JPS5923454B2 - On-load tap changer - Google Patents

On-load tap changer

Info

Publication number
JPS5923454B2
JPS5923454B2 JP3127778A JP3127778A JPS5923454B2 JP S5923454 B2 JPS5923454 B2 JP S5923454B2 JP 3127778 A JP3127778 A JP 3127778A JP 3127778 A JP3127778 A JP 3127778A JP S5923454 B2 JPS5923454 B2 JP S5923454B2
Authority
JP
Japan
Prior art keywords
current
load
switch
transformer
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3127778A
Other languages
Japanese (ja)
Other versions
JPS54122825A (en
Inventor
一弥 古川
裕 有福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3127778A priority Critical patent/JPS5923454B2/en
Publication of JPS54122825A publication Critical patent/JPS54122825A/en
Publication of JPS5923454B2 publication Critical patent/JPS5923454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 本発明は、負荷時タップ切換器、特にそのタップ切換過
程で、リアクトルを循環電流抑制要素として使用する保
護装置を備えた負荷時タップ切換器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an on-load tap changer, and more particularly to an on-load tap changer equipped with a protection device that uses a reactor as a circulating current suppressing element during the tap changing process.

先ず従来用いられている上記保護装置を備えた負荷時タ
ップ切換器の構成を第1図a−cによりその動作順序に
従つて説明する。
First, the structure of a conventional on-load tap changer equipped with the above-mentioned protection device will be explained in accordance with its operating order with reference to FIGS. 1a-c.

第1図aにおいて、符号1は変圧器などのタップ巻線、
2、3および4、5はタップ巻線1の夕5 ツプ位置N
及びタップ位置N−1よりそれぞれ引き出されたタップ
に接続されているタップ選択器の固定接点、6、7はそ
れぞれ交互にタップを選択するタップ選択器の可動接但
、8は限流リアクトル、9、10は負荷開閉器である。
In Fig. 1a, numeral 1 indicates a tap winding of a transformer, etc.
2, 3, 4, and 5 are tap position N of tap winding 1.
and fixed contacts of the tap selector connected to the taps pulled out from tap position N-1, 6 and 7 are movable contacts of the tap selector that select the taps alternately, 8 is a current limiting reactor, 9 , 10 is a load switch.

さらに11、1012は変流器、13および14は負荷
開閉器9および10がそれぞれ開極したのち一定時間後
にそれぞれ開成し、負荷開閉器9、10がそれぞれ投入
される前に閉成するように構成された短絡スイッチ、1
5は短絡スイッチ13あるいは14が開15成したとき
に変流器11または12の出力を検知する電流検知装置
である。以上の構成については、例えば、公開特許公報
[特開昭46=5024」号によりすでに公知であるの
で、本発明の説明に必要な部分のみ説明し、他は省略す
る。20第1図aはタップ位置Nで、負荷時タップ切換
器が運転中の状態を示す。
Further, 11 and 1012 are current transformers, and 13 and 14 are respectively opened after a certain period of time after the load switches 9 and 10 are opened, and closed before the load switches 9 and 10 are respectively closed. configured short circuit switch, 1
Reference numeral 5 denotes a current detection device that detects the output of the current transformer 11 or 12 when the short circuit switch 13 or 14 is opened. The above structure is already known from, for example, Japanese Patent Laid-Open No. 46/5024, so only the parts necessary for explaining the present invention will be explained, and the rest will be omitted. 20 FIG. 1a shows the state in which the on-load tap changer is in operation at tap position N.

このとき負荷電流は、鎖線で示した電路を流れ、変流器
11、12の出力は、短絡スイッチ13、14によつて
短絡されているので電流検出器には信号を与えない。タ
ツ25 プN−lに切換えるためには、第1図bのよう
に負荷開閉器9を開成する。このとき負荷開閉器9はア
ークを伴つて負荷電流を負荷開閉器10に転流せしめる
。次に第1図cに示すように短絡スイッチ13が開成す
る。このとき第1図bの過程で30負荷開閉器9のアー
クが消滅し、負荷開閉器10を含む電路に転流せしめて
いれば、変流器11の一次電流は上記アークの自然零点
で零となつており、電流検知器15には何ら信号を与え
ない。しかし、もし負荷開閉器9が何らかの原因で上記
ア35−クの遮断に失敗し、第1図b)第1図cで負荷
開閉器9の部分に波線で示すようにアークが続弧してい
れば、変流器11の変成比とそのときの負荷開閉器9に
流れている電流値に応じた大きさの電流信号を第1図c
に破線で示すように電流検知器15に送る。電流検知器
15が前記電流を検知すれば、続いて作動するように構
成されたタツプ選択器の動作を停止し、変圧器などを電
源回路から遮断すべく信号を出すことが可能となる。第
1図cにおいて、負荷開閉器9に異常がなければ引き続
きタツプ切換動作を継続する。これ以下の過程について
は、上述の公開公報等に}いて公知であるので省略する
。ところで以上のような、従来の負荷時タツプ切換器に
は次のような欠点があつた。
At this time, the load current flows through the electrical path shown by the chain line, and since the outputs of the current transformers 11 and 12 are short-circuited by the short-circuit switches 13 and 14, no signal is given to the current detector. In order to switch to 25-P-N-1, the load switch 9 is opened as shown in FIG. 1b. At this time, the load switch 9 commutates the load current to the load switch 10 with an arc. Next, the shorting switch 13 is opened as shown in FIG. 1c. At this time, if the arc of the load switch 9 is extinguished in the process shown in FIG. Therefore, no signal is given to the current detector 15. However, if the load switch 9 fails to interrupt the above-mentioned arc 35- for some reason, the arc continues as shown by the broken line in the load switch 9 in Figures 1b) and 1c. If so, a current signal of a magnitude corresponding to the transformation ratio of the current transformer 11 and the current value flowing through the load switch 9 at that time is generated as shown in Fig. 1c.
The current is sent to the current detector 15 as shown by the broken line. If the current detector 15 detects the current, it is possible to issue a signal to stop the operation of the tap selector configured to subsequently operate and to disconnect the transformer etc. from the power supply circuit. In FIG. 1c, if there is no abnormality in the load switch 9, the tap switching operation continues. The following steps are well known in the above-mentioned publications, and will therefore be omitted. However, the conventional on-load tap changer as described above has the following drawbacks.

すなわち、前記cの説明において、負荷開閉器9がアー
クの遮断に成功すれば、アーク電流の商用周波自然零点
において、一次電流は零となり、変流器11の2次回路
に接続された電流検知器15には電流は流れないと記し
たが、厳密には変流器の二次電流はその励磁電流によつ
て一次電流との間に位相差を有しているため、まつたく
同時に交流の零点を迎えることは出来ない。第2図は変
流器11,12及び電流検知器15に流れる電流の波形
を示す図である。変流器11,12は理想変流器ではな
いので、その2次電流(第2図b)は、図示のようにそ
の1次電流(第2図a)から位相φだけ遅れている。(
これに関しては、昭和31年電気書院発行「計器用変成
器」P2O〜24に詳述されている。)従つて、1次電
流が零点に達しても2次電流はまだ零点には達していな
い。1次電流が零へで急激に遮断されると、2次電流は
、その遮断時点の値からゆつくりと減衰する。
That is, in the explanation of c above, if the load switch 9 successfully interrupts the arc, the primary current becomes zero at the commercial frequency natural zero point of the arc current, and the current detection connected to the secondary circuit of the current transformer 11 Although we have written that no current flows through the transformer 15, strictly speaking, the secondary current of the current transformer has a phase difference with the primary current due to its excitation current, so at the same time, the It is impossible to reach the zero point. FIG. 2 is a diagram showing waveforms of current flowing through the current transformers 11, 12 and the current detector 15. Since current transformers 11 and 12 are not ideal current transformers, their secondary currents (FIG. 2b) lag their primary currents (FIG. 2a) by a phase φ, as shown. (
This is detailed in "Instrument Transformer" P20-24 published by Denkishoin in 1955. ) Therefore, even if the primary current reaches the zero point, the secondary current has not yet reached the zero point. When the primary current is suddenly cut off to zero, the secondary current slowly decays from its value at the time of the cutoff.

即ち、このような時点で短絡スイツチ13を開くと、電
流検知器15には第2図に示すような直流成分を含む電
流が流れる。また、タツプ切換過程に}いて、限流リア
クトル8を負荷開閉器9又は10が回路に投入する過程
があるが、このとき変流器11,12の一次回路には過
渡的に直流電流成分が重畳した電流が流れることがある
。このような電流は変流器11,12の鉄心を直流励磁
することと等価である。この直流励磁を繰り返すと、最
悪の場合、変流器11,12の動作点を飽和磁束密度付
近のものとすることもあり得るが、いずれにしろ直流励
磁は2次電流の位相差φを一層増大させるものとなる。
即ち、変流器の一次電流が、ある時点で、零点を迎え、
それ以後電流が遮断されたとき、変流器の二次回路に残
存する上述電流は、変流器の二次回路における直流起電
力として作用し、一次電流が流れていないにもか\わら
ず、第2図bに示すような直流過渡電流が流れる。この
電流が第2図cに示すように短絡スイツチ13又は14
が開成するまでに十分減衰していなければ、電流検知器
15にこの直流電流が転流されることになり、誤動作を
起すことになる。以上の現象を数式的にあられせば次の
ようになる。第3図aは変流器の−次電流が零点を迎え
た後、短絡スイツチ13又は14が開成するまでのラプ
ラス変換された等価回路を示す。L1・i(−o)=(
R+SLl)・i(S)逆ラプラス変換して、i(t)
を求めると、但し、L1:変流器の二次端子から見たイ
ンダクタンスR1:変流器}よび接続電路の抵抗1(−
o):変流器の一次電流零点での二次電流の瞬時値また
第3図bは、短絡スイツチ13又は14を開成したのち
のラプラス変換された等価回路を示す。
That is, if the short circuit switch 13 is opened at such a point, a current containing a DC component as shown in FIG. 2 flows through the current detector 15. In addition, during the tap switching process, there is a process in which the current limiting reactor 8 is connected to the circuit by the load switch 9 or 10, but at this time, a direct current component transiently flows into the primary circuit of the current transformers 11 and 12. Superimposed currents may flow. Such a current is equivalent to DC exciting the iron cores of the current transformers 11 and 12. If this DC excitation is repeated, in the worst case, the operating points of the current transformers 11 and 12 may become near the saturation magnetic flux density, but in any case, DC excitation further reduces the phase difference φ of the secondary current. It becomes something that increases.
In other words, the primary current of the current transformer reaches zero point at a certain point,
After that, when the current is interrupted, the above-mentioned current remaining in the secondary circuit of the current transformer acts as a DC electromotive force in the secondary circuit of the current transformer, even though the primary current is not flowing. , a DC transient current as shown in FIG. 2b flows. As shown in FIG.
If the DC current is not sufficiently attenuated by the time it opens, this DC current will be commutated to the current detector 15, resulting in malfunction. The above phenomenon can be expressed mathematically as follows. FIG. 3a shows a Laplace-transformed equivalent circuit from when the negative current of the current transformer reaches a zero point until the short-circuit switch 13 or 14 is opened. L1・i(-o)=(
R+SLl)・i(S) Inverse Laplace transform, i(t)
However, L1: inductance seen from the secondary terminal of the current transformer R1: current transformer} and resistance 1 (-
o): Instantaneous value of the secondary current at the primary current zero point of the current transformer FIG. 3b shows the Laplace-transformed equivalent circuit after opening the short-circuit switch 13 or 14.

電流検知器の等価回路は容量及び抵抗負荷として取り扱
う。第3図aと同様にして、第3図bで電流検知器に流
れる電流を求めると、次式であられされる。但し、RO
Rl+r1+R2 2,:電流検知器を接続するための電路の漂遊インダク
タンスR,:電流検知器を接続するための電路の抵抗c
:電流検知器の人力端子からみたキヤパシタンス的とす
るものである。
The equivalent circuit of a current detector is treated as a capacitive and resistive load. In the same manner as in FIG. 3a, the current flowing through the current detector in FIG. 3b is determined by the following equation. However, R.O.
Rl+r1+R2 2,: Stray inductance of the electric line for connecting the current detector R,: Resistance c of the electric line for connecting the current detector
: It is based on the capacitance seen from the human terminal of the current detector.

以下、本発明の一実施例を図面に基いて詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第4図aに本発明による第1の実施例、第4図bに第2
の実施例を示す。同図中16は、逆並列に接続された整
流素子、他の構成は、上記第1図aの従来のものと同一
である。整流素子の電圧電流特性は、一般に、第5図に
示すように、ある一定電圧(スレツシヨルドレベル)以
下ではほとんど電流を流さず、次に非直線形抵抗特性領
域を通り、さらに非常に少ない微分抵抗を持つ直線抵抗
特性領域に至る曲線であられすことが出来る。前述の一
次電流零点後の変流器鉄心の残留磁気エネルギーは微弱
であるため、第4図aに示すように整流素子16を接続
することにより、問題の過渡直流電流を制限する逆起電
力としてスレツシヨルドレベルの電圧が作用し、かつそ
のため、電流が少なくなれば整流素子の非直線抵抗領域
に}ける大きな微分抵抗が、前述の式(1)に}いてR
を大にしたと同様の効果を示し、減衰を早めることが可
能となる。またスレツシヨルドレベルは、通常1V未満
であるから、電力用として通常使用される15〜40A
程度の変流器を使用すれば、整流素子16を挿入したこ
とによる交流器負担の増加はほとんど無視出来る程度と
なり、経済的効果は大である。発明者等の実験によれば
、前記の直流過渡電流の減衰時定数を上記の方法により
従来のもの\1/10−1/100に低減することが出
来ることが確認された。第2図bに一点鎖線で、本発明
による改良を}こなつたときの過渡直流電流の様子を示
す。次に第4図bの第2の実施例は、電流検知器15に
対して直列に、逆並列に接続した整流素子16を挿入し
たものである。
FIG. 4a shows the first embodiment of the present invention, and FIG. 4b shows the second embodiment.
An example is shown below. In the figure, reference numeral 16 denotes rectifying elements connected in antiparallel, and the other configurations are the same as the conventional one shown in FIG. 1A. As shown in Figure 5, the voltage-current characteristics of a rectifying element generally causes almost no current to flow below a certain voltage (threshold level), then passes through a non-linear resistance characteristic region, and then very little current flows. It can be expressed as a curve leading to a linear resistance characteristic region with differential resistance. Since the residual magnetic energy in the current transformer core after the primary current zero point mentioned above is weak, by connecting the rectifying element 16 as shown in Figure 4a, it can be used as a back electromotive force to limit the problematic transient DC current. When a threshold level voltage acts on the rectifier and therefore the current decreases, a large differential resistance in the nonlinear resistance region of the rectifying element becomes R as shown in equation (1) above.
The same effect can be obtained by increasing the value, and the attenuation can be accelerated. In addition, the threshold level is usually less than 1V, so it is 15 to 40A, which is usually used for electric power.
If a similar current transformer is used, the increase in load on the alternator due to the insertion of the rectifying element 16 will be almost negligible, and the economical effect will be great. According to experiments conducted by the inventors, it has been confirmed that the decay time constant of the DC transient current can be reduced to 1/10 to 1/100 of that of the conventional method using the above method. In FIG. 2b, the dot-dash line shows the state of the transient direct current when the improvements according to the present invention are completed. Next, in the second embodiment shown in FIG. 4B, a rectifying element 16 is inserted in series with the current detector 15 and connected in antiparallel thereto.

この場合、短絡スイツチ13又は14を開成する前に過
渡直流分を零とすることは出来ないが、電流検知器15
の動作感度によつては、過渡直流電流を電流検知器15
の動作感度以下の値に制限することが可能であり、かつ
負荷開閉器9又は10に異常があつたときにのみ、通電
すればよいために、小さな定格容量の整流素子でよいと
いう経済的利点を生ずる。なあ一、第4図a}よび第4
図BVC.}いては、整流素子を使用する例について説
明したが、例えばバリスタなど類似の非直線抵抗特性を
有する素子なら同様な効果を得ることが出来るのは勿論
である。また第6図aないし第6図cに、さらに他の実
施例を示す。
In this case, it is not possible to reduce the transient DC component to zero before opening the short-circuit switch 13 or 14, but the current detector 15
Depending on the operating sensitivity of the current detector 15, the transient DC current may be
It is possible to limit the operating sensitivity to a value less than or equal to the operating sensitivity of will occur. Hey, Figure 4 a} and Figure 4
Figure BVC. }, although an example using a rectifying element has been described, it goes without saying that the same effect can be obtained by using an element having similar non-linear resistance characteristics, such as a varistor. Furthermore, other embodiments are shown in FIGS. 6a to 6c.

これらの図中17は抵抗器、18はリアクトルであり、
その他の構成要素はすべて前記第1図aと同様である。
第6図aに示した位置に抵抗器17を挿入することによ
り、前述の式(1)に卦けるRが大きくなるために減衰
が早くなり、整流素子と同様な効果を得ることが出来る
。また第6図bに示すように電流検知器に直列にリアク
トルを挿入することにより、前述の式(2)から予見さ
れるように、短絡スイツチを開成した後、電流検知器に
流れる電流を制限することが出来る。またこのリアクト
ルが、可飽和リアクトルであれば変流器の負担を増大せ
しめることなく、前述の実施例の場合と同様な効果を発
揮させることが出来る。さらに第6図cに示すように電
流検知器15に直列に抵抗を挿入することによつても、
問題の過渡直流電流の減衰を早めることが出来、電流検
知器の動作感度によつては有効となる。
In these figures, 17 is a resistor, 18 is a reactor,
All other components are the same as those in FIG. 1a above.
By inserting the resistor 17 at the position shown in FIG. 6a, R in the above-mentioned equation (1) becomes larger, so that the attenuation becomes faster, and the same effect as that of a rectifying element can be obtained. In addition, by inserting a reactor in series with the current detector as shown in Figure 6b, the current flowing to the current detector after opening the short switch is limited, as predicted from equation (2) above. You can. Further, if this reactor is a saturable reactor, the same effect as in the above embodiment can be achieved without increasing the load on the current transformer. Furthermore, by inserting a resistor in series with the current detector 15 as shown in FIG. 6c,
This can accelerate the attenuation of the problematic transient DC current, and may be effective depending on the operating sensitivity of the current detector.

以上に記載のように、本発明によれば、従来の欠点であ
つた変流器二次回路に流れる直流過渡電流は充分に減衰
させることが出来、過渡電流転流による誤動作を確実に
防止することが出来る。
As described above, according to the present invention, it is possible to sufficiently attenuate the DC transient current flowing in the secondary circuit of a current transformer, which was a drawback of the conventional method, and to reliably prevent malfunctions due to transient current commutation. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−cは従来の負荷時タツプ切換器の回路構成を
その動作順序に従つて示す電気回路図、第2図a−cは
第1図の構成の場合の欠点と本発明の作用を説明するた
めの電流波形図、第3図A,bは従来例の欠点を数式的
に説明するための等価回路図、第4図aは本発明の第1
の実施例による負荷時タツプ切換器の電気回路図、第4
図bは、同第2の実施例の電気回路図、第5図は第4図
A,bに卦ける整流素子の特性を示すグラフ、第6図a
は、本発明の第3の実施例による負荷時タツプ切換器の
電気回路図、第6図bは本発明の第4の実施例による負
荷時タツプ切換器の電気回路図、第6図Cは本発明の第
5の実施例による負荷時タツプ切換器の電気回路図であ
る。 1・・・・・・タツプ巻線、9,10・・・・・・負荷
開閉器、11,12・・・・・・変流器、13,14・
・・・・・短絡スイツチ、15・・・・・・電流検知器
、16・・・・・・整流素子、17・・・・・・抵抗器
、18・・・・・・リアクトル。
Figures 1a-c are electrical circuit diagrams showing the circuit configuration of a conventional on-load tap changer according to its operating order, and Figures 2a-c are disadvantages of the configuration shown in Figure 1 and the effects of the present invention. 3A and 3B are equivalent circuit diagrams for mathematically explaining the drawbacks of the conventional example, and FIG. 4A is a current waveform diagram for explaining the disadvantages of the conventional example.
Electrical circuit diagram of the on-load tap changer according to the embodiment of
Figure b is an electric circuit diagram of the second embodiment, Figure 5 is a graph showing the characteristics of the rectifier elements in Figures 4A and b, and Figure 6a is
is an electrical circuit diagram of an on-load tap changer according to a third embodiment of the present invention, FIG. 6b is an electrical circuit diagram of an on-load tap changer according to a fourth embodiment of the present invention, and FIG. FIG. 5 is an electrical circuit diagram of an on-load tap changer according to a fifth embodiment of the present invention. 1... Tap winding, 9, 10... Load switch, 11, 12... Current transformer, 13, 14...
... Short circuit switch, 15 ... Current detector, 16 ... Rectifying element, 17 ... Resistor, 18 ... Reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 変圧器ぬタップ巻線に限流リアクトルを介して接続
され負荷電流を上記タップ巻線の第1タップ位置に関連
する接点からこの第1タップ位置に隣接する他の接点へ
転流させる負荷開閉器と、この負荷開閉器の電流を検出
する変流器と、上記負荷電流が転流されているべき時刻
に上記変流器の2次回路に流れる電流を検出する電流検
知器と、上記負荷開閉器の開成後の所定時間後に開成し
、かつ上記負荷開閉器の閉成前に閉成されるように制御
された短絡スイッチを介して上記変流器の二次回路に接
続されてこの二次回路に流れる電流を制限する電流制限
素子とからなる負荷時タップ切換器。
1 Load switching that is connected to a tap winding of a transformer via a current limiting reactor and commutates the load current from a contact associated with a first tap position of the tap winding to another contact adjacent to this first tap position. a current transformer that detects the current of the load switch, a current detector that detects the current flowing in the secondary circuit of the current transformer at a time when the load current should be commutated, and the load switch. The secondary circuit is connected to the secondary circuit of the current transformer through a short circuit switch that is controlled to open after a predetermined time after the switch is opened and to close before the load switch is closed. An on-load tap changer consisting of a current limiting element that limits the current flowing to the next circuit.
JP3127778A 1978-03-17 1978-03-17 On-load tap changer Expired JPS5923454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3127778A JPS5923454B2 (en) 1978-03-17 1978-03-17 On-load tap changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127778A JPS5923454B2 (en) 1978-03-17 1978-03-17 On-load tap changer

Publications (2)

Publication Number Publication Date
JPS54122825A JPS54122825A (en) 1979-09-22
JPS5923454B2 true JPS5923454B2 (en) 1984-06-02

Family

ID=12326819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127778A Expired JPS5923454B2 (en) 1978-03-17 1978-03-17 On-load tap changer

Country Status (1)

Country Link
JP (1) JPS5923454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053419Y2 (en) * 1985-03-11 1993-01-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635964B2 (en) * 1986-11-18 1997-07-30 株式会社ダイヘン Tap switching device under load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053419Y2 (en) * 1985-03-11 1993-01-27

Also Published As

Publication number Publication date
JPS54122825A (en) 1979-09-22

Similar Documents

Publication Publication Date Title
US3944888A (en) Selective tripping of two-pole ground fault interrupter
US4567424A (en) Reactive power compensator with capacitor and capacitor discharge circuit
JPS62503071A (en) ground fault circuit breaker
US3959695A (en) Circuit interrupter with ground fault trip control
JP3356457B2 (en) Vacuum circuit breaker
US3260894A (en) Protective means for circuit interrupting devices
ES463586A1 (en) Means for detecting a loss of vacuum in vacuum-type circuit interrupters used in polyphase a.c. vacuum circuit breaker
JPS5923454B2 (en) On-load tap changer
US3723818A (en) Direct acting overcurrent system for high voltage circuit breakers
US2523778A (en) Grounding transformer and protective system therefor
JP3445244B2 (en) Transformer transient current limiter
GB2251741A (en) Rapid response ground fault circuit interrupter
KR100228519B1 (en) Accidental current suppressor
EP0107359A2 (en) Alternating current limiting type semiconductor current circuit breaker
JP3231374B2 (en) Earth leakage breaker
JPH11225432A (en) Transformer rush current reduction method
US1919980A (en) Control of electric circuits
JP2581361B2 (en) Thyristor switch
JPH065189A (en) Circuit breaker
SU1359847A1 (en) Device for protecting three-phase electric motor against emergency operating conditions
JPS6240924B2 (en)
US2486343A (en) Circuit control apparatus
SU132290A1 (en) Device for disconnecting AC circuits
JPH028514Y2 (en)
SU1065923A1 (en) Electromagnetic relay with braking