JPS5925244A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5925244A
JPS5925244A JP57133711A JP13371182A JPS5925244A JP S5925244 A JPS5925244 A JP S5925244A JP 57133711 A JP57133711 A JP 57133711A JP 13371182 A JP13371182 A JP 13371182A JP S5925244 A JPS5925244 A JP S5925244A
Authority
JP
Japan
Prior art keywords
region
diode
substrate
junction
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57133711A
Other languages
Japanese (ja)
Inventor
Fumiaki Fujii
文明 藤井
Shiro Hagiwara
萩原 史郎
Kazuo Daimon
一夫 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57133711A priority Critical patent/JPS5925244A/en
Publication of JPS5925244A publication Critical patent/JPS5925244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To eliminate the need for a wiring, an electrode pad, a prober, etc. on trimming by thermally breaking a P-N junction formed to a semiconductor base body selectively by laser beams and short-circuiting a semiconductor region and the semiconductor base body. CONSTITUTION:An FETQ consisting of an N<+> type source region 3, a drain region 4, a gate oxide film 5 and a polysilicon gate electrode 6 is formed to a P well 2 formed to one main surface of an N<-> type silicon substrate 1. The P<+> type semiconductor region 8 constituting a diode D is formed in a substrate region surrounded by a field SiO2 film 7, and a polysilicon resistor R is further formed. A final passivation film 14 is formed, and laser beams 15 are irradiated from the upper section of the diode D. Laser beams 15 reach the substrate 1 side through the irradiation, and the P-N junction of the diode is broken. Accordingly, the region 8 and the substrate 1 are short-circuited, and changed into mere resistors.

Description

【発明の詳細な説明】 本発明は半導体装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor device.

演羽増幅器においては、入力段に接続された抵抗を調整
してゲインをトリミングすることがある。
In a performance amplifier, the gain may be trimmed by adjusting a resistor connected to the input stage.

本発明者は、そうしたゲイントリミングをはじめとする
種りの回路投首1にとって極めて有用な構造を見出1〜
、本発明に到達したものである。
The present inventor has discovered a structure 1 to 1 which is extremely useful for various types of circuits 1 including such gain trimming.
, this invention has been achieved.

即ち、本発明は、半導体基体に形成されたPN接合がレ
ーザー光によって選択的に熱破壊され、この選択的な短
絡構造によって例えば上述したトリミング等が行なわれ
るようになしたことを特徴としている。こうしたレーザ
ー照射による短絡構造は、従来の電流破壊方式における
如き配線+′電極パッド、プローバ等が全く不要であり
、しかもファイナルパッシベーション膜形成後又ハハソ
ケージ封止後のレーザー照射が可能であって製品の完成
に要する時間を大幅に短縮することができろ。
That is, the present invention is characterized in that a PN junction formed on a semiconductor substrate is selectively thermally destroyed by laser light, and this selective short-circuit structure is used to perform, for example, the above-mentioned trimming. This type of short-circuit structure by laser irradiation does not require wiring + electrode pads, probers, etc. as in the conventional current breakdown method, and furthermore, laser irradiation can be performed after the final passivation film is formed or after the cage is sealed. The time required for completion can be significantly reduced.

更ニ、レーザー光のスポット径は数77 ′n1と微小
に絞れることから、熱破壊領域を小さくし、微細加工を
選択的に行なうことができる。
Furthermore, since the spot diameter of the laser beam can be narrowed down to a microscopic number of several 77'n1, the thermal destruction area can be made small and fine processing can be selectively performed.

以下、本発明の実施例を図面について詳イ[[1に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明が適用されるゲイントリミング回路の
等価回路を示すものであって、演算増幅器の入力段には
入力抵抗R、n、微調整用の各抵抗r、スイッチ用の各
MISFETQおよびQ′が接続され、またその出力段
には出力抵抗r(fが接続されている。そして各F E
 T Q、のゲートには、ポリS1抵抗F(及びPN接
合ダイオードDが各可、源との間に接続されている。
FIG. 1 shows an equivalent circuit of a gain trimming circuit to which the present invention is applied, in which the input stage of the operational amplifier includes input resistors R, n, resistors r for fine adjustment, and MISFETs Q for switches. and Q' are connected, and an output resistor r(f is connected to its output stage. And each F E
A poly S1 resistor F (and a PN junction diode D is connected between the gate of TQ and the source of each transistor).

このゲイントリミング回路におい−〔は、まずセンター
のF E T Q、’を介してゲインを測定後に、各F
 E T Qのいずれかをオンさせ、抵抗r分によって
入力抵抗をyh fpla t、てゲインをトリミング
することができる。このために、本実施例によれば、」
二記スイッチ用1” E T Qの部分が第2図の如く
に構成され、ダイオードDがレーザー照射によって選択
的に破壊されろようにしている。
In this gain trimming circuit, after first measuring the gain through the center FETQ,',
The gain can be trimmed by turning on either E T Q and adjusting the input resistance by the resistor r. To this end, according to this embodiment, "
The 1" ET Q section for the second switch is constructed as shown in FIG. 2, so that the diode D can be selectively destroyed by laser irradiation.

即ち、N−型シリコン基板1の一生面に形成されたP型
ウェル2にN1型ソース領域3及びドレイン領域4、ゲ
ート酸化膜5、ポリシリコンゲート′rri極6からな
るF E T Qが設けられ、またフィールドSiQ、
膜7で[71まれだ基板領域には上記のダイオードDを
構成−[ろP+型半導体領域8が形成され、更にフィー
ルドSiQ、膜7−にに上記のポリシリコン抵抗it 
(こAしはゲート軍、極6と同時に形成されてよい)が
設けられている。なお、図中の9はリンガラス膜、10
.11.12.13は各アルミニウム軍、極、14はフ
ァイナルパソシベーシ1ン膜である。
That is, a FETQ consisting of an N1 type source region 3, a drain region 4, a gate oxide film 5, and a polysilicon gate'rri electrode 6 is provided in a P type well 2 formed on the whole surface of an N- type silicon substrate 1. and field SiQ,
In the film 7, a P+ type semiconductor region 8 is formed in which the diode D described above is formed, and the polysilicon resistor it is formed in the field SiQ and the film 7-.
(This is a gate army, which may be formed at the same time as pole 6). In addition, 9 in the figure is a phosphorus glass film, 10
.. 11, 12, and 13 are each aluminum layer and pole, and 14 is a final passivation film.

このようにファイナルパソシベ〜ジョン(更にハパッケ
ージ制止)を施した後に、第3図の如くに所定のダイオ
ードD上からレーザー光15を照射するうこのレーザー
光は例えばN、レーザーで発生せしめられ、波長510
0A、対物レンズ面前のエネルギー60mV、パルス幅
IQns、繰返し周波数1〜50)1z、スポット径3
μmφであってよい。このレーザー照射によって、各表
面膜を通してレーザー光15が基板1側へ到達し、ダイ
オードDのPN接合が熱破壊されろ。この結果、ダイオ
ードDのP 型領域8と基板1とが短絡せしめられ、第
4図に等測的に示したダイオードDが単なる抵抗Il′
に変化し、P+型領域8と基板lとの間にオーミック接
合が生じろことになる。このため、レーザー照射前には
FETQのノード(ゲート)には−5■が印加されてF
E T Qがオフとな)っているか、上記のレーザー服
射によるダイオードDの破壊後は基板電圧(+5 V 
)が与えられることになり、FETQがオンとなる。従
って、この選択重圧導通せしめられたF E T Qを
弁じて枡抗r分、具体的に目−nr(nはR、oからみ
た抵抗rの数少が入力抵抗として入るから、この増幅器
のゲインを所望の値にトリミング1″ることかできる。
After performing the final passivation (further package restraint) in this way, the laser beam 15 is emitted from above a predetermined diode D, as shown in FIG. , wavelength 510
0A, energy in front of the objective lens 60mV, pulse width IQns, repetition frequency 1 to 50) 1z, spot diameter 3
It may be μmφ. By this laser irradiation, the laser beam 15 reaches the substrate 1 side through each surface film, and the PN junction of the diode D is thermally destroyed. As a result, the P-type region 8 of the diode D and the substrate 1 are short-circuited, and the diode D shown isometrically in FIG. 4 becomes a mere resistor Il'.
This results in an ohmic junction between the P+ type region 8 and the substrate l. Therefore, -5■ is applied to the node (gate) of FETQ before laser irradiation, and FET
The substrate voltage (+5 V
) is given, and FETQ is turned on. Therefore, by controlling this selective heavy pressure conduction FETQ, the square resistance r is calculated, specifically -nr (n is R, and since a fraction of the resistance r seen from o enters as the input resistance, the amplifier's The gain can be trimmed 1'' to the desired value.

上記したことから明らかなよりに、このゲイントリミン
グのだめのレーザー照射は!棟品の半完成又は守成状態
で行なえるから、いわゆるTΔ′r(Turn Aro
und Time )を大幅に短縮できる。
It is clear from the above that this laser irradiation is useless for gain trimming! Since it can be carried out with the ridge piece in a semi-completed or guarded state, it is possible to perform the so-called TΔ'r (Turn Aro
and time) can be significantly shortened.

従来の電流破壊方式では、プロピングチスト後に熱処理
下4?が入り、特性の変動が生じ易いが、本笑施例では
そのようなことはなく、かつ配線、バッド及びグローバ
が不要となり、歩留及び作業性も非′帛に向上すること
になる。しかも、レーザー1[+4射によることから、
レーザー光のエネルギーが樋方向に拡がり価く、小スポ
ット径に絞れ、PN接合を選択的に破壊−「ろことがで
きイ)。
In the conventional current breakdown method, heat treatment is performed after propagation test. However, this embodiment does not cause such a problem, and also eliminates the need for wiring, pads, and glovers, and significantly improves yield and workability. Moreover, since it is based on laser 1 [+4 shots,
The energy of the laser beam spreads in the direction of the gutter and can be narrowed down to a small spot diameter, selectively destroying the PN junction.

第6図及び第7ジjは、別の実施例を示すものである。6 and 7 show another embodiment.

例えば、P″i(リソース領域23及びドレイン領11
1424 、  ゲートtry析26からなるPチャネ
ルMIS F ET Qにおいて、アルミニウムの市、
源配紳20をドレイン領域24に接続しようとした場合
、ドレイン領域24上に配線20炒着用のコンタクトポ
ールを形成し忘れることがある。この場合圧はドレイン
領域24へは所定の宵源朗、圧が供給されないことにな
り、不都合である。
For example, P″i (resource region 23 and drain region 11
1424, P-channel MISFET Q consisting of gate try analysis 26, aluminum city,
When attempting to connect the source wiring 20 to the drain region 24, it may be forgotten to form a contact pole for frying the wiring 20 on the drain region 24. In this case, a predetermined pressure is not supplied to the drain region 24, which is disadvantageous.

そこで、第7図のよう罠、上述したと同様に、レーザー
光15を照射してドレイン領域24と基板1との間のP
N接合を熱的に破壊することによって、両者間を短絡さ
せ、ドレイン領域24に基板電圧(アルミニウム配線2
0によろ■、源叩圧と同じ可、圧)を供給することがで
きる。
Therefore, as shown in FIG.
By thermally destroying the N junction, a short circuit is created between the two, and the substrate voltage (aluminum wiring 2
It is possible to supply the same pressure as the original beating pressure).

なお、上述した実施例は他のデバイスヌは回路、例えば
A/I)、D/A変換器等の若量ヌは抵抗トリミング、
FROMの書込み、RAMの不良ビットの救済、不良解
析9周波数又は方式選択等の機能選択、マスタースライ
ス方式に応用可能である、上述のトリミング以外にも、
電源ラインの省略。
In addition, in the above-mentioned embodiment, other devices are circuits (for example, A/I), D/A converters, etc. are resistor trimming,
In addition to the above-mentioned trimming, which can be applied to FROM writing, repair of defective bits in RAM, selection of functions such as failure analysis 9 frequency or method selection, and master slice method,
Omission of power line.

半完成品での配線変更等を実駅できろ。また、熱破壊さ
れるべきPN接合は、上述のPNダイオ−トに限らず、
P型基板に形成したN型領域によるダイオードもイ史用
+57能である。
Please make wiring changes to the semi-finished product at the actual station. Furthermore, the PN junction to be thermally destroyed is not limited to the above-mentioned PN diode.
A diode with an N-type region formed on a P-type substrate also has a +57 function.

図面のfハ゛iji′!な説すj 第1同はイ・発明の実施例によろ演n増幅器の等価回路
図、 第2図はスイッチ用のM I S FE’I’部分の断
面図、 卯、3図はレージ“−照射時のダイメート部分の断面図
、 第4図はレーザー照射前のダイオード、第5図はレーザ
ー照射後の同ダイ牙−ド部分、第6図は別の例によろM
 I S F E Tの平面図、第7図はレーザー照射
時の第7図のX−X線一部断面図である。
The drawing's f-hiji'! Figure 1 is an equivalent circuit diagram of an amplifier according to an embodiment of the invention, Figure 2 is a cross-sectional view of the MISFE'I' part for the switch, Figure 3 is a circuit diagram of the amplifier. - A cross-sectional view of the dimate part during irradiation, Figure 4 shows the diode before laser irradiation, Figure 5 shows the same diode part after laser irradiation, and Figure 6 shows another example.
FIG. 7 is a plan view of ISFET, and is a partial sectional view taken along the line X--X in FIG. 7 during laser irradiation.

9−リンガラス膜、14・フアイナルパツシベーシヨン
膜、15・・レーザー光、20・・γδ1源配線、Q、
 Q’−〜l I S FE T、IJ−・ヅイオード
、r −)リミング用の徂抗、1(・・ボ’JSitl
li抗。
9-Phosphorus glass film, 14. Final passivation film, 15. Laser light, 20. γδ1 source wiring, Q.
Q'-~l I S FET, IJ-・diode, r-) Rimming resistance, 1 (...Bo'JSitl
li anti.

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型の半導体基体とこの半導体基体に形成さ
れた第2導電型の半導体領域とによってPN接合が形成
され、このPN接合が前記半導体基体上からのレーザー
光の照射によって選択的に熱破壊され、この熱破壊で前
記半導体領域と前記半導体基体とが短絡せしめられてい
シ)ことを特徴とする半導体装置。
1. A PN junction is formed by a semiconductor substrate of a first conductivity type and a semiconductor region of a second conductivity type formed on this semiconductor substrate, and this PN junction is selectively irradiated with laser light from above the semiconductor substrate. 1. A semiconductor device characterized in that the semiconductor region is thermally destroyed, and the semiconductor region and the semiconductor substrate are short-circuited by the thermal destruction.
JP57133711A 1982-08-02 1982-08-02 Semiconductor device Pending JPS5925244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133711A JPS5925244A (en) 1982-08-02 1982-08-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133711A JPS5925244A (en) 1982-08-02 1982-08-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5925244A true JPS5925244A (en) 1984-02-09

Family

ID=15111103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133711A Pending JPS5925244A (en) 1982-08-02 1982-08-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5925244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145514A (en) * 1986-12-08 1988-06-17 Toshiba Corp Stabilizing circuit for base current of transistor
US5013678A (en) * 1986-11-18 1991-05-07 Siemens Aktiengesellschaft Method of making an integrated circuit comprising load resistors arranged on the field oxide zones which separate the active transistor zones
US5075250A (en) * 1991-01-02 1991-12-24 Xerox Corporation Method of fabricating a monolithic integrated circuit chip for a thermal ink jet printhead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013678A (en) * 1986-11-18 1991-05-07 Siemens Aktiengesellschaft Method of making an integrated circuit comprising load resistors arranged on the field oxide zones which separate the active transistor zones
JPS63145514A (en) * 1986-12-08 1988-06-17 Toshiba Corp Stabilizing circuit for base current of transistor
US5075250A (en) * 1991-01-02 1991-12-24 Xerox Corporation Method of fabricating a monolithic integrated circuit chip for a thermal ink jet printhead

Similar Documents

Publication Publication Date Title
USRE36024E (en) Electrostatic discharge protection circuit for semiconductor device
US3303400A (en) Semiconductor device complex
KR920003467B1 (en) Trimming element and electrical short-circuit thereof
JP3689154B2 (en) Electronic circuit manufacturing method, semiconductor material wafer, and integrated circuit
JPS6241432B2 (en)
JPH0680820B2 (en) Semiconductor device with overvoltage protection function and method of manufacturing the same
JPS5925244A (en) Semiconductor device
US6441676B1 (en) Externally programmable antifuse
JPH0383361A (en) Semiconductor device
US8809165B2 (en) Method for fusing a laser fuse and method for processing a wafer
US5446310A (en) Integrated circuit power device with external disabling of defective devices and method of fabricating same
US5008729A (en) Laser programming of semiconductor devices using diode make-link structure
CN110739954B (en) Trimming circuit
US11670388B2 (en) Trimming method
JPS5843907B2 (en) Semiconductor integrated circuit and its circuit programming method
US5392187A (en) Integrated circuit power device with transient responsive current limiting means
JPS63299139A (en) Method of melting fuse
JPS6146045A (en) Semiconductor device
JPS5843906B2 (en) Semiconductor integrated circuit and its circuit programming method
JP3101364B2 (en) Test device for insulated gate bipolar transistor
JP2818959B2 (en) Insulated gate bipolar transistor
JPS59229838A (en) Semiconductor integrated circuit
JPS6245701B2 (en)
JPS6321875B2 (en)
JPS6031261A (en) Semiconductor integrated circuit device