JPS592349A - Formation of oxide superconductor circuit - Google Patents

Formation of oxide superconductor circuit

Info

Publication number
JPS592349A
JPS592349A JP57109898A JP10989882A JPS592349A JP S592349 A JPS592349 A JP S592349A JP 57109898 A JP57109898 A JP 57109898A JP 10989882 A JP10989882 A JP 10989882A JP S592349 A JPS592349 A JP S592349A
Authority
JP
Japan
Prior art keywords
pattern
substrate
oxide
thin film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57109898A
Other languages
Japanese (ja)
Other versions
JPH0656903B2 (en
Inventor
Yoichi Enomoto
陽一 榎本
Yoshikazu Hidaka
日高 義和
Toshiaki Murakami
敏明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57109898A priority Critical patent/JPH0656903B2/en
Publication of JPS592349A publication Critical patent/JPS592349A/en
Publication of JPH0656903B2 publication Critical patent/JPH0656903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the pattern formation of the accuracy to several mum without changing characteristics by a method wherein a pattern of organic photo resist is formed on a substrate or a patterned substrate, next an oxide thin film is vapor-deposited, thereafter the organic photo resist is removed by combustion and evaporation, and thus the pattern of the oxide thin film is formed. CONSTITUTION:The pattern is formed by using normal phenol organic photo resist, and thereafter an insulation film (e.g. Al2O3) is deposited on the substrate 1 with the resist pattern 2 by a vacuum deposition method at a substrate temperature less than approx. 300 deg.C, the deposition temperature for the organic photo resist in vacuum. Afterwards, it is kept in an atmospheric furnace at 450 deg.C in oxygen for an hour or more, and then the resist 2 is removed by combustion and evaporation, resulting in the formation of the pattern.

Description

【発明の詳細な説明】 本発明は、酸化物超伝導体回路作製過程の配線パターン
又は絶縁層形成におけるレジスト材料の使用方法に関連
した、酸化物超伝導体回路形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming an oxide superconductor circuit, which is related to a method of using a resist material in forming a wiring pattern or an insulating layer in the process of forming an oxide superconductor circuit.

従来、酸化物超伝導体の回路形成用レジストとして、有
機ホトレジストが使用されているが、該レジストでは、
基板温度が高くなると固化し、一般のりムーバ−液では
除却することが困難となる。超伝導体の回路を製作する
には、上部電極、取出し電極あるいは絶縁層等の薄膜を
順次形成する必要があるが、この工程で上述の基板温度
が上げられない制約は、膜の形成時間の増大あるいは膜
間の接着強度低下等の欠点を回路系に残し、極低温と室
温との間の熱サイクルにより素子劣化を生じることにな
っていた。
Conventionally, organic photoresists have been used as resists for forming circuits of oxide superconductors.
When the substrate temperature rises, it solidifies and becomes difficult to remove with ordinary glue mover liquid. To fabricate a superconductor circuit, it is necessary to sequentially form thin films such as the upper electrode, extraction electrode, and insulating layer, but the above-mentioned restriction that the substrate temperature cannot be raised in this process is due to the film formation time. This leaves defects in the circuit system, such as an increase in bond strength or a decrease in the adhesive strength between films, and causes element deterioration due to thermal cycling between cryogenic temperatures and room temperature.

本発明は、酸化物薄膜がもつ化学的安定性に注目したレ
ジストの使用方法を特徴とし、その目的は、高基板温度
でのリフトオフ工程を行う酸化物超伝導体回路形成法を
提供することにある。
The present invention is characterized by a method of using a resist that focuses on the chemical stability of an oxide thin film, and its purpose is to provide a method for forming an oxide superconductor circuit that performs a lift-off process at a high substrate temperature. be.

すなわち、本発明を概説すれは、オ発明の第1の発明は
、酸化物超伝導体回路の形成法において、基板又はパタ
ーン化した基板上に有機ホトレジストのパターンを形成
し、次いで該有機ホトレジストの分解温度未満の高温の
該パターン化した基板上に酸化物薄膜を真空中で蒸着し
、その後、高温酸素雰囲気中で該有機ホトレジストを、
燃焼蒸発させることにより除却して、酸化物薄膜のパタ
ーンを形成することを特徴とする酸化物超伝導体回路形
成法に関する。
That is, to summarize the present invention, the first aspect of the present invention is that in a method for forming an oxide superconductor circuit, a pattern of an organic photoresist is formed on a substrate or a patterned substrate, and then a pattern of the organic photoresist is formed. Depositing an oxide thin film in vacuum on the patterned substrate at a high temperature below the decomposition temperature, and then depositing the organic photoresist in a high temperature oxygen atmosphere.
The present invention relates to a method for forming an oxide superconductor circuit, which is characterized in that a pattern of an oxide thin film is formed by removal by combustion and evaporation.

そして、本発明の第2の発明は、酸化物超伝導体回路の
形成法において、基板又はパターン化した基板上に、金
又は酸化亜鉛の薄膜パターンを形成し、次いでこの金又
は酸化亜鉛の反応温度未満の高温の該パターン化した基
板上に酸化物薄膜を堆積し、その後、該金又は酸化亜鉛
を溶解除却して酸化物薄膜のパターンを形成することを
特徴とする酸化物超伝導体回路形成法に関する。
The second invention of the present invention is a method for forming an oxide superconductor circuit, in which a thin film pattern of gold or zinc oxide is formed on a substrate or a patterned substrate, and then the gold or zinc oxide is reacted. An oxide superconductor circuit characterized in that an oxide thin film is deposited on the patterned substrate at a high temperature below that temperature, and then the gold or zinc oxide is melted away to form a pattern of the oxide thin film. Regarding the formation method.

酸化物薄膜は高温酸化雰囲気及び硫酸、硝酸、リン酸等
の希釈液あるいは金のエッチャントであるKI 十I2
水溶液に対し安定である特性をもつ。この特徴を生かし
たレジストの使用法を研究して本発明に到達した。
The oxide thin film is prepared using a high-temperature oxidizing atmosphere, a diluent such as sulfuric acid, nitric acid, phosphoric acid, or a gold etchant.
It has the property of being stable in aqueous solutions. The present invention was achieved by researching ways to use resists that take advantage of this feature.

本発明における酸化物超伝導体の例にはBaP’b(1
−X)13j、(X)03 (ただし0.05 りx 
<0.30)がある。壕だ、酸化物薄膜を形成する酸化
物の例にけAt203、BaPb   Bi  03(
ただし0くいy) (y) y、以下、BPBと略記する)がある。
Examples of oxide superconductors in the present invention include BaP'b (1
-X)13j, (X)03 (however, 0.05 rix
<0.30). Examples of oxides that form oxide thin films are At203, BaPb Bi03 (
However, there is 0 (y) y (hereinafter abbreviated as BPB).

本発明の第2の発明における金又は酸化亜鉛の薄膜パタ
ーンを形成する方法としては、有機ホトレジスト倉用い
る方法及びマスクパターンを用いる方法などがある。ま
たこの金の除却液の例としてはヨウ素とヨウ化カリウム
の水溶液が、他方、酸化亜鉛除却液の例には希酸がある
Methods for forming the thin film pattern of gold or zinc oxide in the second aspect of the present invention include a method using an organic photoresist and a method using a mask pattern. An example of a gold removal solution is an aqueous solution of iodine and potassium iodide, and an example of a zinc oxide removal solution is a dilute acid.

本発明によれば、高基板温度でもレジストを使用するこ
とが可能であるから、酸化物超伝導体回路形成にリフト
オフ法が適用できる。
According to the present invention, it is possible to use a resist even at high substrate temperatures, so the lift-off method can be applied to the formation of oxide superconductor circuits.

このため酸化物超伝導体を用いた多層回路を製作する場
合における酸化物超伝導体層間を分離する絶縁層の形成
、あるいは同種材料からなりエツチング法が適用できな
いときの多層化に有効である。
For this reason, it is effective in forming an insulating layer to separate oxide superconductor layers when manufacturing a multilayer circuit using oxide superconductors, or in multilayering when etching is not applicable when the materials are of the same type.

以下実施例によp本発明を更に詳細に説明するが、本発
明はこれら実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

なお添f月図面の第1図及び第2図は本発明方法の一実
施の態様を示す工程図である。
Note that FIGS. 1 and 2 of the attached drawings are process diagrams showing one embodiment of the method of the present invention.

実施例1 第1図に示した工程に従って回路を形成した。Example 1 A circuit was formed according to the steps shown in FIG.

第1図において1は基板(これにはパターン化した基板
を含む)、2は有機ホトレジスト、6は酸化物薄膜を意
味する。
In FIG. 1, 1 represents a substrate (including a patterned substrate), 2 represents an organic photoresist, and 6 represents an oxide thin film.

まず通常のフェノール系有機ホトレジスト(例えばA 
Z 135 (1)を用いてパターンを形成しく工程a
)、その後有機ホトレジストの真空中の分解温度である
!100℃程度未満の基板温度でBPB膜あるいは絶縁
pA(例えばAz20a)を真空蒸着法によりレジスト
パターン2の付いだ基板1上に堆積する(工程b)。し
かる後に、これを酸素中450℃の雰囲気炉中に1時間
以上保持し2のレジストを燃焼、蒸発することにより除
却してパターンを形成する(工程C)。
First, use a conventional phenolic organic photoresist (for example, A
Step a to form a pattern using Z 135 (1)
), then the decomposition temperature of the organic photoresist in vacuum! A BPB film or insulating pA (for example, Az20a) is deposited on the substrate 1 with the resist pattern 2 by vacuum evaporation at a substrate temperature of less than about 100° C. (step b). Thereafter, this is held in an atmosphere furnace at 450° C. in oxygen for one hour or more, and the resist of step 2 is burnt and evaporated to be removed and a pattern is formed (Step C).

bの工程中におけるレジストは、固化し通常の剥離液で
は除去できないが、パターン形状、組成はあ1り変化せ
ず、C工程の高温酸素雰囲気により気化し、その段階で
有機ホトレジスト2土に付着している堆積膜3も同時に
除却される。
The resist in step b solidifies and cannot be removed with a normal stripping solution, but the pattern shape and composition do not change at all, and it is vaporized by the high temperature oxygen atmosphere in step C, and at that stage it adheres to the organic photoresist 2 soil. The deposited film 3 that has been removed is also removed at the same time.

一方、基板上の堆積膜は、高温酸素雰囲気中に対し安定
な酸化物であるため、Cの工程で特性は変化せず、目的
とする数μm精度のパターン形成を可能とする。
On the other hand, since the deposited film on the substrate is an oxide that is stable in a high-temperature oxygen atmosphere, its characteristics do not change in the step C, making it possible to form the desired pattern with an accuracy of several μm.

実施例2 第2図に示した工程に従って回路を形成した。Example 2 A circuit was formed according to the steps shown in FIG.

第2図において、1〜6は第1図と同義であり、31は
BPB薄膜、4は無機レジスト膜(金又は酸化亜鉛)を
意味する。
In FIG. 2, 1 to 6 have the same meanings as in FIG. 1, 31 means a BPB thin film, and 4 means an inorganic resist film (gold or zinc oxide).

初めに基板上にBPB薄膜のパターン化を行い(工程a
)、次に、上部を全面にわたって無機レジスト)換で覆
う(工程b)。無機レジストのうち、金の場合は、真空
蒸着法で、酸化亜鉛はマグネトロンスパッタ法により、
約1μm厚に形成する。その後、通常のホトリングラフ
法を用いて有機し/シストパターンを形成する(工程C
)。次に無機レジストのパターン化をエツチング法によ
り行い、その後有機レジストの除却を行う(工程d)。
First, a BPB thin film is patterned on the substrate (step a).
), then the entire upper part is covered with an inorganic resist (step b). Among inorganic resists, gold is deposited by vacuum evaporation, and zinc oxide is deposited by magnetron sputtering.
It is formed to have a thickness of about 1 μm. Thereafter, an organic/cyst pattern is formed using a conventional photorinography method (Step C).
). Next, the inorganic resist is patterned by an etching method, and then the organic resist is removed (step d).

金に対してはヨウ素とヨウ化カリの混合水溶液(KI 
: I2:H20=207.107.1oor)が、ま
た酸化亜鉛に対しては希酸(例えば2%H2804,2
チHNO3,2%H3P04)がエツチング液として適
当である。
For gold, a mixed aqueous solution of iodine and potassium iodide (KI
: I2:H20=207.107.1oor), and for zinc oxide dilute acid (e.g. 2% H2804,2
HNO3, 2% H3P04) is suitable as an etching solution.

次いで絶縁層(例えばAt203)あるいは酸化物超伝
導体層を」二面全面にわたって充分な接着強度が得られ
る高基板温度(約300℃)で真空蒸着により堆積する
。この場合上述の無機レジスト4はBPBあるいは絶縁
層と反応せず安定である。最後に、無機レジストを除却
することにより、目的とするパターンを得る(工程f)
Next, an insulating layer (for example, At203) or an oxide superconductor layer is deposited by vacuum evaporation at a high substrate temperature (about 300° C.) that provides sufficient adhesive strength over the entire two surfaces. In this case, the above-mentioned inorganic resist 4 does not react with BPB or the insulating layer and is stable. Finally, the desired pattern is obtained by removing the inorganic resist (step f)
.

無機レジストの除却剤は工程dで用いたエツチング液を
用いることができ、数分以内に完全に無機レジストを除
却することが可能である。上述のエツチング液に対して
、BPBは数時間浸しても安定であり、上述の工程によ
り数μm精度をもつ目的とする機能の回路な形成するこ
とができる。
The etching solution used in step d can be used as the inorganic resist removing agent, and the inorganic resist can be completely removed within a few minutes. In contrast to the above-mentioned etching solution, BPB is stable even when immersed for several hours, and the above-mentioned process allows formation of a circuit with an intended function with an accuracy of several micrometers.

以上詳細に説明にしたように、本発明によれば、酸化物
超伝導体回路形成にリフトオフ法が適用でき、酸化物超
伝導体層間を分離する絶縁層の形成、あるいは同種材料
からなりエツチング法が適用できないときの多層化に有
効である利点がある。
As explained in detail above, according to the present invention, the lift-off method can be applied to the formation of oxide superconductor circuits, and the lift-off method can be applied to the formation of an insulating layer that separates oxide superconductor layers, or the etching method can be applied to It has the advantage of being effective for multi-layering when it cannot be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、有機レジストを用いる場合の工程図、第2図
は、無機レジストを用いる場合の工程図である。 1:基板、2:有機ホトレジスト膜、3:絶縁膜又はB
PB膜、31:BPB膜、4:無機レジスト 第 / 図 第 2 図
FIG. 1 is a process diagram for using an organic resist, and FIG. 2 is a process diagram for using an inorganic resist. 1: Substrate, 2: Organic photoresist film, 3: Insulating film or B
PB film, 31: BPB film, 4: Inorganic resist No. / Fig. 2

Claims (1)

【特許請求の範囲】 1 酸化物超伝導体回路の形成法において、基板又はパ
ターン化した基板上に有機ホトレジストのパターンを形
成し、次いで該有機ホトレジストの分解温度未満の高温
の該パターン化した基板上に酸化物薄膜を真空中で蒸着
し、その後、高温酸素雰囲気中で該有機ホトレジストを
、燃焼蒸発させることにより除却して、酸化物薄膜のパ
ターンを形成することを特徴とする酸化物超伝導体回路
形成法。 2、 酸化物超伝導体回路の形成法において、基板又は
パターン化した基板上に、金又は酸化亜鉛の薄膜パター
ンを形成し、次いでこの金又は酸化亜鉛の反応温度未満
の高温の該パターン化した基板上に酸化物薄膜を堆積し
、その後、該金又は酸化亜鉛を溶解除却して酸化物薄膜
のパターンを形成することを特徴とする酸化物超伝導体
回路形成法。
[Claims] 1. In a method for forming an oxide superconductor circuit, a pattern of an organic photoresist is formed on a substrate or a patterned substrate, and then the patterned substrate is heated to a high temperature below the decomposition temperature of the organic photoresist. An oxide superconductor characterized in that an oxide thin film is deposited thereon in vacuum, and then the organic photoresist is removed by combustion and evaporation in a high-temperature oxygen atmosphere to form a pattern of the oxide thin film. Body circuit formation method. 2. In a method for forming an oxide superconductor circuit, a thin film pattern of gold or zinc oxide is formed on a substrate or a patterned substrate, and then the patterned film is heated at a high temperature below the reaction temperature of the gold or zinc oxide. A method for forming an oxide superconductor circuit, comprising depositing an oxide thin film on a substrate, and then dissolving and dissolving the gold or zinc oxide to form a pattern of the oxide thin film.
JP57109898A 1982-06-28 1982-06-28 Oxide superconductor circuit formation method Expired - Lifetime JPH0656903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109898A JPH0656903B2 (en) 1982-06-28 1982-06-28 Oxide superconductor circuit formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109898A JPH0656903B2 (en) 1982-06-28 1982-06-28 Oxide superconductor circuit formation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6043339A Division JPH0797665B2 (en) 1994-02-18 1994-02-18 Oxide superconductor circuit formation method

Publications (2)

Publication Number Publication Date
JPS592349A true JPS592349A (en) 1984-01-07
JPH0656903B2 JPH0656903B2 (en) 1994-07-27

Family

ID=14521952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109898A Expired - Lifetime JPH0656903B2 (en) 1982-06-28 1982-06-28 Oxide superconductor circuit formation method

Country Status (1)

Country Link
JP (1) JPH0656903B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164049A (en) * 1987-12-21 1989-06-28 Toshiba Corp Semiconductor device
WO1989006441A1 (en) * 1987-12-25 1989-07-13 Mitsubishi Metal Corporation Method of forming superconducting wires
JPH0244784A (en) * 1988-08-05 1990-02-14 Canon Inc Superconductive pattern forming method
JPH0316187A (en) * 1989-01-24 1991-01-24 Fujitsu Ltd Patterning of superconducting thin film
JPH0886850A (en) * 1994-08-30 1996-04-02 Lg Semicon Co Ltd Manufacture of conductive microbridge
EP2105950A1 (en) * 2008-03-27 2009-09-30 United Radiant Technology Corp. Thin film etching method
JP2012049343A (en) * 2010-08-27 2012-03-08 Univ Of Miyazaki Patterning method of silicone oxide film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154792A (en) * 1974-05-23 1975-12-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154792A (en) * 1974-05-23 1975-12-13

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164049A (en) * 1987-12-21 1989-06-28 Toshiba Corp Semiconductor device
WO1989006441A1 (en) * 1987-12-25 1989-07-13 Mitsubishi Metal Corporation Method of forming superconducting wires
JPH0244784A (en) * 1988-08-05 1990-02-14 Canon Inc Superconductive pattern forming method
JPH0316187A (en) * 1989-01-24 1991-01-24 Fujitsu Ltd Patterning of superconducting thin film
JPH0886850A (en) * 1994-08-30 1996-04-02 Lg Semicon Co Ltd Manufacture of conductive microbridge
EP2105950A1 (en) * 2008-03-27 2009-09-30 United Radiant Technology Corp. Thin film etching method
JP2012049343A (en) * 2010-08-27 2012-03-08 Univ Of Miyazaki Patterning method of silicone oxide film

Also Published As

Publication number Publication date
JPH0656903B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JPS592349A (en) Formation of oxide superconductor circuit
CN111146330A (en) Preparation method of passivation layer of copper film surface acoustic wave filter
US3772102A (en) Method of transferring a desired pattern in silicon to a substrate layer
JPH04307772A (en) Manufacture of structured layer having high-temperature superconductive material
JPH06122982A (en) Etchant composition for metallic thin film consisting of aluminum as main component
US4266008A (en) Method for etching thin films of niobium and niobium-containing compounds for preparing superconductive circuits
JPS6317348B2 (en)
JPH06342943A (en) Forming method for oxide superconductor circuit
JPS61151533A (en) Formation of lift-off pattern
JPS59148350A (en) Manufacture of semiconductor device
JP2566028B2 (en) Manufacturing method of superconducting device
JPH0151053B2 (en)
JPS5978586A (en) Formation of niobium pattern
JP2691175B2 (en) Patterned oxide superconducting film formation method
JPH0265007A (en) Electronic circuit member and manufacture thereof
JPS61133979A (en) Electrode construction of display element
JP2668931B2 (en) Substrate surface roughening method
JPS6111468B2 (en)
JPS61263179A (en) Manufacture of josephson junction element
JPS5885547A (en) Forming method for conductive pattern
JPS63304646A (en) Formation of superconductor thin film pattern
JPS58216442A (en) Forming method for aluminum wiring
JPH0410676A (en) Formation of superconducting film of patterned oxide
JPH0228384A (en) Josephson junction device
JPS5826659B2 (en) Electrode formation method for semiconductor devices