two or more R 6 may be the same. May also be different.
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、着雪氷防止性、機械的強度及び耐久性を更に向上させる観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造が挙げられる。 The structure to be the support part and the chain length thereof, and the interval between the structures to be the bridge part are not particularly limited, but from the viewpoint of further improving snow and ice prevention, mechanical strength and durability, the ladder type structure is as follows. A ladder-type structure represented by the general formula (3) is given.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。 In the formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b represents 1 to 50 Indicates an integer. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In the formula (3), when b is an integer of 2 or more, two or more R 5 may be the same or different, and similarly, two or more R 6 may be the same. May also be different. Further, in the formula (3), when a is an integer of 2 or more, two or more R 7 may be the same or different, and similarly, when c is an integer of 2 or more, two or more R 7 R 8 may be the same or different.
 なお、更に優れた着雪氷防止性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に、例えば、6~2000であってもよく、10~1000であってもよい。また、式(2)及び(3)中、bは、例えば、2~30であってもよく、5~20であってもよい。 In addition, from the viewpoint of obtaining more excellent snow and ice prevention properties, R 5 , R 6 , R 7 and R 8 in the formulas (2) and (3) (where R 7 and R 8 are only used in the formula (3)) ) Independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like. Further, in the formula (3), a and c may each independently be, for example, 6 to 2000 or 10 to 1000. In the formulas (2) and (3), b may be, for example, 2 to 30, or 5 to 20.
 着雪氷防止剤が含有する着雪氷防止成分は、着雪氷防止性が向上する観点からエアロゲルから構成されていてもよい。エアロゲルは、空隙率が大きいため、エアロゲルから構成される着雪氷防止成分(並びにそれにより形成される着雪氷防止膜及び着雪氷防止粒子)は、屈折率が小さく、透明性が高いものであると考えられる。 雪 The snow / ice prevention component contained in the snow / ice prevention agent may be composed of aerogel from the viewpoint of improving the snow / ice prevention properties. Since airgel has a high porosity, the snow- and ice-preventing component composed of aerogel (and the snow and ice-preventing film and the snow-and-ice preventing particles formed thereby) have a small refractive index and high transparency. Conceivable.
<着雪氷防止構造体>
 次に、上記着雪氷防止剤を用いて得られる着雪氷防止構造体について説明する。本実施形態の着雪氷防止構造体は、被処理面に着雪氷防止部が形成されており、着雪氷防止部が、上記着雪氷防止剤の乾燥物を含む。なお、着雪氷防止剤が上記の液状組成物の縮合物を含む場合であれば、着雪氷防止部が形成される際に縮合反応がさらに進むと考えられ、また着雪氷防止剤が上記の液状組成物そのものである場合であれば、着雪氷防止部が形成される際に縮合反応が生じると考えられる。そのため、着雪氷防止部は着雪氷防止剤の反応物を含むと言うこともできる。
<Snow and ice prevention structure>
Next, a snow and ice prevention structure obtained by using the above snow and ice prevention agent will be described. In the snow and ice prevention structure of the present embodiment, a snow and ice prevention part is formed on the surface to be processed, and the snow and ice prevention part includes a dried product of the snow and ice prevention agent. If the snow and ice prevention agent contains a condensate of the above liquid composition, the condensation reaction is considered to proceed further when the snow and ice prevention part is formed, and the snow and ice prevention agent is not liquid. In the case of the composition itself, it is considered that a condensation reaction occurs when the snow and ice prevention part is formed. Therefore, it can be said that the snow and ice prevention unit includes a reactant of the snow and ice prevention agent.
 着雪氷防止部は、着雪氷防止膜及び着雪氷防止粒子の少なくとも一方を含む形態であってもよい。本実施形態の着雪氷防止構造体は、本実施形態の着雪氷防止剤の乾燥物を含む着雪氷防止部を有することにより、着雪氷防止性に優れると共に、被処理面と、着雪氷防止部との密着性にも優れる。また、このような着雪氷防止構造体は、耐久性にも優れる。本実施形態の着雪氷防止構造体は、例えば、上述した着雪氷防止剤により、被処理面に着雪氷防止膜及び/又は着雪氷防止粒子を形成してなるものであってもよい。ここで、被処理面に形成される着雪氷防止部(着雪氷防止粒子等)の好ましい形態は、例えば、上述の着雪氷防止成分と同様であってもよい。 雪 The snow and ice prevention unit may be in a form including at least one of a snow and ice prevention film and a snow and ice prevention particle. The snow and ice prevention structure according to the present embodiment has a snow and ice prevention portion containing a dried product of the snow and ice prevention agent of the present embodiment, and thus has excellent snow and ice prevention properties, and has a surface to be processed and a snow and ice prevention portion. Excellent adhesion with Further, such a snow and ice prevention structure has excellent durability. The snow and ice prevention structure of the present embodiment may be, for example, a snow and ice prevention film and / or snow and ice prevention particles formed on the surface to be processed by the above-described snow and ice prevention agent. Here, the preferred form of the snow and ice prevention part (snow and ice prevention particles and the like) formed on the surface to be processed may be, for example, the same as the snow and ice prevention component described above.
 被処理面に形成される着雪氷防止部(着雪氷防止膜、着雪氷防止粒子等)は、着雪氷防止性が更に向上する観点から、エアロゲルを含んでいてもよい。すなわち、例えば、被処理面に形成される着雪氷防止膜及び着雪氷防止粒子は、それぞれエアロゲルを含む膜及びエアロゲルを含む粒子であってもよい。 (4) The snow / ice prevention portions (snow / ice prevention films, snow / ice prevention particles, etc.) formed on the surface to be processed may include aerogel from the viewpoint of further improving the snow / ice prevention properties. That is, for example, the snow and ice prevention film and the snow and ice prevention particles formed on the surface to be processed may be a film containing aerogel and a particle containing aerogel, respectively.
 図3は、本発明の一実施形態に係る着雪氷防止構造体を模式的に表す図である。図3に示す着雪氷防止構造体100は、着雪氷防止処理対象物2の被処理面2aに、着雪氷防止膜1からなる着雪氷防止部10が形成された構造を有する。ここで、着雪氷防止部10は、本実施形態の着雪氷防止剤の乾燥物を含むものである。当該着雪氷防止構造体100は、被処理面2a上に、着雪氷防止膜1からなる着雪氷防止部10を備えることにより、着雪氷防止膜の化学的特性である着雪氷防止性が付与されたものになると考えられる。ここで、本態様における着雪氷防止部は、モノリシックな膜ではなく、微小の着雪氷防止粒子(着雪氷防止成分)が堆積して膜状になったものであると言うことができる。 FIG. 3 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention. The snow and ice prevention structure 100 shown in FIG. 3 has a structure in which a snow and ice prevention part 10 made of a snow and ice prevention film 1 is formed on a processing surface 2 a of a snow and ice prevention target 2. Here, the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment. The snow / ice prevention structure 100 includes a snow / ice prevention unit 10 made of the snow / ice prevention film 1 on the surface 2a to be processed, thereby imparting snow / ice prevention properties, which are chemical characteristics of the snow / ice prevention film. It is thought that it becomes. Here, it can be said that the snow and ice prevention unit in this embodiment is not a monolithic film but a film formed by depositing minute snow and ice prevention particles (snow and ice prevention components).
 図4は、本発明の一実施形態に係る着雪氷防止構造体を模式的に表す図である。図4に示す着雪氷防止構造体200は、着雪氷防止処理対象物2の被処理面2aに、着雪氷防止粒子3からなる着雪氷防止部10が形成された構造を有する。ここで、着雪氷防止部10は、本実施形態の着雪氷防止剤の乾燥物を含むものである。当該着雪氷防止構造体200は、被処理面2a上に、着雪氷防止粒子3からなる着雪氷防止部10を備えることにより、着雪氷防止粒子の物理的特性である微細凹凸形状によるロータス効果が得られ、高い着雪氷防止性が付与されたものになると考えられる。ここで、本態様における着雪氷防止部は、ある程度大きなサイズにまで成長した着雪氷防止粒子(着雪氷防止成分)が被処理面に付着して形成されたものと言うことができる。 FIG. 4 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention. The snow and ice prevention structure 200 shown in FIG. 4 has a structure in which a snow and ice prevention part 10 made of snow and ice prevention particles 3 is formed on a processing surface 2 a of a snow and ice prevention target 2. Here, the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment. Since the snow-and-ice prevention structure 200 includes the snow-and-ice prevention unit 10 made of the snow-and-ice prevention particles 3 on the surface 2a to be processed, the Lotus effect due to the fine unevenness which is a physical characteristic of the snow-and-ice prevention particles is reduced. It is considered to be obtained and provided with high snow and ice prevention properties. Here, it can be said that the snow and ice prevention part in the present embodiment is formed by snow and ice prevention particles (snow and ice prevention components) that have grown to a somewhat large size adhere to the surface to be processed.
 図5は、本発明の一実施形態に係る着雪氷防止構造体の模式的に表す図である。図5に示す着雪氷防止構造体300は、着雪氷防止処理対象物2の被処理面2aに、着雪氷防止膜1及び着雪氷防止粒子3を含む着雪氷防止部10が形成された構造を有する。ここで、着雪氷防止部10は、本実施形態の着雪氷防止剤の乾燥物を含むものである。当該着雪氷防止構造体300は、被処理面2a上に、着雪氷防止膜1及び着雪氷防止粒子3を含む着雪氷防止部10を備えることにより、着雪氷防止粒子の化学的特性である着雪氷防止性が付与されると共に、着雪氷防止粒子の物理的特性である微細凹凸形状によるロータス効果が得られることから、更に優れた着雪氷防止性が付与されたものになると考えられる。 FIG. 5 is a diagram schematically illustrating a snow and ice prevention structure according to an embodiment of the present invention. The snow / ice prevention structure 300 shown in FIG. 5 has a structure in which a snow / ice prevention part 10 including a snow / ice prevention film 1 and snow / ice prevention particles 3 is formed on a surface 2a to be processed of a snow / ice prevention object 2. Have. Here, the snow and ice prevention unit 10 includes a dried product of the snow and ice prevention agent of the present embodiment. The snow / ice prevention structure 300 includes the snow / ice prevention part 10 including the snow / ice prevention film 1 and the snow / ice prevention particles 3 on the surface 2a to be processed, thereby forming the snow and ice prevention particles having the chemical characteristics. It is considered that a more excellent snow and ice prevention property is provided because the snow and ice prevention property is imparted and the lotus effect is obtained by the fine irregularities which are the physical characteristics of the snow and ice prevention particles.
 上記のとおり、着雪氷防止剤から形成される粒子の大きさにより、種々の態様を有する着雪氷防止部を得ることができる。すなわち、着雪氷防止粒子が微小である場合には所定の厚さ堆積した膜状外観の態様、着雪氷防止粒子がある程度大きければ平面状に個別に並んだ粒子状外観の態様、両者が共存する場合には複合化外観の態様となって、それぞれ着雪氷防止部が形成される。 と お り As described above, it is possible to obtain snow / ice prevention portions having various aspects depending on the size of the particles formed from the snow / ice prevention agent. That is, when the snow and ice prevention particles are minute, the film-like appearance is deposited with a predetermined thickness, and when the snow and ice prevention particles are somewhat large, the particle appearance is individually arranged in a plane. In such a case, a snow- and ice-preventing portion is formed in a combined appearance.
 なお、このように着雪氷防止構造体の着雪氷防止部がいわゆるモノリシックなエアロゲル膜ではないという事情から、本実施形態の着雪氷防止構造体の熱伝導率は対象物と同等の熱伝導率を示す。例えば、熱伝導率1.0W/(m・K)程度の対象物を用いた本実施形態の着雪氷防止構造体の熱伝導率は、対象物と同等の1.0W/(m・K)程度である。 In addition, in view of the fact that the snow / ice prevention part of the snow / ice prevention structure is not a so-called monolithic airgel film, the heat conductivity of the snow / ice prevention structure of the present embodiment has the same thermal conductivity as that of the object. Show. For example, the thermal conductivity of the snow and ice prevention structure of this embodiment using an object having a thermal conductivity of about 1.0 W / (m · K) is 1.0 W / (m · K), which is equivalent to that of the object. It is about.
 本実施形態の着雪氷防止構造体において、着雪氷防止膜の厚さは、例えば、1~500nmであってもよく、20~200nmであってもよい。当該厚さを、1nm以上とすることにより、更に優れた着雪氷防止性を達成することができ、500nm以下とすることにより、更に優れた密着性を達成することができる。 に お い て In the snow / ice prevention structure of the present embodiment, the thickness of the snow / ice prevention film may be, for example, 1 to 500 nm or 20 to 200 nm. By setting the thickness to 1 nm or more, more excellent snow and ice prevention properties can be achieved, and by setting the thickness to 500 nm or less, more excellent adhesion can be achieved.
 本実施形態の着雪氷防止構造体において、着雪氷防止粒子の大きさは、例えば、0.1~10000nmであってもよく、1~1000nmであってもよい。着雪氷防止粒子の大きさを、0.1nm以上とすることにより、更に優れた着雪氷防止性を達成することができ、10000nm以下とすることにより、更に優れた密着性を達成することができる。 に お い て In the snow / ice prevention structure of the present embodiment, the size of the snow / ice prevention particles may be, for example, 0.1 to 10000 nm or 1 to 1000 nm. When the size of the snow and ice prevention particles is 0.1 nm or more, more excellent snow and ice prevention properties can be achieved, and when it is 10000 nm or less, more excellent adhesion can be achieved. .
 本実施形態の着雪氷防止構造体において、被処理面に付着する着雪氷防止粒子の数は、更に優れた着雪氷防止性を達成する観点から、1mm四方あたり、例えば、1個以上であってもよい。被処理面に付着する着雪氷防止粒子の数は、例えば、走査型電子顕微鏡(SEM)を用いて算出することができる。例えば、平均粒径100nmの着雪氷防止粒子の場合、平均粒径の100倍の長さ(1.0×10-2mm)を1辺とする正方形の面積A(1.0×10-4mm)を設定する。その正方形の中にある粒子の数B(個)を測定し、B/Aを算出する。これを10回繰り返し、得られたB/Aの平均値を粒子の付着量とする。 In the snow and ice prevention structure of the present embodiment, the number of snow and ice prevention particles adhering to the surface to be treated is, for example, one or more per 1 mm square from the viewpoint of achieving even better snow and ice prevention properties. Is also good. The number of snow and ice prevention particles adhering to the surface to be processed can be calculated using, for example, a scanning electron microscope (SEM). For example, in the case of snow and ice prevention particles having an average particle diameter of 100 nm, a square area A (1.0 × 10 −4 ) having a length 100 times the average particle diameter (1.0 × 10 −2 mm) as one side. mm 2 ). The number B (pieces) of the particles in the square is measured, and B / A is calculated. This is repeated 10 times, and the average value of the obtained B / A is defined as the amount of particles attached.
 以上のことから、本実施形態の着雪氷防止構造体において、着雪氷防止部の厚さは、例えば、1~10000nmであってもよく、20~1000nmであってもよい。 From the above, in the snow and ice prevention structure of the present embodiment, the thickness of the snow and ice prevention portion may be, for example, 1 to 10000 nm or 20 to 1000 nm.
<着雪氷防止剤の製造方法>
 次に、着雪氷防止剤の製造方法について説明する。着雪氷防止剤の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
<Production method of snow and ice prevention agent>
Next, a method for producing a snow and ice inhibitor will be described. The method for producing the snow and ice inhibitor is not particularly limited, but for example, it can be produced by the following method.
 本実施形態の着雪氷防止剤は、例えば、配合工程と、必要に応じ縮合反応工程とを主に備える製造方法により製造することができる。 雪 The snow and ice protection agent of the present embodiment can be manufactured by, for example, a manufacturing method mainly including a compounding step and, if necessary, a condensation reaction step.
 以下、本実施形態の着雪氷防止剤の製造方法の各工程について説明する。 Hereinafter, each step of the method for producing a snow and ice inhibitor according to the present embodiment will be described.
(配合工程)
 配合工程は、上記のポリシロキサン化合物、及び必要に応じシリカ粒子、シランモノマー、溶媒等を混合する工程である。この工程により、ポリシロキサン化合物等のケイ素化合物の加水分解反応を行うことができる。なお、シリカ粒子は、溶媒に分散された分散液の状態で混合してもよい。本工程においては、加水分解反応を促進させるため、溶媒中に更に酸触媒を添加してもよい。また、溶媒中に界面活性剤を添加することもできる。縮合性の官能基を有するケイ素化合物を用いる場合、加水分解反応は必ずしも必須ではない。
(Blending process)
The compounding step is a step of mixing the above-mentioned polysiloxane compound and, if necessary, silica particles, a silane monomer, a solvent and the like. By this step, a hydrolysis reaction of a silicon compound such as a polysiloxane compound can be performed. The silica particles may be mixed in a state of a dispersion liquid dispersed in a solvent. In this step, an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction. Further, a surfactant can be added to the solvent. When a silicon compound having a condensable functional group is used, the hydrolysis reaction is not always essential.
 溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。アルコール類は、被処理面との界面張力を低減させる観点から、例えば、表面張力が低くかつ沸点の低いものであってもよい。表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。 As the solvent, for example, water or a mixture of water and alcohols can be used. Examples of alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like. From the viewpoint of reducing the interfacial tension with the surface to be treated, the alcohols may have a low surface tension and a low boiling point, for example. Examples of the alcohol having a low surface tension and a low boiling point include methanol, ethanol and 2-propanol. These may be used alone or as a mixture of two or more.
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、環境汚染を配慮し、加水分解反応を促進できる酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。 Examples of the acid catalyst include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, and hypochlorous acid; Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid And the like. Among them, organic carboxylic acids can be mentioned as an acid catalyst capable of promoting a hydrolysis reaction in consideration of environmental pollution. The organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid, or the like. These may be used alone or as a mixture of two or more.
 酸触媒を用いることで、ポリシロキサン化合物及びシランモノマーの加水分解反応を促進させて、より短時間で加水分解溶液を得ることができる。 By using the acid catalyst, the hydrolysis reaction of the polysiloxane compound and the silane monomer is promoted, and a hydrolysis solution can be obtained in a shorter time.
 酸触媒の添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、例えば、0.001~600.0質量部であってもよい。 The amount of the acid catalyst may be, for example, 0.001 to 600.0 parts by mass based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。 非 As the surfactant, a nonionic surfactant, an ionic surfactant or the like can be used. These may be used alone or as a mixture of two or more.
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。 As the nonionic surfactant, for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene and the like can be used. Examples of the compound containing a hydrophilic portion such as polyoxyethylene and a hydrophobic portion mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like. Examples of the compound containing a hydrophilic portion, such as polyoxypropylene, include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、及びステアリルジメチルアミノ酢酸ベタインが挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。 Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate. In addition, examples of the amphoteric surfactant include an amino acid-based surfactant, a betaine-based surfactant, and an amine oxide-based surfactant. Examples of the amino acid-based surfactant include acylglutamic acid. Examples of the betaine-based surfactant include betaine lauryldimethylaminoacetate and betaine stearyldimethylaminoacetate. Examples of the amine oxide-based surfactant include lauryl dimethylamine oxide.
 これらの界面活性剤は、配合工程において、溶媒中のポリシロキサン化合物、及び場合によりシリカ粒子、シランモノマー等の分散性を向上する作用を有すると考えられる。また、これらの界面活性剤は、後述する縮合反応工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、分散性を向上させる作用を有すると考えられる。 These surfactants are considered to have an effect of improving the dispersibility of the polysiloxane compound and, in some cases, silica particles and silane monomers in the solvent in the compounding step. In addition, these surfactants act to reduce the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the condensation reaction step described below, thereby improving dispersibility. It is considered to have
 界面活性剤の添加量は、界面活性剤の種類、あるいはポリシロキサン化合物及びシランモノマーの種類並びに量にも左右されるが、例えば、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、1~100質量部であってもよく、5~60質量部であってもよい。 The amount of the surfactant added depends on the type of the surfactant, or the type and amount of the polysiloxane compound and the silane monomer.For example, with respect to the total amount of 100 parts by mass of the polysiloxane compound group and the silane monomer group, The amount may be 1 to 100 parts by mass, or 5 to 60 parts by mass.
 配合工程の加水分解は、混合液中のポリシロキサン化合物、シランモノマー、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ポリシロキサン化合物及びシランモノマー中の加水分解性官能基が充分に加水分解され、ポリシロキサン化合物の加水分解生成物及びシランモノマーの加水分解生成物をより確実に得ることができる。 The hydrolysis in the compounding step depends on the types and amounts of the polysiloxane compound, silane monomer, silica particles, acid catalyst, surfactant and the like in the mixed solution, but, for example, under a temperature environment of 20 to 60 ° C. It may be performed for 10 minutes to 24 hours, or may be performed for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C. As a result, the hydrolyzable functional groups in the polysiloxane compound and the silane monomer are sufficiently hydrolyzed, and the hydrolysis product of the polysiloxane compound and the hydrolysis product of the silane monomer can be obtained more reliably.
 配合工程により、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する液状組成物を含む、着雪氷防止剤を得ることができる。 A polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the polysiloxane compound having the hydrolyzable functional group, A snow- and ice-preventing agent comprising a liquid composition containing
(縮合反応工程)
 必要に応じ、縮合反応工程により、縮合性の官能基を有するポリシロキサン化合物及びシランモノマー、配合工程で得られた加水分解反応物等の縮合反応を行うことができる。本工程では、縮合反応を促進させるため、塩基触媒を用いることができる。また、本工程において、熱加水分解により塩基触媒を発生する熱加水分解性化合物を添加することもできる。
(Condensation reaction step)
If necessary, a condensation reaction of the polysiloxane compound having a condensable functional group and a silane monomer, a hydrolysis reaction product obtained in the compounding step, and the like can be performed by a condensation reaction step. In this step, a base catalyst can be used to promote the condensation reaction. In this step, a thermohydrolyzable compound that generates a base catalyst by thermohydrolysis can also be added.
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、取扱い上の安全性及び臭気の観点から、炭酸塩、又は炭酸水素塩が好ましく、経済性の観点から炭酸ナトリウム、又は炭酸水素ナトリウムがより好ましい。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。 Examples of the base catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Sodium phosphates such as sodium, sodium pyrophosphate and sodium polyphosphate; calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, carbonate Carbonates such as silver (I); hydrogencarbonates such as calcium hydrogencarbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, ammonium hydrogencarbonate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine Ruamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, aliphatic amines such as sec-butylamine, propylamine, 3- (methylamino) propylamine, 3- (dimethylamino) propylamine, 3-methoxyamine, dimethylethanolamine, methyldiethanolamine, diethanolamine and triethanolamine; morpholine Heterocyclic compounds such as N-methylmorpholine, 2-methylmorpholine, piperazine and its derivatives, piperidine and its derivatives, imidazole and its derivatives, etc. And the like. Among them, carbonate or hydrogen carbonate is preferable from the viewpoint of safety in handling and odor, and sodium carbonate or sodium hydrogen carbonate is more preferable from the viewpoint of economy. The above base catalysts may be used alone or in combination of two or more.
 塩基触媒を用いることで、加水分解溶液中のポリシロキサン化合物群、シランモノマー群及びシリカ粒子の、脱水縮合反応、脱アルコール縮合反応、又はそれら両者の反応を促進することができ、より短時間で着雪氷防止剤を得ることができる。 By using a base catalyst, the polysiloxane compound group in the hydrolysis solution, the silane monomer group and the silica particles, can promote the dehydration condensation reaction, the dealcoholization condensation reaction, or the reaction of both, in a shorter time. A snow and ice protection agent can be obtained.
 塩基触媒の添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、例えば、0.1~500質量部であってもよく、1.0~200質量部であってもよい。塩基触媒の上記添加量を、0.1質量部以上とすることにより、縮合反応をより短時間で行うことができ、500質量部以下とすることにより、層分離を抑制し易い。 The addition amount of the base catalyst may be, for example, 0.1 to 500 parts by mass or 1.0 to 200 parts by mass with respect to 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group. . By setting the addition amount of the base catalyst to 0.1 parts by mass or more, the condensation reaction can be performed in a shorter time, and by setting the addition amount to 500 parts by mass or less, layer separation is easily suppressed.
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、縮合反応を促進すると考えられる。よって、この熱加水分解性化合物としては、熱加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。 (4) It is considered that the thermally hydrolyzable compound generates a basic catalyst by thermal hydrolysis, makes the reaction solution basic, and promotes the condensation reaction. Therefore, the thermally hydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after the thermal hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, Acid amides such as N-methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above-mentioned promoting effect.
 熱加水分解性化合物の添加量は、縮合反応を充分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対して、1~200質量部であってもよく、2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、層分離を抑制し易い。 The amount of the thermally hydrolyzable compound to be added is not particularly limited as long as the condensation reaction can be sufficiently promoted. For example, when urea is used as the thermally hydrolyzable compound, its addition amount may be 1 to 200 parts by mass, or 2 to 150 parts by mass, based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group. It may be parts by mass. By setting the addition amount to 1 part by mass or more, it becomes easier to obtain good reactivity, and by setting the addition amount to 200 parts by mass or less, layer separation is easily suppressed.
 縮合反応工程における反応は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。反応温度は、例えば、20~90℃であってもよく、40~80℃であってもよい。反応温度を20℃以上とすることにより、縮合反応をより短時間に行うことができる。また、反応温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、層分離を抑えながら縮合反応することができる。 反 応 The reaction in the condensation reaction step may be performed in a closed container so that the solvent and the base catalyst do not volatilize. The reaction temperature may be, for example, from 20 to 90 ° C, or from 40 to 80 ° C. By setting the reaction temperature to 20 ° C. or higher, the condensation reaction can be performed in a shorter time. Further, by setting the reaction temperature to 90 ° C. or lower, the volatilization of the solvent (particularly, alcohols) is easily suppressed, so that the condensation reaction can be performed while suppressing the layer separation.
 縮合反応時間は、ポリシロキサン化合物群、シランモノマー群等の種類及び反応温度にも左右されるが、例えば、2~480時間であってもよく、6~120時間であってもよい。反応時間を2時間以上とすることにより、より優れた着雪氷防止性と密着性を達成することができ、480時間以下にすることにより、層分離を抑制し易い。 The condensation reaction time depends on the type of the polysiloxane compound group, the silane monomer group, etc. and the reaction temperature, but may be, for example, 2 to 480 hours or 6 to 120 hours. By setting the reaction time to 2 hours or more, more excellent snow and ice prevention and adhesion can be achieved, and by setting the reaction time to 480 hours or less, layer separation is easily suppressed.
 また、加水分解溶液中にシリカ粒子が含まれている場合、縮合反応時間を更に短縮することができる。この理由は、加水分解溶液中のポリシロキサン化合物群及びシランモノマー群が有する、シラノール基、反応性基、又はそれら両者が、シリカ粒子のシラノール基と水素結合、化学結合、又はそれらの結合の組合せを形成するためであると推察する。この場合、縮合反応時間は、例えば、10分~24時間であってもよく、30分~12時間であってもよい。反応時間を10分間以上とすることにより、より優れた着雪氷防止性と密着性を達成することができ、24時間以下とすることにより、層分離を抑制し易い。 場合 In addition, when silica particles are contained in the hydrolysis solution, the condensation reaction time can be further reduced. The reason is that the silanol group, the reactive group, or both of the polysiloxane compound group and the silane monomer group in the hydrolysis solution have a hydrogen bond, a chemical bond, or a combination of these bonds with the silanol group of the silica particles. It is inferred that this is to form In this case, the condensation reaction time may be, for example, 10 minutes to 24 hours, or 30 minutes to 12 hours. By setting the reaction time to 10 minutes or more, more excellent snow and ice prevention properties and adhesion can be achieved. By setting the reaction time to 24 hours or less, layer separation is easily suppressed.
 縮合反応工程により、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する液状組成物の縮合物を含む、着雪氷防止剤を得ることができる。また、本工程により、上述の着雪氷防止成分を含有する着雪氷防止剤を得ることができる。 By the condensation reaction step, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the polysiloxane compound having the hydrolyzable functional group. It is possible to obtain a snow and ice inhibitor containing a condensate of a liquid composition containing one kind. Further, by this step, a snow and ice preventing agent containing the above-described snow and ice preventing component can be obtained.
 なお、例えば縮合反応時間、シリカ粒子の大きさ、エアロゲル粒子の大きさ等を変更することにより、着雪氷防止粒子のサイズを調整することができる。これにより所望の着雪氷防止構造体を得ることができる。 The size of the snow and ice prevention particles can be adjusted by, for example, changing the condensation reaction time, the size of the silica particles, the size of the airgel particles, and the like. Thus, a desired snow and ice prevention structure can be obtained.
<着雪氷防止構造体の製造方法>
 次に、着雪氷防止構造体の製造方法について説明する。着雪氷防止構造体の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
<Method of manufacturing snow and ice prevention structure>
Next, a method for manufacturing the snow and ice prevention structure will be described. The method for manufacturing the snow-and-ice prevention structure is not particularly limited, but can be manufactured, for example, by the following method.
 本実施形態の着雪氷防止構造体は、例えば、上記着雪氷防止剤を被処理面に塗布する工程(以下、「塗布工程」ともいう)を備える製造方法により製造することができる。本実施形態の着雪氷防止構造体の製造方法は、例えば、塗布工程と、乾燥工程(エージング工程)とを備えていてもよく、塗布工程と、洗浄工程と、乾燥工程(予備乾燥工程及びエージング工程)とを備えていてもよい。 The snow and ice prevention structure of the present embodiment can be manufactured by, for example, a manufacturing method including a step of applying the snow and ice prevention agent to a surface to be processed (hereinafter, also referred to as an “application step”). The method for manufacturing a snow-and-ice prevention structure according to the present embodiment may include, for example, a coating step and a drying step (aging step), and include a coating step, a cleaning step, and a drying step (preliminary drying step and aging step). Step).
 以下、実施形態に係る着雪氷防止構造体の製造方法の各工程について説明する。 Hereinafter, each step of the method for manufacturing a snow and ice prevention structure according to the embodiment will be described.
(塗布工程)
 塗布工程は、例えば、上記着雪氷防止剤を被処理面に塗布する工程である。また、場合により、塗布後に被処理面を乾燥して溶媒を揮発させてもよい。例えば、本工程によって、被処理面に着雪氷防止部(着雪氷防止膜及び/又は着雪氷防止粒子)を形成することができる。着雪氷防止剤は、被処理面全体に塗布してもよく、被処理面の一部に選択的に塗布してもよい。
(Coating process)
The application step is, for example, a step of applying the snow and ice prevention agent to the surface to be treated. In some cases, the surface to be treated may be dried after application to evaporate the solvent. For example, a snow and ice prevention part (snow and ice prevention film and / or snow and ice prevention particles) can be formed on the surface to be processed by this step. The snow and ice protection agent may be applied to the entire surface to be processed or may be selectively applied to a part of the surface to be processed.
 塗布方法は、特に限定されるものではないが、例えば、スピンコート法、ディップコート法、スプレーコート法、フローコート法、バーコート法及びグラビアコート法が挙げられる。特に、スプレーコート法は、凹凸のある被処理面にも、均一な厚さの着雪氷防止膜を形成し易い観点、生産性が高く、着雪氷防止剤の使用効率が高い観点から、好ましい。これらの方法は、単独で、又は2種類以上を併用してもよい。 The coating method is not particularly limited, and examples thereof include a spin coating method, a dip coating method, a spray coating method, a flow coating method, a bar coating method, and a gravure coating method. In particular, the spray coating method is preferable from the viewpoint that a snow- and ice-preventing film having a uniform thickness is easily formed even on a surface to be processed having irregularities, that the productivity is high, and that the use efficiency of the snow-and-ice preventing agent is high. These methods may be used alone or in combination of two or more.
 着雪氷防止剤をあらかじめ他のフィルム、布等に塗布又は含浸させたものを被処理面に接触させることにより、着雪氷防止剤を被処理面に塗布してもよい。塗布方法は、着雪氷防止剤の使用量、被処理面の面積、特性等に応じて自由に選択することができる。 雪 The snow and ice preventing agent may be applied to the surface to be treated by applying or impregnating the film or cloth with the snow and ice preventing agent in advance to the surface to be treated. The application method can be freely selected depending on the amount of the snow and ice prevention agent used, the area of the surface to be treated, the characteristics, and the like.
 塗布工程で用いる着雪氷防止剤の温度は、例えば、20~80℃であってもよく、40~60℃であってもよい。上記温度を、20℃以上とすることにより、着雪氷防止性と密着性とが更に向上する傾向にあり、上記温度を、80℃以下とすることにより、着雪氷防止部の透明性が得られ易い傾向にある。着雪氷防止剤による処理時間は、例えば0.5~4時間とすることができる。 (4) The temperature of the snow and ice inhibitor used in the coating step may be, for example, 20 to 80 ° C. or 40 to 60 ° C. By setting the above temperature to 20 ° C. or higher, there is a tendency that the snow accretion prevention property and the adhesiveness are further improved, and by setting the above temperature to 80 ° C. or lower, the transparency of the snow accretion prevention part is obtained. It tends to be easy. The treatment time with the snow and ice inhibitor can be, for example, 0.5 to 4 hours.
 被処理面を構成する材料は、特に限定されるものではないが、例えば、金属、セラミックス、ガラス、プラスチック、及びこれらを組合せた材料(複合材料、積層材料等)が挙げられる。本実施形態の着雪氷防止剤は、紙、繊維、布、不織布、ゴム、皮等にも適用できる。着雪氷防止剤を塗布した後に、被処理面を乾燥して溶媒を揮発させる場合、被処理面を構成する材料は、例えば、水溶性有機化合物及び水溶性無機化合物であってもよい。これらのうちでも、被処理面を構成する材料は、ガラス、プラスチック等の透明な材料であることが好ましい。 材料 The material constituting the surface to be treated is not particularly limited, but examples thereof include metal, ceramics, glass, plastic, and materials combining these (composite materials, laminated materials, etc.). The snow and ice prevention agent of the present embodiment can be applied to paper, fiber, cloth, nonwoven fabric, rubber, leather, and the like. When the surface to be treated is dried to evaporate the solvent after the application of the snow and ice inhibitor, the material constituting the surface to be treated may be, for example, a water-soluble organic compound or a water-soluble inorganic compound. Among these, the material constituting the surface to be processed is preferably a transparent material such as glass or plastic.
 金属としては、例えば、ステンレス、アルミ、銅、亜鉛めっき鋼板及び鉄が挙げられる。セラミックスとしては、例えば、アルミナ、チタン酸バリウム、窒化ホウ素及び窒化珪素が挙げられる。ガラスとしては、例えば、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス及びアルミノシリケートガラスが挙げられる。プラスチックスとしては、例えば、ポリメチルメタクリレート等のアクリル系樹脂、ポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、及び、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂が挙げられる。 Examples of the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron. Examples of the ceramic include alumina, barium titanate, boron nitride, and silicon nitride. Examples of the glass include ordinary soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and aluminosilicate glass. Examples of the plastics include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
 水溶性有機化合物としては、例えば、グルコース、スクロース、でんぷん、ポリアクリルアミド、ポリビニルアルコール、及びメチルセルロースが挙げられる。水溶性無機化合物としては、例えば、水ガラス、塩化ナトリウム、リン酸ナトリウム、炭酸ナトリウム、バナジン酸ナトリウム、ホウ酸ナトリウム、塩化カリウム、炭酸カリウム及び硫酸化合物が挙げられる。 Examples of the water-soluble organic compound include glucose, sucrose, starch, polyacrylamide, polyvinyl alcohol, and methylcellulose. Examples of the water-soluble inorganic compound include water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, potassium chloride, potassium carbonate, and a sulfate compound.
 着雪氷防止剤を塗布した後、得られた構造体を乾燥して溶媒を揮発させることにより、着雪氷防止部の密着性を更に向上させることができる。この際の乾燥温度は、特に制限されず、被処理面の耐熱温度によっても異なるが、例えば、20~250℃であってもよく、60~250℃であってもよく、120~180℃であってもよい。なお、上記温度を60℃以上とすることにより、より優れた密着性を達成することができ、250℃以下とすることにより、熱による劣化を抑制することができる。 塗布 After applying the snow and ice prevention agent, the obtained structure is dried and the solvent is volatilized, whereby the adhesion of the snow and ice prevention part can be further improved. The drying temperature at this time is not particularly limited and varies depending on the heat-resistant temperature of the surface to be treated. For example, the drying temperature may be 20 to 250 ° C., 60 to 250 ° C., There may be. By setting the temperature to 60 ° C. or higher, better adhesion can be achieved, and by setting the temperature to 250 ° C. or lower, deterioration due to heat can be suppressed.
(洗浄工程)
 洗浄工程は、例えば、塗布工程で得られた構造体を洗浄する工程である。本工程を施すことにより、着雪氷防止部中の未反応物、副生成物等の不純物を低減し、より純度の高い着雪氷防止部を得ることができる。
(Washing process)
The cleaning step is, for example, a step of cleaning the structure obtained in the coating step. By performing this step, impurities such as unreacted substances and by-products in the snow and ice prevention unit can be reduced, and a snow and ice prevention unit with higher purity can be obtained.
 洗浄工程は、例えば、水及び/又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。 The washing step can be repeatedly performed using, for example, water and / or an organic solvent. At this time, the cleaning efficiency can be improved by heating.
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘプタン、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で又は2種類以上を混合して用いてもよい。 Examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, Various organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, and formic acid can be used. The above organic solvents may be used alone or in combination of two or more.
 有機溶媒は、一般的に水との相互溶解度が極めて低い。そのため、水で洗浄した後に、有機溶媒を用いて洗浄する場合は、水に対して高い相互溶解性を有する親水性有機溶媒が好ましい。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れており好ましい。 Generally, organic solvents have extremely low mutual solubility with water. Therefore, when washing with an organic solvent after washing with water, a hydrophilic organic solvent having high mutual solubility in water is preferable. Among the above organic solvents, examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane and the like. In addition, methanol, ethanol, methyl ethyl ketone, etc. are preferable in terms of economic efficiency.
 洗浄工程に使用される水及び/又は有機溶媒の量は、着雪氷防止部の総質量に対して、例えば、3~10倍の量であってもよい。洗浄は、被処理面の含水率が、10質量%以下となるまで繰り返すことができる。 水 The amount of water and / or organic solvent used in the washing step may be, for example, 3 to 10 times the total mass of the snow and ice prevention unit. The washing can be repeated until the water content of the surface to be treated becomes 10% by mass or less.
 洗浄温度は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、20~60℃程度であってもよい。加温することにより洗浄効率を向上させることもできる。洗浄時間は、例えば3~30分間とすることができる。 The washing temperature can be set to a temperature equal to or lower than the boiling point of the solvent used for washing. For example, when methanol is used, it may be about 20 to 60 ° C. The cleaning efficiency can be improved by heating. The washing time can be, for example, 3 to 30 minutes.
(乾燥工程:予備乾燥工程)
 予備乾燥工程は、例えば、洗浄工程により洗浄された構造体を予備乾燥させる工程である。
(Drying process: preliminary drying process)
The pre-drying step is, for example, a step of pre-drying the structure cleaned in the cleaning step.
 乾燥の手法としては、特に制限されないが、例えば、大気圧下における公知の乾燥方法を用いることができる。乾燥温度は、被処理面の耐熱温度及び洗浄溶媒の種類により異なる。溶媒の蒸発速度が充分に速く、着雪氷防止部の劣化を防止し易い観点から、乾燥温度は、例えば、20~250℃であってもよく、60~180℃であってもよい。乾燥時間は、着雪氷防止部の質量及び乾燥温度により異なるが、例えば、1~24時間であってもよい。 The method of drying is not particularly limited, and for example, a known drying method under atmospheric pressure can be used. The drying temperature varies depending on the heat resistant temperature of the surface to be treated and the type of the cleaning solvent. The drying temperature may be, for example, from 20 to 250 ° C. or from 60 to 180 ° C., from the viewpoint that the evaporation rate of the solvent is sufficiently fast and deterioration of the snow and ice prevention unit is easily prevented. The drying time varies depending on the mass of the snow and ice prevention unit and the drying temperature, but may be, for example, 1 to 24 hours.
(乾燥工程:エージング工程)
 エージング工程は、例えば、予備乾燥工程により乾燥された着雪氷防止部をエージング(加熱エージング等)する工程である。これにより、最終的な着雪氷防止構造体を得ることができる。エージング工程を施すことにより、着雪氷防止構造体の着雪氷防止性と密着性とが更に向上する。なお、洗浄工程及び予備乾燥工程を省略する場合には、例えば、塗布工程で形成された着雪氷防止部をエージングすればよい。
(Drying process: aging process)
The aging step is, for example, a step of aging (heating aging, etc.) the snow-and-ice prevention unit dried in the preliminary drying step. Thereby, a final snow and ice prevention structure can be obtained. By performing the aging step, the snow-and-ice prevention property and the adhesion of the snow-and-ice prevention structure are further improved. When the washing step and the preliminary drying step are omitted, for example, the snow and ice prevention unit formed in the coating step may be aged.
 本工程は、例えば、予備乾燥工程後の追加乾燥として行ってもよい。エージングをすることにより、着雪氷防止部中の親水基が減少し、着雪氷防止性が更に向上すると考えられる。また、着雪氷防止部が、予備乾燥工程で体積収縮を起こし、透明性が低下している場合は、スプリングバックにより体積復元することにより、透明性を向上させてもよい。 This step may be performed, for example, as additional drying after the preliminary drying step. It is considered that the aging reduces the number of hydrophilic groups in the snow and ice prevention part, and further improves the snow and ice prevention. Further, when the snow and ice prevention unit has contracted in volume in the preliminary drying step and the transparency has been reduced, the transparency may be improved by restoring the volume by springback.
 エージング温度は、被処理面の耐熱温度により異なるが、例えば、100~250℃であってもよく、120~180℃であってもよい。エージング温度を、100℃以上とすることにより、より優れた着雪氷防止性と密着性を達成することができ、250℃以下とすることにより、熱による劣化を抑制することができる。 The aging temperature varies depending on the heat-resistant temperature of the surface to be treated, and may be, for example, 100 to 250 ° C or 120 to 180 ° C. By setting the aging temperature to 100 ° C. or higher, more excellent snow and ice prevention properties and adhesion can be achieved. By setting the aging temperature to 250 ° C. or lower, deterioration due to heat can be suppressed.
 エージング時間は、着雪氷防止部の質量及びエージング温度により異なるが、例えば、1~10時間であってもよく、2~6時間であってもよい。エージング時間を、1時間以上とすることにより、より優れた着雪氷防止性と密着性を達成し易く、10時間以下とすることにより、生産性が低下し難い。 The aging time varies depending on the mass of the snow and ice prevention part and the aging temperature, but may be, for example, 1 to 10 hours or 2 to 6 hours. By setting the aging time to 1 hour or more, it is easy to achieve more excellent snow and ice prevention properties and adhesion, and by setting the aging time to 10 hours or less, the productivity is not easily reduced.
 以上、本実施形態に係る着雪氷防止剤及び着雪氷防止構造体の製造方法の一例について説明したが、着雪氷防止剤及び着雪氷防止構造体の製造方法はこれに限定されるものではない。 Although the example of the method for manufacturing the snow and ice preventing agent and the method for manufacturing the snow and ice preventing structure according to the embodiment has been described above, the method for manufacturing the snow and ice preventing agent and the method for manufacturing the snow and ice preventing structure is not limited thereto.
 次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。 Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
(ポリシロキサン化合物Aの調製)
 攪拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、ヒドロキシ末端ジメチルポリシロキサン「XC96-723」(モメンティブ社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
(Preparation of polysiloxane compound A)
In a 1-liter three-necked flask equipped with a stirrer, thermometer and Dimroth condenser, 100.0 parts by mass of hydroxy-terminated dimethylpolysiloxane “XC96-723” (product name, manufactured by Momentive), methyltrimethoxysilane Was mixed with 0.51.3 parts by mass of t-butylamine and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound at both ends (polysiloxane compound A).
(着雪氷防止剤の調製)
 100mM 酢酸イソプロピルアルコール溶液15mLに、メチルトリメトキシシランKBM-13(信越化学工業株式会社製、製品名)を0.45mL、ジメチルジメトキシシランKBM-22(信越化学工業株式会社製、製品名)を0.15mL、ポリシロキサン化合物Aを0.15mL添加し、60分間撹拌した。これに純水を420mL滴下し、60分間撹拌し、着雪氷防止剤を得た。
(Preparation of snow and ice prevention agent)
To 15 mL of 100 mM isopropyl acetate alcohol solution, 0.45 mL of methyltrimethoxysilane KBM-13 (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0% of dimethyldimethoxysilane KBM-22 (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) .15 mL and 0.15 mL of polysiloxane compound A were added and stirred for 60 minutes. 420 mL of pure water was added dropwise thereto, followed by stirring for 60 minutes to obtain a snow and ice inhibitor.
(着雪氷防止構造体の作製)
 上記にて得られた着雪氷防止剤に、スライドグラスS7213(松波硝子工業株式会社製、製品名)をディップした後、室温で30分間乾燥することで、着雪氷防止構造体を得た。
(Preparation of snow and ice prevention structure)
A slide glass S7213 (manufactured by Matsunami Glass Industry Co., Ltd., product name) was dipped in the snow and ice prevention agent obtained above, and dried at room temperature for 30 minutes to obtain a snow and ice prevention structure.
(着氷力試験)
 図6は、着氷力試験の試験方法を模式的に表す図である。着氷力試験は以下のようにして行った。
(1)荷重測定装置をセットした恒温槽を-9℃に設定した。
(2)恒温槽内に、試料及びステンレスリングをセットし、2時間静置した。
(3)ステンレスリング内に水を注入し、30分間静置した。これにより、図6に示すように、試料23上に置かれたステンレスリング21内に氷22を形成した。
(4)ステンレスリングの外側から荷重Sをかけ、最大荷重点を測定した。
(5)最大荷重を単位面積当たりで換算し、着氷力(N/cm)を得た。なお、ステンレスリング内径は2.5cm、着氷面積は4.9cmであった。
(Icing test)
FIG. 6 is a diagram schematically illustrating a test method of the icing power test. The icing power test was performed as follows.
(1) The temperature of the thermostat in which the load measuring device was set was set to -9 ° C.
(2) The sample and the stainless steel ring were set in a thermostat and allowed to stand for 2 hours.
(3) Water was injected into the stainless steel ring, and left still for 30 minutes. Thereby, as shown in FIG. 6, ice 22 was formed in the stainless steel ring 21 placed on the sample 23.
(4) A load S was applied from outside the stainless ring, and the maximum load point was measured.
(5) The maximum load was converted per unit area to obtain the icing power (N / cm 2 ). The stainless steel ring had an inner diameter of 2.5 cm and an icing area of 4.9 cm 2 .
 試料として上記にて得られた着雪氷防止構造体を用いた場合、着氷力は約19N/cmであった。一方、試料としてスライドグラスS7213を用いた場合、着氷力は約36N/cmであった。着雪氷防止剤を用いることで着氷力が大幅に低減された。 When the snow-and-ice prevention structure obtained above was used as a sample, the icing power was about 19 N / cm 2 . On the other hand, when the slide glass S7213 was used as the sample, the icing power was about 36 N / cm 2 . The icing power was greatly reduced by using snow and ice inhibitors.
 また、空調用のアルミフィンに対して、上記と同様にして着氷力試験を実施した。着雪氷防止剤による処理を行わない場合は一定の着氷が観察されたが、処理を行った場合は着氷が観察されなかった。 氷 Icing performance tests were also conducted on aluminum fins for air conditioning in the same manner as above. When the treatment with the snow and ice protection agent was not performed, a certain degree of icing was observed, but when the treatment was performed, icing was not observed.
 以上より、本発明の着雪氷防止剤によれば、被処理面に優れた着雪氷防止性を付与することができることがわかる。 From the above, it can be seen that the snow and ice preventing agent of the present invention can impart excellent snow and ice preventing properties to the surface to be treated.
 L…外接長方形、P…シリカ粒子、1…着雪氷防止膜、2…着雪氷防止処理対象物、2a…被処理面、3…着雪氷防止粒子、10…着雪氷防止部、21…ステンレスリング、22…氷、23…試料、100,200,300…着雪氷防止構造体。 L: circumscribed rectangle, P: silica particles, 1: snow and ice prevention film, 2 ... snow and ice prevention target object, 2a: surface to be treated, 3 ... snow and ice prevention particles, 10: snow and ice prevention part, 21 ... stainless steel ring , 22 ... ice, 23 ... sample, 100, 200, 300 ... snow and ice prevention structure.

Claims (11)

  1.  加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、該加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する液状組成物を含む、着雪氷防止剤。 A liquid containing at least one selected from the group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having a hydrolyzable functional group. A snow and ice inhibitor comprising the composition.
  2.  前記ポリシロキサン化合物が、下記式(B)で表される化合物を含む、請求項1に記載の着雪氷防止剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。]
    The snow and ice inhibitor according to claim 1, wherein the polysiloxane compound includes a compound represented by the following formula (B).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (B), R 1b represents an alkyl group, an alkoxy group or an aryl group, R 2b and R 3b each independently represent an alkoxy group, and R 4b and R 5b each independently represent an alkyl group or an aryl group. And m represents an integer of 1 to 50. ]
  3.  前記液状組成物が、加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、該加水分解性の官能基を有するシランモノマーの加水分解生成物からなる群より選択される少なくとも一種を更に含有する、請求項1又は2に記載の着雪氷防止剤。 The liquid composition is a silane monomer having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of a hydrolysis product of the silane monomer having the hydrolyzable functional group. The snow and ice protection agent according to claim 1 or 2, further comprising:
  4.  前記液状組成物がエアロゲル粒子を更に含有する、請求項1~3のいずれか一項に記載の着雪氷防止剤。 雪 The snow and ice inhibitor according to any one of claims 1 to 3, wherein the liquid composition further contains airgel particles.
  5.  対象物の被処理面に着雪氷防止部を形成するために用いられる、請求項1~4のいずれか一項に記載の着雪氷防止剤。 (5) The snow and ice prevention agent according to any one of (1) to (4), which is used for forming a snow and ice prevention part on a surface to be processed of an object.
  6.  前記着雪氷防止部がエアロゲルを含む、請求項5に記載の着雪氷防止剤。 6. The snow and ice preventing agent according to claim 5, wherein the snow and ice preventing portion includes aerogel.
  7.  支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が下記式(2)で表される化合物を含む着雪氷防止成分、を含有する着雪氷防止剤。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。]
    A snow and ice inhibitor having a ladder-type structure including a support portion and a bridge portion, wherein the bridge portion includes a snow and ice prevention component containing a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50. ]
  8.  下記式(3)で表される構造を有する化合物を含む前記着雪氷防止成分、を含有する、請求項7に記載の着雪氷防止剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。]
    The snow and ice prevention agent according to claim 7, comprising the snow and ice prevention component containing a compound having a structure represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b represents 1 to 50 Indicates an integer. ]
  9.  前記着雪氷防止成分がエアロゲルである、請求項7又は8に記載の着雪氷防止剤。 雪 The snow and ice preventing agent according to claim 7 or 8, wherein the snow and ice preventing component is aerogel.
  10.  対象物と、該対象物の被処理面上に着雪氷防止部と、を備え、
     前記着雪氷防止部が、請求項1~9のいずれか一項に記載の着雪氷防止剤の乾燥物を含む、着雪氷防止構造体。
    An object, and a snow and ice prevention unit on a surface to be processed of the object,
    A snow and ice prevention structure, wherein the snow and ice prevention unit includes a dried product of the snow and ice prevention agent according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか一項に記載の着雪氷防止剤を対象物の被処理面に塗布する工程を備える、着雪氷防止構造体の製造方法。
     
    A method for manufacturing a snow and ice prevention structure, comprising a step of applying the snow and ice protection agent according to any one of claims 1 to 9 to a surface to be processed of an object.
PCT/JP2018/029804 2018-08-08 2018-08-08 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure WO2020031300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/029804 WO2020031300A1 (en) 2018-08-08 2018-08-08 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure
JP2020535400A JP7279720B2 (en) 2018-08-08 2018-08-08 Snow/Ice Prevention Agent, Snow/Ice Prevention Structure, and Method for Manufacturing Snow/Ice Prevention Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029804 WO2020031300A1 (en) 2018-08-08 2018-08-08 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure

Publications (1)

Publication Number Publication Date
WO2020031300A1 true WO2020031300A1 (en) 2020-02-13

Family

ID=69413275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029804 WO2020031300A1 (en) 2018-08-08 2018-08-08 Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure

Country Status (2)

Country Link
JP (1) JP7279720B2 (en)
WO (1) WO2020031300A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925868A (en) * 1982-08-04 1984-02-09 Kansai Paint Co Ltd Composition for deicing material
JPH02147688A (en) * 1988-11-29 1990-06-06 Kansai Paint Co Ltd Icing-preventive composition
JPH08151553A (en) * 1994-11-30 1996-06-11 Toray Dow Corning Silicone Co Ltd Silicone coating agent
JP2002323298A (en) * 2001-04-26 2002-11-08 Sumitomo Light Metal Ind Ltd Front retardant functional device
JP2011122156A (en) * 2009-12-13 2011-06-23 General Electric Co <Ge> Article comprising weather resistant silicone coating
JP2011526958A (en) * 2008-06-30 2011-10-20 エスティーシー. ユーエヌエム Durable, polymer-airgel based superhydrophobic coating: composite material
JP2014514412A (en) * 2011-04-25 2014-06-19 ダウ グローバル テクノロジーズ エルエルシー Moisture curable composition and low surface energy coating composition comprising the composition
JP2017517584A (en) * 2014-03-27 2017-06-29 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. How to reduce icing on a substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925868A (en) * 1982-08-04 1984-02-09 Kansai Paint Co Ltd Composition for deicing material
JPH02147688A (en) * 1988-11-29 1990-06-06 Kansai Paint Co Ltd Icing-preventive composition
JPH08151553A (en) * 1994-11-30 1996-06-11 Toray Dow Corning Silicone Co Ltd Silicone coating agent
JP2002323298A (en) * 2001-04-26 2002-11-08 Sumitomo Light Metal Ind Ltd Front retardant functional device
JP2011526958A (en) * 2008-06-30 2011-10-20 エスティーシー. ユーエヌエム Durable, polymer-airgel based superhydrophobic coating: composite material
JP2011122156A (en) * 2009-12-13 2011-06-23 General Electric Co <Ge> Article comprising weather resistant silicone coating
JP2014514412A (en) * 2011-04-25 2014-06-19 ダウ グローバル テクノロジーズ エルエルシー Moisture curable composition and low surface energy coating composition comprising the composition
JP2017517584A (en) * 2014-03-27 2017-06-29 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. How to reduce icing on a substrate

Also Published As

Publication number Publication date
JP7279720B2 (en) 2023-05-23
JPWO2020031300A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
KR102605764B1 (en) Water repellent treatment agent, water repellent structure and method of manufacturing the same
KR102549062B1 (en) Treatment agent for fiber treatment, fiber and manufacturing method thereof, and fiber sheet and manufacturing method thereof
TW201918528A (en) Coating solution, method for producing coating film, and coating film
WO2017038648A1 (en) Insulated object manufacturing method
TW201922961A (en) Coating liquid, method for manufacturing coating film, and coating film
WO2019069492A1 (en) Coating liquid, production method for coating film, and coating film
JP7156038B2 (en) Treatment agent for particle treatment, water-repellent particles and method for producing the same, water-repellent layer and permeation-preventing structure
WO2020031300A1 (en) Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure
TW201806862A (en) Aerogel composite, and support member and adiabatic material provided with aerogel composite
WO2019070035A1 (en) Aerogel composite powder and water repellent material
JP2017179063A (en) Aerogel composite
TW202007736A (en) Snow-ice accretion preventing agent, snow-ice accretion prevention structure, and production method for snow-ice accretion prevention structure for providing the surface of an object under processing with excellent snow-ice accretion prevention
US11787957B2 (en) Coating solution, method for producing coating film, and coating film
WO2018143361A1 (en) Water-repellant powder
WO2019069405A1 (en) Dispersion liquid and aerogel particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929566

Country of ref document: EP

Kind code of ref document: A1