JPS6155378B2 - - Google Patents

Info

Publication number
JPS6155378B2
JPS6155378B2 JP13295782A JP13295782A JPS6155378B2 JP S6155378 B2 JPS6155378 B2 JP S6155378B2 JP 13295782 A JP13295782 A JP 13295782A JP 13295782 A JP13295782 A JP 13295782A JP S6155378 B2 JPS6155378 B2 JP S6155378B2
Authority
JP
Japan
Prior art keywords
signal
vibration
hardness
compliance
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13295782A
Other languages
Japanese (ja)
Other versions
JPS5925728A (en
Inventor
Kenji Kobayashi
Hajime Murooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP13295782A priority Critical patent/JPS5925728A/en
Publication of JPS5925728A publication Critical patent/JPS5925728A/en
Publication of JPS6155378B2 publication Critical patent/JPS6155378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明は、生体へ圧力伝達媒体を介して振動を
加え、圧力伝達媒体の変位量及び印加圧力を基に
生体の軟らかさもしくは硬さを測定する生体組織
の硬度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a biological tissue hardness measurement method that applies vibration to a living body via a pressure transmission medium and measures the softness or hardness of the living body based on the amount of displacement of the pressure transmission medium and the applied pressure. It is related to the device.

この種の装置は医師の触診に代つて生体の硬度
を定量化することを可能にするが、産科、管腔臓
器の測定については内部に圧力伝達媒体を挿入す
る必要がある。このため、細いガイドワイヤの先
端に取付けられた棒の先にゴム膜を取付け、この
棒に空気振動を加えるようにしたのが周知である
が、棒の支持及びその包囲構造が複雑になり、ま
た、棒の重量に対応して振動周波数を低くせねば
ならないために、測定する周波数領域に生体微動
の雑音が入り易く、測定精度が低下し、広い帯域
にわたる周波数特性も得られないために生体の共
振特性を求める上でも不都合であつた。
This type of device makes it possible to quantify the hardness of a living body in place of a doctor's palpation, but for obstetrics and measurements of hollow organs, it is necessary to insert a pressure transmission medium inside. For this reason, it is well known to attach a rubber membrane to the tip of a rod attached to the tip of a thin guide wire and apply air vibration to this rod, but the support of the rod and its surrounding structure become complicated, In addition, because the vibration frequency must be lowered in accordance with the weight of the rod, noise from biological micromotions easily enters the measured frequency range, reducing measurement accuracy and making it impossible to obtain frequency characteristics over a wide band. This was also inconvenient in determining the resonance characteristics of.

よつて、本発明は簡単な構造で種々の形状の広
い生体範囲にわたつて振動付加を可能にし、かつ
広い周波数範囲の測定を可能にする冒頭に述べた
種の生体組織の硬度測定装置を提供することを目
的にする。
Therefore, the present invention provides an apparatus for measuring the hardness of biological tissue of the type mentioned at the beginning, which has a simple structure and enables vibration to be applied over a wide range of living organisms of various shapes, and also enables measurement in a wide frequency range. aim to do.

次に本発明を図示の実施例を基に説明する。 Next, the present invention will be explained based on the illustrated embodiments.

先ず、本発明の実施例による硬度測定装置は、
生体へ振動付加を行い、かつその応答信号を検出
するプローブと、検出信号の処理及びプローブの
駆動を行う回路装置と、測定値の表示或は記録を
行う出力装置とから構成されている。
First, the hardness measuring device according to the embodiment of the present invention is as follows:
It consists of a probe that applies vibration to the living body and detects its response signal, a circuit device that processes the detection signal and drives the probe, and an output device that displays or records measured values.

第1図は、このうちのプローブを示すもので、
同図において1は、非磁性材例えばジユラルミン
板により製作された円錘台状の駆動体3へ振動付
加を行う例えば可動コイル形の振動付加器であ
る。その容器2の上方には非磁性材のリング5が
取付けられ、この上方に同様に非磁性材の別のリ
ング6が嵌合している。このリング6の内壁に沿
つて形成された円形空隙8に水密性のダイヤフラ
ム9が弾性体を介して挿入され、両リング5,6
間の空隙10には例えばストレインゲージを利用
したダイヤフラム9の変位量を検出する変位量セ
ンサ11が水密状態で挿入されている。そしてこ
の変位量センサ11のはり11′は、ダイヤフラ
ム9と共に先端が平坦なねじ13により駆動体3
に固定されている。さらに、リング6には、コツ
ク15により脱気水を供給される溝16及び圧力
センサ17の装着される空隙18が外壁から内壁
へ連通されている。リング6の上面には、さらに
透明な材料例えばアクリルのリング20が、貼着
或は上方からのビスにより取付けられている。こ
のリング20には、その内壁に上方から途中まで
弾性体21を備えることにより例えばステンレス
製で下方の開放したパイプ22が着脱可能に嵌入
され、またリング20の内径は下端ではリング6
の内径と一致している。パイプ22の外径は例え
ば10mm程度であり、リング20からの突出部分の
高さは例えば200mmである。パイプ22の上方で
は、その切欠き部分にOリング23及びワツシヤ
24が装着され、ワツシヤ24の上に水密性の弾
性膜例えばポリウレタン膜25が載置された状態
で、キヤツプ26がねじ込まれている。そして最
終的なこれらの装着状態では、パイプ22の内側
先端で弾性膜25をキヤツプ26の上端よりも上
方へ押圧している。
Figure 1 shows one of these probes.
In the figure, reference numeral 1 denotes a vibration adder in the form of a moving coil, for example, which applies vibration to a conical driving body 3 made of a non-magnetic material such as a duralumin plate. A ring 5 made of a non-magnetic material is attached above the container 2, and another ring 6 similarly made of a non-magnetic material is fitted above this. A watertight diaphragm 9 is inserted into a circular gap 8 formed along the inner wall of this ring 6 via an elastic body, and both rings 5, 6
A displacement sensor 11 that detects the amount of displacement of the diaphragm 9 using, for example, a strain gauge is inserted into the gap 10 in a watertight manner. The beam 11' of the displacement sensor 11 is connected to the driving body 3 by a screw 13 with a flat tip along with the diaphragm 9.
Fixed. Further, in the ring 6, a groove 16 to which deaerated water is supplied by a pot 15 and a gap 18 in which a pressure sensor 17 is mounted are communicated from the outer wall to the inner wall. A ring 20 made of a transparent material such as acrylic is further attached to the upper surface of the ring 6 by pasting or using screws from above. This ring 20 is provided with an elastic body 21 halfway from the upper part on its inner wall, so that a lower open pipe 22 made of stainless steel, for example, is removably fitted into the ring 20, and the inner diameter of the ring 20 is set to 6 at the lower end.
matches the inner diameter of The outer diameter of the pipe 22 is, for example, about 10 mm, and the height of the portion protruding from the ring 20 is, for example, 200 mm. Above the pipe 22, an O-ring 23 and a washer 24 are attached to the notch part, and a cap 26 is screwed in with a watertight elastic film, such as a polyurethane film 25, placed on the washer 24. . In the final installed state, the inner end of the pipe 22 presses the elastic membrane 25 higher than the upper end of the cap 26.

第2図は本発明の回路装置及び出力装置を示す
もので、先ず周波数可変の正弦波の発振器31と
その発振信号の電力増幅器32とが振動付加器1
の駆動回路を構成している。また、変位量センサ
11の検出信号を増幅する増幅器41と、振動的
な変位量信号のみを選択するハイパスフイルタ4
2と、通過してきた振動成分を直流信号に変換す
る整流器43と、直流増幅器44と、圧力センサ
17に所属する対応の増幅器45と、ハイパスフ
イルタ46と、整流器47と、直流増幅器48
と、直流増幅器44の出力信号を直流増幅器48
の出力信号で割算するアナログ割算回路49と、
割算動作の際に生じる雑音を除去してコンプライ
アンス信号を出力するローパスフイルタ50と、
増幅器45の出力信号中から直流成分のみを通過
させて静圧信号を出力するローパスフイルタ51
とで両センサ11,17の信号処理回路を構成し
ている。60はこの信号処理回路で発生された静
圧及びコンプライアンス信号を表示、メータ指示
或は記録する出力装置、例えばペンレコーダであ
る。
FIG. 2 shows the circuit device and output device of the present invention. First, a frequency variable sine wave oscillator 31 and a power amplifier 32 for the oscillation signal are connected to the vibration adder 1.
It constitutes the drive circuit. Also, an amplifier 41 that amplifies the detection signal of the displacement sensor 11, and a high-pass filter 4 that selects only the vibrational displacement signal.
2, a rectifier 43 that converts the vibration component that has passed into a DC signal, a DC amplifier 44, a corresponding amplifier 45 belonging to the pressure sensor 17, a high-pass filter 46, a rectifier 47, and a DC amplifier 48.
and the output signal of the DC amplifier 44 is sent to the DC amplifier 48.
an analog division circuit 49 that divides by the output signal of
a low-pass filter 50 that removes noise generated during the division operation and outputs a compliance signal;
A low-pass filter 51 that passes only the DC component from the output signal of the amplifier 45 and outputs a static pressure signal.
and constitute a signal processing circuit for both sensors 11 and 17. Reference numeral 60 denotes an output device, such as a pen recorder, for displaying, metering, or recording the static pressure and compliance signals generated by this signal processing circuit.

測定に際しては、コツク15を開いて脱気水2
8を溝16を通してリング6の内側の円筒状空隙
及びパイプ22内へ新たに充填するか、透明なリ
ング20を通して脱気水28の発泡等をチエツク
して必要に応じてパイプ22をはずしてパイプ2
2及びリング6,20の洗浄を行い脱気水28の
交換を行う。このような状態での駆動体3から生
体に至るまでの測定に関連する振動系についての
コンプライアンス等価回路は、第3図に示すよう
に振動圧力に直列に加わる駆動体3、ねじ13等
の剛性振動部分のコンプライアンスC1と、生体
組織のコンプライアンスC4と、これに直列に加
わる弾性膜25のコンプライアンスC3と、これ
らC3,C4に並列に加わる主にパイプ22の側
方への逃げのコンプライアンスC2とから成る生
体のコンプライアンスC4に対して無視できない
直並列回路になる。したがつて、予め先ず弾性膜
25を剛体面に接触させてC4=0の状態にして
A―A′点間の振動圧及び振動量を基にC2の値
を求め、次に弾性膜25をフリー即ちC4=∞の
状態でC2及びC3の合成値を求めてC3の値も
決定しておく。そして弾性膜25を生体組織に当
ててC2〜C4の合成値を求めて既知のC2及び
C3の値を基にC4を算出する。
When making measurements, open the pot 15 and add degassed water 2.
8 through the groove 16 into the cylindrical space inside the ring 6 and into the pipe 22, or check the foaming of the degassed water 28 through the transparent ring 20 and remove the pipe 22 as necessary. 2
2 and the rings 6 and 20, and the degassed water 28 is replaced. The compliance equivalent circuit for the vibration system related to the measurement from the drive body 3 to the living body in such a state is as shown in FIG. From the compliance C1 of the vibrating part, the compliance C4 of the living tissue, the compliance C3 of the elastic membrane 25 applied in series to these, and the compliance C2 mainly of the lateral escape of the pipe 22 applied in parallel to these C3 and C4. This results in a series-parallel circuit that cannot be ignored with respect to the compliance C4 of the living body. Therefore, first, the elastic membrane 25 is brought into contact with a rigid body surface so that C4=0, and the value of C2 is determined based on the vibration pressure and vibration amount between points A and A', and then the elastic membrane 25 is The value of C3 is also determined by calculating the combined value of C2 and C3 in a free state, that is, C4=∞. Then, the elastic membrane 25 is applied to the living tissue to obtain a composite value of C2 to C4, and C4 is calculated based on the known values of C2 and C3.

具体的には、先ず発振器31の周波数を設定
し、その増幅信号で振動付加器1を駆動すること
により、駆動体3がダイヤフラム9及びねじ13
の先端面を振動させて脱気水を設定周波数で振動
させる。したがつて、圧力センサ17及び変位量
センサ11は、弾性膜25の測定さるべき被接触
物への押圧力に対応した静圧及び静圧変位量と共
に被接触物に加わる振動圧力及びそのコンプライ
アンスに関連する振動変位量をそれぞれ検出す
る。先ず、検出された変位量信号は増幅器41で
増幅された後、ハイパスフイルタ42においてコ
ンプライアンスの測定に必要な振動成分のみを通
過させ、整流器43で直流信号に変換された後、
さらに直流増幅器44で増幅されてアナログ割算
回路49へ被除算信号として供給される。一方、
検出された圧力信号はハイパスフイルタ46で振
動成分のみを選択して増幅及び直流変換されてア
ナログ割算回路49へ除数信号として供給され、
したがつてアナログ割算回路49では逐次自動的
に被接触物に関連した合成コンプライアンスの演
算が行われ、ローパスフイルタ50からコンプラ
イアンス信号が出力される。また、増幅器45か
ら出力される圧力信号のうち直流成分をローパス
フイルタ51が選択することにより、静圧信号が
出力される。コンプライアンス信号及び静圧信号
は出力装置60に供給され、それぞれの振幅から
各測定条件に対するダイヤフラム9より先方の合
成コンプライアンスが測定され、同時にその測定
時の脱気水の静圧も分る。このようにして所要の
周波数帯域及び静圧範囲にわたり、予めC2及び
C3を測定してそれぞれの値を求めておく。
Specifically, first, by setting the frequency of the oscillator 31 and driving the vibration adder 1 with the amplified signal, the driver 3 moves the diaphragm 9 and the screw 13.
vibrates the tip of the degassed water at a set frequency. Therefore, the pressure sensor 17 and the displacement sensor 11 measure the static pressure and static pressure displacement corresponding to the pressing force of the elastic membrane 25 on the object to be measured, as well as the vibration pressure applied to the object and its compliance. Each related vibration displacement amount is detected. First, the detected displacement signal is amplified by an amplifier 41, passed through a high-pass filter 42 to pass only vibration components necessary for compliance measurement, and converted into a DC signal by a rectifier 43.
The signal is further amplified by a DC amplifier 44 and supplied to an analog divider circuit 49 as a divided signal. on the other hand,
A high-pass filter 46 selects only the vibration component of the detected pressure signal, amplifies it, converts it into DC, and supplies it to an analog divider circuit 49 as a divisor signal.
Therefore, the analog divider circuit 49 sequentially and automatically calculates the composite compliance related to the object to be touched, and the low-pass filter 50 outputs a compliance signal. Furthermore, the low-pass filter 51 selects the DC component of the pressure signal output from the amplifier 45, thereby outputting a static pressure signal. The compliance signal and the static pressure signal are supplied to the output device 60, and from their respective amplitudes, the composite compliance beyond the diaphragm 9 for each measurement condition is measured, and at the same time, the static pressure of the degassed water at the time of the measurement is also known. In this way, C2 and C3 are measured in advance over the required frequency band and static pressure range to obtain their respective values.

生体組織のコンプライアンスの測定時には、同
様にして出力装置60において静圧を監視するこ
とにより弾性膜25の押圧力を調整しつつC2〜
C4の合成値を所定の周波数或は周波数帯域にわ
たり測定し、既知のC2及びC3の値を基にC4
を算出する。
When measuring the compliance of living tissue, the output device 60 similarly monitors the static pressure to adjust the pressing force of the elastic membrane 25 while C2 to
Measure the composite value of C4 over a predetermined frequency or frequency band, and calculate C4 based on the known values of C2 and C3.
Calculate.

第4図は以上説明した硬度測定装置の効果を確
認するために、生体の軟組織に力学的挙動の類似
したRTシリコンゴムの添加材の量を加えて硬度
を変化させつつ、そのステイフネス(コンプライ
アンスの逆数)を測定したもので、硬度に対応し
てスチフネスの測定値が精度良く変化している。
第5図は硬度の異るシリコンゴムについての共振
特性を測定したもので、硬度自体だけでなく硬度
に対応してシフトとした共振点も測定されてい
る。第6図は脛骨上における健康な女性2人(実
線)及び浮腫の女性患者2人(点線)に対するス
テイフネスの周波数特性の測定データであり、浮
腫を生体組織の硬度及び共振周波数から検出でき
ることが確認された。
Figure 4 shows that in order to confirm the effect of the hardness measuring device described above, we added an amount of RT silicone rubber additive with similar mechanical behavior to the soft tissue of a living body and changed its stiffness (compliance). The stiffness measurement value changes with high accuracy in response to hardness.
FIG. 5 shows measurements of the resonance characteristics of silicone rubbers having different hardnesses, in which not only the hardness itself but also the resonance point shifted in accordance with the hardness was measured. Figure 6 shows measurement data of frequency characteristics of stiffness on the tibia for two healthy women (solid line) and two female patients with edema (dotted line), confirming that edema can be detected from the hardness and resonance frequency of living tissue. It was done.

尚、パイプ22に充填する液体としては、粘性
係数、入手の容易性、生体への無害、化学的に不
活性等の観点で水、特に弾性を伴わない脱気水が
好ましいが、生体の粘性係数よりも小さな粘性係
数の他の液体を使用することも可能である。ちな
みに、水の粘性係数は生体のすべり粘性係数に対
して10-4程度のオーダと考えられるが、10-2程度
のオーダの液体でも高精度に測定可能である。回
路装置としては、割算回路49の両入力信号を入
れ替えてステイフネス信号を出力させることもで
き、また両増幅器44,48の出力信号を直接出
力装置に加えて割算を別途に行わせることもでき
る。
The liquid to be filled in the pipe 22 is preferably water, especially degassed water without elasticity, from the viewpoints of viscosity coefficient, easy availability, harmlessness to living organisms, chemical inertness, etc. It is also possible to use other liquids with lower viscosity coefficients. Incidentally, the viscosity coefficient of water is thought to be on the order of 10 -4 compared to the sliding viscosity of living organisms, but even liquids on the order of 10 -2 can be measured with high precision. As a circuit device, both input signals of the divider circuit 49 can be exchanged to output a stiffness signal, or the output signals of both amplifiers 44 and 48 can be directly added to the output device to perform division separately. can.

さらに、C2及びC3が設定されると、自動的
にC4を算出する演算回路を設け、出力装置とし
てその値を数値的に記録するデイジタルプリンタ
を用いることも考えられる。パイプの形状につい
ては測定個所に応じて細管でなく他の形状にする
ことも考えられる。
Furthermore, it is also conceivable to provide an arithmetic circuit that automatically calculates C4 when C2 and C3 are set, and to use a digital printer that numerically records the values as an output device. Regarding the shape of the pipe, it is also possible to use other shapes instead of a thin tube depending on the measurement location.

以上、本発明により生体への振動伝達媒体とし
て液体を用いることにより簡単な構造で種々の生
体部位へ圧力付加が可能となり、また広い周波数
範囲の硬度測定が可能になるために臨床応用上も
極めて有意義である。特に、媒体パイプを細管状
に形成することもできるので産科分野での子宮頚
管の硬度測定等への応用も可能になる。
As described above, the present invention makes it possible to apply pressure to various biological parts with a simple structure by using a liquid as a vibration transmission medium to the living body, and also makes it possible to measure hardness in a wide frequency range, making it extremely suitable for clinical applications. Meaningful. In particular, since the medium pipe can be formed into a thin tube shape, it can also be applied to measurements of the hardness of the cervix in the field of obstetrics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に硬度測定装置のプローブ部分
の断面図、第2図はその回路装置及び出力装置部
分の回路構成を示すブロツク図、第3図はプロー
ブの振動付加器から被接触物に至るコンプライア
ンスの等価回路並びに第4図〜第6図は本発明の
効果を確認するための測定データを示す。 1…振動付加器、3…駆動体、5,6,20…
リング、9…ダイヤフラム、11…変位量セン
サ、17…圧力センサ、22…パイプ、25…弾
性膜。
Fig. 1 is a sectional view of the probe portion of the hardness measuring device according to the present invention, Fig. 2 is a block diagram showing the circuit configuration of the circuit device and output device portion, and Fig. 3 is a cross-sectional view of the probe portion of the hardness measuring device according to the present invention. 4 to 6 show measurement data for confirming the effects of the present invention. 1... Vibration adder, 3... Drive body, 5, 6, 20...
Ring, 9...Diaphragm, 11...Displacement sensor, 17...Pressure sensor, 22...Pipe, 25...Elastic membrane.

Claims (1)

【特許請求の範囲】 1 先端に弾性膜を備え、かつ生体の粘性係数よ
り小さな粘性係数の液体を充填されたパイプと、
このパイプの後方から前記液体へダイヤフラムを
介して振動を加える振動付加器と、前記液体の変
位量を検出する変位量センサと、前記液体の圧力
を検出する圧力センサとを有することを特徴とす
る生体組織の硬度測定装置。 2 液体が水であることを特徴とする特許請求の
範囲第1項記載の生体組織の硬度測定装置。
[Claims] 1. A pipe having an elastic membrane at its tip and filled with a liquid having a viscosity coefficient lower than that of a living body;
It is characterized by having a vibration adder that applies vibration to the liquid from the rear of the pipe via a diaphragm, a displacement sensor that detects the amount of displacement of the liquid, and a pressure sensor that detects the pressure of the liquid. A device for measuring the hardness of living tissues. 2. The biological tissue hardness measuring device according to claim 1, wherein the liquid is water.
JP13295782A 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue Granted JPS5925728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295782A JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295782A JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Publications (2)

Publication Number Publication Date
JPS5925728A JPS5925728A (en) 1984-02-09
JPS6155378B2 true JPS6155378B2 (en) 1986-11-27

Family

ID=15093449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295782A Granted JPS5925728A (en) 1982-07-31 1982-07-31 Apparatus for measuring hardness of living body tissue

Country Status (1)

Country Link
JP (1) JPS5925728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633183U (en) * 1986-06-24 1988-01-11

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179130A (en) * 1984-03-09 1986-08-11 リオン株式会社 Vibration unit and vibration sensation measuring apparatus using said unit
JP4109640B2 (en) 2004-02-25 2008-07-02 株式会社エム・アイ・ラボ Automatic excitation massager
SE525445C2 (en) * 2004-04-06 2005-02-22 Bioresonator Ab Measuring and testing device for oedema, comprises measuring head with resonantly vibrating sensor for pressing against oedema

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633183U (en) * 1986-06-24 1988-01-11

Also Published As

Publication number Publication date
JPS5925728A (en) 1984-02-09

Similar Documents

Publication Publication Date Title
CA2176829C (en) Flexible diaphragm tonometer and method of use
US4009707A (en) Automatic acoustic impedance meter
KR20200093589A (en) Pressure measuring device, pressure measuring system and method for measuring the pressure and/or elasticity of a vein or organ and combined with an ultrasonic measuring unit
JPS5944049B2 (en) cerebral pressure meter
EP0135325A2 (en) A method and device for non-invasively monitoring the instantaneous fluctuations in viscoelastic-related properties of a living tissue
GB2228330A (en) Non-invasive measurement of pressure
JP4587570B2 (en) Vascular elastic modulus measuring method, vascular elastic modulus calculating apparatus, and ultrasonic diagnostic apparatus
Mallos An electrical caliper for continuous measurement of relative displacement
JPS6155378B2 (en)
US3763696A (en) Apparatus for determining the intraocular pressure
US5195536A (en) Self-adhering noninvasive intracorporeal movement detector
JP2021520109A (en) How to use the natural frequency shift mechanism to read the sensor response with continuous wave excitation
JP3907267B2 (en) Vibrator with built-in sensor for measuring mechanical properties of biological surface
US4471646A (en) Blood pressure cuff calibration system
KR20080090120A (en) Apparatus and method for imaging shear modulus within a body
US10258241B2 (en) Probe adapted to control blood flow through vessels during imaging and method of use of same
RU104437U1 (en) GERASCHENKO TONOMETER
CA2088353C (en) Method and apparatus for measuring intracranial pressure
Davis et al. Improved transducer for external recording of arterial pulse waves
JP2788452B2 (en) Vascular stiffness measuring device
JPS5918052B2 (en) Pulse wave meter
JPH0347851B2 (en)
Zhang et al. Viscoelasticity of lung tissue with surface wave method
Foreman et al. Generation of sinusoidal fluid pressures of relatively high frequency.
US20210076954A1 (en) Blood pressure measurement apparatus and methods of use thereof