JPS5925728A - Apparatus for measuring hardness of living body tissue - Google Patents

Apparatus for measuring hardness of living body tissue

Info

Publication number
JPS5925728A
JPS5925728A JP13295782A JP13295782A JPS5925728A JP S5925728 A JPS5925728 A JP S5925728A JP 13295782 A JP13295782 A JP 13295782A JP 13295782 A JP13295782 A JP 13295782A JP S5925728 A JPS5925728 A JP S5925728A
Authority
JP
Japan
Prior art keywords
signal
vibration
living body
pressure
compliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13295782A
Other languages
Japanese (ja)
Other versions
JPS6155378B2 (en
Inventor
健二 小林
室岡 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP13295782A priority Critical patent/JPS5925728A/en
Publication of JPS5925728A publication Critical patent/JPS5925728A/en
Publication of JPS6155378B2 publication Critical patent/JPS6155378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、生体へ圧力伝達媒体をブトして撮動を加え、
圧力伝達媒体の変位量及び印加圧力を基に生体の軟らか
さもしくは硬さを測定する生体組織の硬度測定装置に関
するものでるる。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves applying a pressure transmission medium to a living body, adding imaging,
This invention relates to a biological tissue hardness measuring device that measures the softness or hardness of a biological tissue based on the amount of displacement of a pressure transmission medium and the applied pressure.

この釉の装置は医師の触診に代って生体の硬度を定酸化
することを可能にするが、産科、管腔1絃器の測定につ
いては内部に圧力伝達媒体を挿入する必要がある。この
ため、細いガもドワイヤの先端に取伺けられた棒の先に
ゴム膜を取+1け、この棒に空気振動を加えるようにし
たのが周知であるが、棒の支持及びその包囲構造が複雑
になり、また、棒の重縦に対応して振動周波数を低くせ
ねばならないために、測定する周波数領域に生体微動の
雑餡が入り易く、測定精度が低寸し、広い帯域にわたる
周波数特性も得られない/こめに生体の共J展性性を求
める上でも牛都合であった。。
This glazed device allows constant oxidation of the hardness of a living body in place of a doctor's palpation, but it is necessary to insert a pressure transmission medium inside for measurements in obstetrics and lumen instruments. For this reason, it is well known that a rubber film was attached to the tip of a rod that was attached to the tip of the dwire to apply air vibration to the rod, but the support of the rod and its surrounding structure In addition, because the vibration frequency must be lowered to correspond to the weight and length of the rod, it is easy for biological micromotions to enter the frequency range to be measured, resulting in low measurement accuracy and the need to lower the vibration frequency in response to the weight and length of the rod. Properties could not be obtained/It was also inconvenient to seek co-J malleability of living organisms. .

よって、本発明は簡単な偽造で神々の形状の広い41一
体9屯囲にわ/ヒつて振動月加を可能にし、かつ凪い周
波数範囲の測定忙1り廂にする冒頭に述べ/こ柚の生体
組織の硬度6i11 ′)jf装置阪笛提供−ノること
ケ目的に−する。。
Therefore, the present invention makes it possible to apply vibrations to a wide 41-9-tonne area with a simple forgery, and also to easily measure the calm frequency range. The hardness of living tissue is 6i11') JF equipment provided by the Japanese flute - for the purpose of noise. .

次C(木兄り」τ図ボの実施例を基に説明する。Next, explanation will be given based on an example of C (Kienori) τ diagram.

先ず、本発明の実施例装よる硬度測定装置は、生体へ振
動伺加を行い、かつその応否信号を検出するプローブと
、検出信号の処理及びグローブの駆動を行う回路装置と
、測定値の表示或は記録を行う出力装置とから構taさ
れている。
First, the hardness measuring device according to the embodiment of the present invention includes a probe that applies vibration to a living body and detects the response/response signal, a circuit device that processes the detection signal and drives the glove, and a circuit device that processes the detection signal and drives the glove. It consists of an output device for displaying or recording.

第1図は、このうちのグローブを示すもので、同図にお
いて1は、非磁性相例えばジュラルミン板により製作さ
れた円錐台状の駆動体3へ振動付加を行う例えば可動コ
イル形の振動伺加器である。その容器2の上方には非磁
性相のリング5が取付けられ、この上方に同様に非磁性
相の別のリング6が嵌合している。このリング6の内壁
に沿って形成されだ円形空隙8に水密性のダイヤフラム
9が弾性体を介して挿入され、両すンク5,6間の空隙
10には例えはストレインケージを利用したタイヤフラ
ム9の変位量を検出する変位蓋上ンザ11が水蜜・状態
で挿入されている。そしでこの変位量センサ11のはす
11′Vよ、ダイヤフラム9と共に先端が平坦なねじ1
3により駆動体3に固定されている。さらに、リング6
には、コック15により脱気水を供軸される構16及び
圧カセンザ17の装着される空隙18が外壁から内壁へ
連通されている。リング6の上面には、さらに透明な材
料例えはアクリルのリング20が、貼着或は上方からの
ビスによシ取付けられている。このリング20には、そ
の内壁に上方から途中まで弾性体2■を4ftftえる
ことにより例えはステンレス製で下方の開放したパイプ
22が着脱可能に嵌入され、またリング20の内径は干
+/iMではリング6の内径と一致している。パイプ2
2の外径は例えは10 nun 8 Ifであり、リン
ク20からの突出部分の高さは例えば200 mmであ
る。1ノζイグ22の上方では、その切欠き部分にOリ
ンク23及びワソ/ヤ24が装置され、ワツ/ヤ24の
上に水蜜性の弾性膜例えばポリウレタン膜25が載厭さ
れた状態で、キャップ26がねじ込まれている6、ぞし
て最終的なこれらの装看状悪では、パイプ22の内側先
端で弾性膜25ケキヤツプ26の上端よりも上方へ押圧
している33第2図は本発明の回路装り、及び出力装置
を示すもので、先ず周波数oJ俊の正弦波の発振器81
とその発振信号の電力増幅器32とが振動付加器1の駆
動回路を構成している。また、変位量センサ11の検出
信号を増幅する増幅器41と、振動的な変位量信号のみ
を選択する・・イパスフィルタ42と、通過してきた振
動成分を直流信号に変換する整流器43と、直流増幅器
44と、圧力センサ17に所属する対応の増幅器45と
、ハイパヌフィルタ46と、整流器47と、直流増幅器
48と、直流増幅器44の出力信号を直流増幅器48の
出力信号で割算するアナログ割算回路49と、割算動作
の際に生じる雑−音を除去してコンプライアンス信号を
出力するローバスフ・1ルタ50と、増幅器45の出力
信号中から直流成分のみを通過させて静圧信号を出力す
るローパスフィルタ51とで両センサ11,17の信号
処理回路を構成している。、、 60 fr、i:この
信号処理回路で発生された静圧及びコンフライアンス侶
号葡表示、メータ指示或は記録する出力装置、例えはペ
ンレコーダである。
FIG. 1 shows one of these gloves, and in the same figure, 1 is a vibration-applying member such as a moving coil type that applies vibration to a truncated cone-shaped driving body 3 made of a non-magnetic phase such as a duralumin plate. It is a vessel. A ring 5 of a non-magnetic phase is attached above the container 2, and another ring 6 of a non-magnetic phase is fitted above this. A watertight diaphragm 9 is inserted through an elastic body into an oval cavity 8 formed along the inner wall of the ring 6, and a tire flammable diaphragm using a strain cage, for example, is inserted into the cavity 10 between the rings 5 and 6. A displacement lid cover 11 for detecting the amount of displacement of 9 is inserted in a wet state. Then, as for the lotus 11'V of this displacement sensor 11, there is a screw 1 with a flat tip along with the diaphragm 9.
3 is fixed to the driving body 3. Furthermore, ring 6
A structure 16 to which deaerated water is supplied by a cock 15 and a cavity 18 in which a pressure sensor 17 is installed are communicated from the outer wall to the inner wall. On the upper surface of the ring 6, a ring 20 made of a transparent material, for example, acrylic, is attached by pasting or screwing from above. A pipe 22 made of stainless steel and having an open lower part is removably fitted into this ring 20 by placing an elastic body 2 4 ft ft halfway from the upper part on the inner wall of the ring 20, and the inner diameter of the ring 20 is This matches the inner diameter of ring 6. pipe 2
The outer diameter of the link 20 is, for example, 10 nun 8 If, and the height of the protruding portion from the link 20 is, for example, 200 mm. Above the first ζ ignition 22, an O-link 23 and a washer/yarn 24 are installed in the notch part, and a water-repellent elastic film, for example, a polyurethane film 25 is placed on the wax/yasha 24. When the cap 26 is screwed on, the elastic membrane 25 at the inner end of the pipe 22 is pressed upwards above the upper end of the cap 26. This shows the circuit configuration and output device of the invention, and first, a sine wave oscillator 81 with a frequency oJ
and a power amplifier 32 for the oscillation signal constitute a drive circuit for the vibration adder 1. Also, an amplifier 41 that amplifies the detection signal of the displacement sensor 11, an i-pass filter 42 that selects only the vibrational displacement signal, a rectifier 43 that converts the vibration component that has passed into a DC signal, and a DC amplifier. 44, a corresponding amplifier 45 belonging to the pressure sensor 17, a high-panu filter 46, a rectifier 47, a DC amplifier 48, and an analog division for dividing the output signal of the DC amplifier 44 by the output signal of the DC amplifier 48. A circuit 49, a low-pass filter 50 that removes noise generated during division operation and outputs a compliance signal, and outputs a static pressure signal by passing only the DC component from the output signal of the amplifier 45. The low-pass filter 51 constitutes a signal processing circuit for both sensors 11 and 17. ,,60 fr,i: An output device for displaying, metering or recording static pressure and compliance information generated by this signal processing circuit, such as a pen recorder.

測定に際しては、コック15を開いて脱気水28を溝1
6を通してリング6の内側の円筒状空隙及びパイプ22
内へ新だに充填するか、透明なリング20を通して脱気
水28の発泡等をチェックして必要に応じてパイプ22
をはずしてパイプ22及υ・リング6.20の洗浄を行
い脱気水28の交換ケ行う、1このような状態での駆動
体3から生体に至るまでの測定に関連する振動糸につい
てのコンプライアンス等価回路は、第3図に示すように
振動圧力に直列に加わる駆動体3、ねじ13等の剛性振
動部分のコンプライアンスC1と、牛体組織のコンプラ
イアンスC4と、これに直列に加わるすIt l’lユ
膜25のコンクラ1ア/スC3と、これらC3,C4に
並列に加わる主にパ1プ22のIEj方への逃けのコン
プシr′ノ′/スC2と刀・ら戟る生体のコンフライア
ンスC4に苅して無視できない1(い]し列回路になる
1、し/ζかって、予め先ず弾性膜25 k−1i1i
111体1角に援月去きせてC4−U の状態にし−c
h−A′点間の振動11−及び振動檄を基にC2の1直
を求め、次に弾19:11!l!25ケフリ一月IJち
C4φの状態でC2及びC3の合成値を求めてC3の値
も決定しておく。そして弾性膜25を生体組織に当てて
C2〜C4の合成値ケ求めて既知の02及びC3の値を
基にC4を算出する。
When making measurements, open the cock 15 and pour deaerated water 28 into groove 1.
6 through the cylindrical cavity inside the ring 6 and the pipe 22
Fill the pipe 22 with new water, or check the degassed water 28 for foaming etc. through the transparent ring 20 and remove the water from the pipe 22 as necessary.
Remove the pipe 22, υ, and ring 6.20, and replace the degassed water 28. 1. Compliance regarding the vibrating string related to measurement from the drive body 3 to the living body in this state. As shown in Fig. 3, the equivalent circuit is the compliance C1 of the rigid vibrating parts such as the driver 3 and the screw 13 that are applied in series to the vibration pressure, the compliance C4 of the cow body tissue, and the compliance C4 that is applied in series to the vibration pressure. Conclave 1 A/S C3 of lyu membrane 25, and the escape r'no'/S C2 of Pap 22 that is added in parallel to these C3 and C4, and the living body that strikes the sword. 1, which cannot be ignored by adjusting the conformance C4 of 1, and becomes a column circuit.
111 bodies are sent to the 1st corner and made into C4-U state-c
Find the first straight of C2 based on the vibration 11- and the vibration between points h-A', and then the bullet 19:11! l! The value of C3 is also determined by calculating the composite value of C2 and C3 in the state of 25 Kefri January IJ and C4φ. Then, the elastic membrane 25 is applied to the living tissue to obtain a composite value of C2 to C4, and C4 is calculated based on the known values of 02 and C3.

具体的には、先ず発掘器31の周波数を設定し、その増
幅信号で振動付加器1を駆動することにより、駆動体3
がダイヤフラム9及びねじ13の先端rfuを振動させ
て脱気水を設定周波数で振動させる。したがって、圧力
センサ17及び変位量センサ10は、弾性膜25の測定
さるべき被接触物への押圧力に対応した静圧及び静圧変
位量と共に被接触物に加わる振動圧力及びそのコンプラ
イアンスに関連する振動変位量をそれぞれ検出する。先
ず、検出された変位量信号rよ増IM器41で増幅きれ
た後、ノ・イパスフィルタ42においてコンプライアン
スの測定に心安な撮動成分のみを通過させ、整流器43
で直流信号に没侠aれた後、さらに直流増幅器44″′
C″瑣輻されてアナログ割算回路49へ被隙算信号とし
て供給ちれる。一方、検出された圧力信号は・・イガ−
ζフィルタ46で振動成分のみtS択して増mit及び
@l17ii、変換されてアナログ割算回路49へ除数
信号として供給され、したかつてアナログ割算回路49
では逐次自動的に被接触物に関連した合成コンプライア
ンスの演物が行われ、ローパスフィルタ50からコンプ
ライアンス信号が出ノJされる。壕だ、増幅器45から
出力される用力情号のうぢ直θIC1成分をローパスフ
ィルタ51が選択することにより、静圧Gi号が出力さ
れる。コンフライアンス伯q及び静圧信月は出力装置6
0に供給され、宅れぞれの振幅から谷測定未件に対する
ダイヤフラノ・9より先方の合成コンプライアンスが測
定され、同時にその測定1時のj況気水の静圧も分る1
、このようにしでjJ+要の周波数帯域及び静圧軸回に
わ7辷り、予めC2’及びC3を測定してそれぞれのl
l11に求めておく3゜ 生体)+li 欧(i’ノコンンライアンスの測定田j
には、同様にし、で出力装−一60において静圧を1蔚
視することにより弾性膜25のi’lll lf力を調
整しつつC2〜C4の合成値を所定の周波数或は周波数
帯域にわたり測定し、既知のC2及びC3の値を基に0
4を算出する。
Specifically, first, by setting the frequency of the excavator 31 and driving the vibration adder 1 with the amplified signal, the driver 3
vibrates the diaphragm 9 and the tip rfu of the screw 13 to vibrate the degassed water at a set frequency. Therefore, the pressure sensor 17 and the displacement sensor 10 measure the static pressure and static pressure displacement corresponding to the pressing force of the elastic membrane 25 on the object to be measured, as well as the vibration pressure applied to the object and its compliance. The amount of vibration displacement is detected respectively. First, after the detected displacement signal r is amplified by the amplification IM device 41, only the imaging component that is safe for compliance measurement is passed through the no-pass filter 42, and then the rectifier 43
After being absorbed into the DC signal, the DC amplifier 44''
C'' is transmitted and supplied to the analog divider circuit 49 as a gap calculation signal.On the other hand, the detected pressure signal is...
The ζ filter 46 selects and intensifies only the vibration component tS, converts it, and supplies it as a divisor signal to the analog divider circuit 49.
Then, a synthetic compliance performance related to the object to be touched is performed automatically one after another, and a compliance signal is output from the low-pass filter 50. By selecting the vertical θIC1 component of the utility information output from the amplifier 45 by the low-pass filter 51, the static pressure Gi is output. Confliance Hakuq and static pressure Shingetsu are output device 6
0, and from the amplitude of each house, the composite compliance beyond the diaphragm 9 for the unmeasured valley is measured, and at the same time, the static pressure of the air and water at the time of the measurement is also known.
, In this way, we went over jJ + the required frequency band and static pressure axis seven times, measured C2' and C3 in advance, and calculated each l.
3゜biological body) + li EU (i'nocon compliance measurement field j
Similarly, the output device 60 measures the static pressure to adjust the i'lll lf force of the elastic membrane 25, and calculates the composite value of C2 to C4 over a predetermined frequency or frequency band. 0 based on the measured and known C2 and C3 values.
Calculate 4.

第4図は以上説明した硬度測定装置の効果を確認するた
めに、生体の軟組織に力学的挙動の類似したRTシリコ
ンゴムの添加材の量を加えて硬度を変化させつつ、その
ステイフネス(コンプライアンスの逆数)を測定したも
ので、硬度に対応してスチフネスの測定値が精度良く変
化している。第5図は硬度の異る/リコンコ゛ムについ
ての共振特性を測定したもので、硬度自体だけでなく硬
度に対応、してシフトとした共振点も測定されている。
Figure 4 shows that in order to confirm the effect of the hardness measuring device described above, we added an amount of RT silicone rubber additive with similar mechanical behavior to the soft tissue of a living body and changed its stiffness (compliance). The stiffness measurement value changes with high accuracy in response to hardness. Figure 5 shows measurements of the resonance characteristics of recon combs with different hardnesses, in which not only the hardness itself but also the resonance points shifted corresponding to the hardness were measured.

第6図は11〒骨上における健康な女性2人(実11i
131)及び浮腫の女性患渚2人(点線)に対するステ
イフ不スの周波数特性の測定テークであり、浮腫を生体
組織の硬度及び共振周波数から検出できることか確認さ
れた、。
Figure 6 shows 11〒 two healthy women on the bone (actual 11i
131) and two female patients with edema (dotted line), and it was confirmed that edema can be detected from the hardness and resonance frequency of living tissues.

尚、パ1プ22に充填する液体としては、粘性係数、入
手の容易性、生体への無害、化学的に不活性等の観点で
水、特に弾性ケ伴わない脱気水が好ましいが、生体の粘
性係数よりも小さな粘性係数の他の液体を使用すること
もb」能である。ちなみに、水の粘性係数は生体のすべ
り粘性係数に対して10−4 程度のオーダと考えられ
るが、10−2程度のオーダの液体でも高精度に測定可
能である。回路装置としては、割算回路49の内入力信
号を入れ替えてステイフネス信号を出力させることもで
き、捷た両種幅器44゜48の出力1g号を直接出力装
置に加えて割算、を別途に行わせることもできる1J さらに、C2及びC3が数回されると、自動的にC4を
算出する演算回路を設け、出力装置としてその値を数イ
目的に配録するテイジタルプリンタを用いることも考え
られる3、パイプの形状については測定餉所に比、じて
細管でなく他の形状にするととも考えられる1゜ 以−1−1、木兄1ル」により生体への振動伝達媒体と
して液体ケ用いることに」、り間中な構造で神々の生体
=ls lX1−へ圧力刊加が可1じとなり、丑たハい
j^J汲数範ILl’lの硬度側矩がiJ龍になるため
に臨床応用上も(御めて治急旋てめる1、%に、媒1不
パイノをa岬1状に形成することもできるので産科外!
11)でのJ″畠!!慣ゞ尚・のイ吠)隻i11.11
定h ′\のj心ノ目も1j1i化(・ごなる、1 /1.1ソ1而の計j1「゛なi発明 第1図は本発明yc硬j及111す扉装置h′のフロー
)部分の断面図、第2図はその回路装置面゛及び出力装
置j’91j分の回路構成を示すフロック1ツ1、第3
1シ: U:1.−。
The liquid to be filled into the pipe 22 is preferably water, especially degassed water without elasticity, from the viewpoint of viscosity coefficient, easy availability, harmlessness to living organisms, chemical inertness, etc. It is also possible to use other liquids with viscosity coefficients lower than that of . Incidentally, the viscosity coefficient of water is considered to be on the order of 10-4 compared to the sliding viscosity of living organisms, but even liquids on the order of 10-2 can be measured with high precision. As a circuit device, it is also possible to output a stiffness signal by replacing the input signals in the divider circuit 49, and to add the output No. 1g of the switched double width device 44 and 48 directly to the output device and perform the division separately. Furthermore, when C2 and C3 are executed several times, an arithmetic circuit that automatically calculates C4 can be installed, and a digital printer can be used as an output device to record the value in a numerical format. 3. Regarding the shape of the pipe, compared to the measurement place, it is also possible to use a different shape instead of a thin tube. In order to use a liquid, it becomes possible to apply pressure to the living body of the gods =ls lX1- with an intermediate structure, and the hardness side rectangle of the number range ILl'l is iJ Dragon. In order to become clinically applicable, it can also be used outside of obstetrics because it can be used to control and quickly turn 1%, and to form a medium 1 impalp into a cape 1 shape!
11) J″ Hatake!! Isao・Noibo)ship i11.11
The j center of the constant h'\ is also changed to 1j1i (・Gonaru, 1/1.1 So1's total j1''i Invention Figure 1 shows the present invention yc hard j and 111 door device h' Figure 2 is a cross-sectional view of the flow) part, showing the circuit device side and the circuit configuration of the output device j'91j.
1shi: U:1. −.

ゾ[1ブの振動イー]加器から被接触物に至るコノグラ
イj′ノスの等師回路、11/びに第4図〜第61ン1
6;1、木うI:、明の効果を(1’(II ’Ag−
j’る1cめの伺′宅フー タを/Jぐ(へ)−3゜
[1st vibration E]Conogly j'nos's equal circuit from the excitation device to the object to be contacted, 11/and Figures 4 to 61-1
6;1, Wood I:, light effect (1'(II 'Ag-
J'ru 1c's visit' house futa o/Jgu (to) -3°

Claims (2)

【特許請求の範囲】[Claims] (1)  先端に弾性膜を備え、かつ生体の粘性係数よ
り小さな粘性係数の液体を充填されたパイプと、このパ
イプの後方から前記液体ヘダイヤクラムを介して振動を
加える振動付加器と、前記液体の変位量を検出する変位
量センサと、前記液体の圧力を検出する圧力センサとを
有することを特徴とする生体組織の硬度測定装置。
(1) A pipe equipped with an elastic membrane at the tip and filled with a liquid having a viscosity coefficient smaller than that of a living body, a vibration adder that applies vibrations to the liquid from the rear of the pipe via a diacrum, and A biological tissue hardness measuring device comprising: a displacement sensor that detects the amount of displacement; and a pressure sensor that detects the pressure of the liquid.
(2)  液体が水であることを特徴とする特許請求の
範凹第1項記載の生体組織の硬度測定装置。
(2) The biological tissue hardness measuring device according to claim 1, wherein the liquid is water.
JP13295782A 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue Granted JPS5925728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295782A JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295782A JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Publications (2)

Publication Number Publication Date
JPS5925728A true JPS5925728A (en) 1984-02-09
JPS6155378B2 JPS6155378B2 (en) 1986-11-27

Family

ID=15093449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295782A Granted JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Country Status (1)

Country Link
JP (1) JPS5925728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179130A (en) * 1984-03-09 1986-08-11 リオン株式会社 Vibration unit and vibration sensation measuring apparatus using said unit
WO2005084606A1 (en) * 2004-02-25 2005-09-15 M.I. Laboratories Corporation Automatic vibration generating massager
JP4866343B2 (en) * 2004-04-06 2012-02-01 バイオリゾネーター エービー Method and apparatus for measuring water (edema)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633183U (en) * 1986-06-24 1988-01-11

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179130A (en) * 1984-03-09 1986-08-11 リオン株式会社 Vibration unit and vibration sensation measuring apparatus using said unit
WO2005084606A1 (en) * 2004-02-25 2005-09-15 M.I. Laboratories Corporation Automatic vibration generating massager
KR100728466B1 (en) * 2004-02-25 2007-06-13 가부시키가이샤 엠.아이.라보 Automatic vibration generating massager
US7468046B2 (en) 2004-02-25 2008-12-23 M.I. Laboratories Corporation Impedance-matched vibration massager
JP4866343B2 (en) * 2004-04-06 2012-02-01 バイオリゾネーター エービー Method and apparatus for measuring water (edema)

Also Published As

Publication number Publication date
JPS6155378B2 (en) 1986-11-27

Similar Documents

Publication Publication Date Title
US5303585A (en) Fluid volume sensor
Tomlinson Methods for assessing arterial stiffness: technical considerations
CN111386070B (en) Pressure measuring device, pressure measuring system and method
US3865100A (en) Apparatus for measuring blood pressure
JP2007508857A5 (en)
ATE370392T1 (en) METHOD AND DEVICE FOR DETERMINING AND/OR MONITORING THE FILL LEVEL OF A MEDIUM IN A CONTAINER OR FOR DETERMINING THE DENSITY OF A MEDIUM IN A CONTAINER
JP2008259541A (en) Ultrasonic probe and ultrasonic diagnostic system
US8206303B2 (en) Apparatus and method for simulating arterial blood flow under various pressure conditions
DE69937494D1 (en) DEVICE FOR MONITORING THE HEART TIME VOLUME BY ULTRASOUND
JP4587570B2 (en) Vascular elastic modulus measuring method, vascular elastic modulus calculating apparatus, and ultrasonic diagnostic apparatus
JPS5925728A (en) Apparatus for measuring hardness of living body tissue
JP4880972B2 (en) Blood circulation measurement device
JP2011072645A (en) Pulse wave measuring instrument and pulse wave measuring device
US11950887B2 (en) Blood pressure measurement apparatus and methods of use thereof
CN104274165B (en) Determination device and determination method
KR100868551B1 (en) Apparatus and method for imaging shear modulus within a body
CN107530051B (en) Non-invasive estimation of intravascular pressure changes using vector velocity Ultrasound (US)
Chen et al. Measurement of dynamic and static radiation force on a sphere
JP2007111244A (en) Blood circulation state measuring apparatus
US10258241B2 (en) Probe adapted to control blood flow through vessels during imaging and method of use of same
JP2711208B2 (en) Measurement method of sound velocity in tissue
US11278212B2 (en) Intracranial pressure estimating method and intracranial pressure estimating device
GB2111347A (en) Method of pulse examination
US11045164B2 (en) Noninvasive fluid and electrolyte balance monitor
Amado Rey Estimation of Blood Pressure by Image-Free, Wearable Ultrasound