JPS59232439A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS59232439A JPS59232439A JP10715083A JP10715083A JPS59232439A JP S59232439 A JPS59232439 A JP S59232439A JP 10715083 A JP10715083 A JP 10715083A JP 10715083 A JP10715083 A JP 10715083A JP S59232439 A JPS59232439 A JP S59232439A
- Authority
- JP
- Japan
- Prior art keywords
- film
- groove
- region
- layer
- shaped groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/763—Polycrystalline semiconductor regions
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
(af 発明の技術分野
木兄θ羽、J半導体装置の製造方法に係り、特に素子間
分離6す域の形成方法に関する。Detailed Description of the Invention (af) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming an isolation region between elements.
(b) 従来技術と問題点
比較的祭積1シーの高い半導体ICに於ける素子間分離
領域は、従来」)44代酸化技術(LOCO8法)成る
いはU溝分離技術によって多く形成されていた。(b) Prior Art and Problems The isolation regions between elements in semiconductor ICs with a relatively high IC are conventionally often formed using the 44th oxidation technology (LOCO8 method) or the U-groove isolation technology. Ta.
選択酸化技術は、素子形成領域に対応する所定寸法にパ
ターンニングされた耐酸化膜をマスクにし半導体基板面
を選択的に熱酸化して、該半導体基板面に末子形成領域
を分離画定する厚い素子間分離酸化膜を形成する技術で
ある。Selective oxidation technology selectively thermally oxidizes the surface of a semiconductor substrate using an oxidation-resistant film patterned to a predetermined size corresponding to the element formation region as a mask, and separates and defines the terminal formation region on the semiconductor substrate surface. This is a technology to form an isolation oxide film.
しかしこの技術に於ては第1図にこ示ずJ:うに選択酸
化膜OXの厚さく1)に匹敵する程tW(D幅(=のバ
ーズビークBBが耐酸化膜SiNの下部に延出するため
にその分だけ分離領域幅が広くなり、(最小分離領域幅
は用布2.2〔μml程度)該ICの高密度化が阻害さ
れるという問題があり、又該バーズビークの幅は製造条
件により変動するため、該、5ζ択酸化膜で画定される
素子形成領」・べの面積を一定におさえることが困難で
あり、そのため例、え(f、L該素子形成領域にキャパ
シタが形成される半導体メモリ素子等に於ては、これを
高密度高積化する際キャパシタ面積の変動に伴うギャバ
シタ谷量のばらつきによって素子性能が低下するという
問題があった0
又U溝分離技術は、半導体基板面に異方性エツチング技
術を用いてU字形の分離溝を形成し、該U字形分KiI
病を令する基板上に該唇を充分に埋める厚さの絶縁物、
贋、又は高比抵抗の多結晶ノリコン層を形成し、該絶縁
物層又は多結晶ノリコン層を上面から一様にエツチング
除去することにより絶縁物又は多結晶シリコンが平坦に
埋込まれたU字形分離r;+pを形成し、該U字形分〜
ill rjQによって素子形成i剪枝を分11i1を
画定する技術である。However, in this technology, the bird's beak BB of tW (D width (=) extends below the oxidation-resistant film SiN to an extent comparable to J: the thickness of the selective oxide film OX1), which is not shown in FIG. Therefore, the width of the separation region becomes wider (the minimum width of the separation region is about 2.2 [μml]), which hinders the high density of the IC, and the width of the bird's beak is determined by the manufacturing conditions. Therefore, it is difficult to keep the area of the element formation region defined by the 5ζ selective oxide film constant. In semiconductor memory devices, etc., there has been a problem in that device performance deteriorates due to variations in the amount of gaffer capacitor valleys due to variations in capacitor area when these devices are integrated at high density. A U-shaped separation groove is formed on the substrate surface using anisotropic etching technology, and the U-shaped portion KiI
an insulator thick enough to fill the lip on the substrate;
A U-shape in which an insulator or polycrystalline silicon is flatly embedded by forming a fake or high resistivity polycrystalline silicon layer and uniformly etching and removing the insulating layer or polycrystalline silicon layer from the top surface. Separation r; +p is formed, and the U-shaped portion ~
This is a technique for defining element formation i pruning branches 11i1 by ill rjQ.
しかし該U u’r’分離技術に(弓1、上記絶縁物層
成るいは多結晶ノリコ7Mを平面エツチングする方法が
極めて煩雑で、製造工程上1tj−ましくないという問
題、U字形分i1i溝を完全に埋める特に絶縁物層の形
成がカバレージの良いフラズマスパノタ法でなされるた
め、該プラズヤの倫粘によシ素子形成領域面に漏れ電流
め増加、ギヤリアのジェネレーンヨンンイフタイムの減
少等素子性能の低下をもたらす結晶品質の1氏下を生ず
るという問題等があつ)こ0
(c)発明の目的
本発明はリングラフィ技術により微ii++且つ正確に
寸法が規定でき、しかも半導体基板の結晶品質をそこな
うことのない素子量分1iiiL 鎖酸の形成方法を提
供するもので、1、その目的とするところは半導体IC
の高密度高年4ユ″【化及び品質向上を図るにある。However, there are problems with the U u'r' separation technique (bow 1, the method of plane etching the above insulating layer or polycrystalline glue 7M is extremely complicated and unsuitable for the manufacturing process, and the U-shaped part i1i Since the formation of the insulating layer to completely fill the groove is done by the plasma coating method which has good coverage, the leakage current increases on the surface of the element formation area due to the plastic layer's adhesiveness, and the gear carrier's generation time is reduced. (c) Purpose of the Invention The present invention provides a method for determining the size of semiconductor substrates by using phosphorography technology to precisely define the dimensions of semiconductor substrates. This paper provides a method for forming a 1IIIL chain acid with an element weight without impairing crystal quality.
The purpose is to improve the quality and increase the density of high-density, high-density 4-U.
(d) 発明の構成
即ち本発明は半漕17I;装置の製造方法に於て、半導
体基板面に素子j’+8」分間ti11域に二形成する
に際して、該半導体基板面に絶縁膜を形成し、該絶縁膜
を貫いて該半導体基板にU字形Mをブ]ネ成し、該U字
形溝の内面にスノキ択的に不純物をイオン注入し、該U
字形淘の内面上に選択的に半導体層をエビタキ7ヤル成
長すると同時に該半導体エピタキシャル層内に前記注入
不純物を拡散せしめ、該半導体エピタキシャル層の表面
を酸化する工程を有することを特徴とする。(d) Structure of the invention, that is, the present invention is a half-column 17I; In a method for manufacturing a device, when an element j'+8'' is formed in a region ti11 on a semiconductor substrate surface, an insulating film is formed on the semiconductor substrate surface. , forming a U-shaped groove in the semiconductor substrate through the insulating film, selectively implanting impurity ions into the inner surface of the U-shaped groove, and forming the groove in the U-shaped groove.
The present invention is characterized by comprising a step of selectively epitaxially growing a semiconductor layer on the inner surface of the shape recess, simultaneously diffusing the implanted impurity into the semiconductor epitaxial layer, and oxidizing the surface of the semiconductor epitaxial layer.
(e) 発明の実施例
以F本発明を実施例について、図を参照しながら詳aに
脱明する。(e) Embodiments of the Invention The present invention will now be explained in detail with reference to the drawings.
第2図(イ)乃至(へ)及び第3図(イ)乃至(ホ)は
入なる一実施例の工程断面図で、第4図(イノ乃至に)
1伏変形例の工程断u■」図である。Figures 2 (A) to (F) and Figures 3 (A) to (E) are process cross-sectional views of one embodiment, and Figure 4 (I) to (E) are process cross-sectional views of one embodiment.
FIG.
第2図(イ)参照
′A−,発明の方法を用いて例えばMO8ICを形成す
るに際しては、し1]えばp−型シリコン(Si)基板
1の表面に通常の熱彪化法により厚さ2000 [:A
)程度の二酸化シリコン(SiCh)膜2を形成し、次
いで眞基板上釦素イ分離領域(Iso)幅を規定する例
えば1〔μm11J程ルーのlia (W■)の開孔3
を有するレジスト膜1を形成し、次いで該レジスト膜4
をマスクにしりアクティブ・・1オン工ツチング法等基
板面に対して垂直な方向に優勢な異方性エツチング手段
を用い、5i02膜2を貫いてSt基板1面に例えは1
〔μmp ) 41j、l、度の閑さくd)を有する0
字形溝5を形成する。なお上記リアクティブ・イオンエ
ツチング法に於けるエツチング・ガスは通常通シ5in
2にx1シフては三ふっ化メタン(CH,FJ等を、又
Siに対しては四ふっ化炭素(Cj(4)等を用いるO
第2図(ロ)参照
次いで前記レジスト膜4の残暎及び5i02膜2をマス
クにし、p型不純物即ち(dfll素(Bつを例えばド
ーズJi 3X 10”[:atm/ci:]、加速エ
ネルギー70〜100 (KeV)程度で前記U字形溝
5の内面(特に底面)に選択的に高濃度にイオン注入す
る。Refer to FIG. 2(A). When forming, for example, a MO8IC using the method of the invention, for example, 2000 [:A
) is formed, and then an opening 3 of, for example, 1 μm (11 J) is formed to define the width of the isolation region (Iso) on the substrate.
A resist film 1 is formed, and then the resist film 4 is formed.
Using an anisotropic etching method that is dominant in the direction perpendicular to the substrate surface, such as an active 1-on etching method, the 5i02 film 2 is penetrated onto the 1st surface of the St substrate.
[μmp) 0 with 41j, l, degree of laziness d)
A glyph-shaped groove 5 is formed. In addition, the etching gas in the above reactive ion etching method is usually 5 in.
For Si, use carbon tetrafluoride (Cj(4), etc.) for x1 shift. The U-shaped groove 5 is filled with a p-type impurity, i.e., a dfll element (B) at a dose of 3X 10" [:atm/ci:] and an acceleration energy of about 70 to 100 (KeV), using the 5I02 film 2 as a mask. Ions are selectively implanted into the inner surface (especially the bottom surface) at a high concentration.
6はB+注入領域を示す。6 indicates the B+ implantation region.
第2図(ハ)参照
次いでレジスト膜4を除去した後、1050[℃:]程
度の温度で熱酸化処理を行い、0字形溝5の内面に厚さ
2000(入〕程度の第2の5i02J漠7を形成しく
この除前記SiO2脱2は厚くなる)、次いで通常のウ
ェットエツチング法によりU字形面5内面のSiO□膜
が除去される寸で全面エツチングをb゛う。この際基板
1上面のS ] 02 MM 2の厚さはほぼもとの厚
さに戻る。この処理は前記リアクティブ・イオンエツチ
ング、イオン注入に際して0字形溝5の内面に形成され
た結晶欠陥を除去し、且つU字形溝5内面に於けるB+
の表面磯度を高めるだめに念のために加えたものであり
、通常は省略してもさしつかえない。Refer to FIG. 2(c) Next, after removing the resist film 4, a thermal oxidation treatment is performed at a temperature of about 1050 [°C:], and a second 5i02J with a thickness of about 2000 mm is formed on the inner surface of the 0-shaped groove 5. (This removal process increases the thickness of the SiO2 film 7), and then the entire surface is etched by a normal wet etching method until the SiO□ film on the inner surface of the U-shaped surface 5 is removed. At this time, the thickness of S ] 02 MM 2 on the upper surface of the substrate 1 returns to almost the original thickness. This process removes the crystal defects formed on the inner surface of the O-shaped groove 5 during the reactive ion etching and ion implantation, and also removes the B+ on the inner surface of the U-shaped groove 5.
This was added just in case to increase the roughness of the surface, and normally it can be omitted.
なぜならば、次のエピタキシャル成長工程に於て前記結
晶欠陥の除去は充分になされ、又0字形溝5内面のB+
表表面変度特に上げないでも後記するエビタキンヤル層
に対するB+のオートドーピングも充分になされるから
である。This is because the crystal defects are sufficiently removed in the next epitaxial growth process, and the B+
This is because autodoping of B+ to the Evita quince layer, which will be described later, can be carried out sufficiently without particularly increasing the surface variation.
第2図に)参照
次いで反応ノノスにトリクロロシラン(S 1Hcls
) ヲ用い、0.1 [:Torr]程度の該反応ガ
ス中に於て1000(’C)程度の温度で行われる通常
の81の選択エピタキシャル成長技術によって、Siが
光用しているU字形前5の内面に選択的に例えば厚さ3
000〔A〕程度のノンドープStを成長させる。この
際U字形溝5の内面表層部に作成されている前記B+注
入領域6から該Siエビタキンヤル層にB+が拡散(オ
ートドープ)され該Siエピタキシャル層はp+型St
エビタキンヤル功8となる。々お前記エピタキシャル層
8は0字形溝5をほは上面丑で充たす厚さに形成しても
良い〇
第2図(ホ)参照
次いで通常の熱酸化法により前記0字形溝5内のp+型
StエピタキシャルN8の表面に例えば2000[:A
]程度の厚さの第3の5in2膜9を形成し、本発明に
よる素子間分離領域(Iso)が完成する。なおこの際
素子形成領域(Dev)上の5in2膜2は3000〜
4000(A〕程度に厚くなる。Referring to Figure 2), the reaction mixture was then treated with trichlorosilane (S 1 Hcls).
), using a conventional 81 selective epitaxial growth technique carried out in the reaction gas of about 0.1 Torr at a temperature of about 1000 ('C), to form a U-shaped front surface in which Si is optically used. For example, a thickness of 3 is selectively applied to the inner surface of 5.
Non-doped St of about 000 [A] is grown. At this time, B+ is diffused (autodoped) into the Si epitaxial layer from the B+ implanted region 6 formed on the inner surface layer of the U-shaped groove 5, and the Si epitaxial layer becomes p+ type St.
Evitakinyarukō 8. The epitaxial layer 8 may be formed to a thickness that fills the 0-shaped groove 5 with the upper surface of the 0-shaped groove 5. See FIG. For example, 2000[:A
] A third 5in2 film 9 having a thickness of about 100 psi is formed to complete the inter-element isolation region (Iso) according to the present invention. At this time, the 5in2 film 2 on the element formation region (Dev) has a thickness of 3000~
The thickness becomes about 4000 (A).
第2図(へ)参照
次いで素子形成領域(Dev)上の5IO22を選択的
に除去した後、通常のMOS)ランジスタの形成方法に
従って該素子形成領域(Dev)上にνまたにゲート酸
化膜10を形成シフ、該基板上に多結晶ノリコン層を形
成し、バターニングを行って多結晶シリコン・ゲート電
極11を形成し、次いで該ゲート電極11をマスクにし
てn型不純物の選択イオン注入を行ってn++ソース、
ドレイン領域12a。Refer to FIG. 2(f). Next, after selectively removing 5IO22 on the element formation region (Dev), a gate oxide film 10 is formed on the element formation region (Dev) according to a normal MOS transistor formation method. A polycrystalline silicon layer is formed on the substrate, a polycrystalline silicon gate electrode 11 is formed by buttering, and then selective ion implantation of n-type impurities is performed using the gate electrode 11 as a mask. Te n++ sauce,
Drain region 12a.
12bを形成する。12b is formed.
そして以後図示しない絶縁膜の形成、電極コンタクト窓
の形成、配線形成等がなされMO8ICが完成する。Thereafter, the formation of an insulating film (not shown), the formation of electrode contact windows, the formation of wiring, etc. are performed to complete the MO8IC.
第3図(イ)参照
本発明の方法を用いて例えばバイポーラICを形成する
に際しては、通常通り例えばp−型Si基板1面にn+
+埋込み拡散領域13が形成され、該基板上に例えば1
〜1.5〔μml程度の厚さの11−型Stエビタキン
ヤル鳩14が形成されてなるバイポーラIC形成用の被
処理基板上に、通常熱酸化法により例えば厚さ2000
[λ〕程朕の5in2[2を形成し、次いで該SiO2
膜2上に素子分離領域(Iso)幅に対応する幅のis
孔3をイJするレジスト膜4を形成1−1該レジスト膜
4をマスクに[2前記実施例同様のりアクティブイオン
エツチング法によりS to 21m 2を貞いて該被
処理基板面に底部がp−型Si基板1内に達する0字型
溝5を形成する。Refer to FIG. 3(a) When forming, for example, a bipolar IC using the method of the present invention, as usual, for example, n+
+A buried diffusion region 13 is formed on the substrate, e.g.
A substrate to be processed for forming a bipolar IC on which an 11-type St.
[λ] forming a 5in2 [2] of SiO2
IS of a width corresponding to the element isolation region (Iso) width is formed on the film 2.
1-1 Forming a resist film 4 to fill the holes 3. 1-1 Using the resist film 4 as a mask, apply the same active ion etching method as in the previous embodiment to form a resist film 4 on the surface of the substrate to be processed so that the bottom part is p-. A 0-shaped groove 5 reaching into the type Si substrate 1 is formed.
第 3 図(ロ)#照
次いで前記実施例同様レジスト膜4の残膜及び5iOJ
:42をマスクにしてB+のイオン注入を行い、前記U
字型(δi5の内面的に底面に選択的に高濃度B+注入
領域6を形成する5・
第3図(ハ)参照
仄いてレジスト1144を除去した後前記実施例同様の
選択エピタキシャル成長技術により0字形溝5内に該U
字型溝5をほぼ上面捷で埋めるSiエピタキシャル層を
選択的に成長させる。この際前述したように該エビタキ
ンヤル層に前記高濃度B+注入領域6からB+のオート
ドーピングがなされ、該層はp+型Stエピタキシャル
/Fi8となる。なお該S1の選択エピタキシャル成長
の前に、前*L実施例で説明したようなU字形溝内面の
結晶欠陥除去工程を追加することもある。Figure 3 (b)
:42 as a mask, B+ ion implantation was performed, and the U
After removing the resist 1144 as shown in FIG. The U in the groove 5
A Si epitaxial layer is selectively grown that fills the shape groove 5 almost with the upper surface cut out. At this time, as described above, auto-doping of B+ from the high concentration B+ implantation region 6 is performed on the Evita core layer, and the layer becomes p+ type St epitaxial/Fi8. Note that before the selective epitaxial growth of S1, a process of removing crystal defects on the inner surface of the U-shaped groove as explained in the previous *L embodiment may be added.
第3図に)参照
次いで通常の熱酸化法により0字形溝5内のp+型Sj
エピタキシャルM8の表面に例えば200 (IC:A
:]程度の厚さの第3のS i O2M 9を形成し、
素子間分離領域(Iso)が完成する。この場合の分離
は主として接合分離となる。Referring to FIG. 3), the p+ type Sj in the 0-shaped groove 5 is then removed by a normal thermal oxidation method.
For example, 200 (IC:A
forming a third S i O2M 9 with a thickness of about :];
The inter-element isolation region (Iso) is completed. The separation in this case is mainly junction separation.
第3図(ホ)参照
次いでイメン注入技術を用いる通′帛のバイポーラ・ト
ランジスタ形成方法に従って、素子形成領域(Dev)
にp型ベース領域15.n++エミッタ領域16.n+
+コレクタ・コンタクト領域17の形成がなされる。Referring to FIG. 3(E), the device formation region (Dev) is then
p-type base region 15. n++ emitter region 16. n+
+Collector contact region 17 is formed.
そして図示しないが、配想形成、絶縁膜形成等がなさ刊
、てバイポーラICが完成する。Although not shown, the bipolar IC is completed without any conceptual formation, insulating film formation, etc.
上記実力鯖ン11(・て於ては、いずれもU字型の分離
溝を形成する際の基板表面の保詐膜として5in2膜を
用いたが、該保Ek膜として窒化ノリコノ(Si3NJ
IIC,!を用いることもある。In both cases, a 5in2 film was used as a protection film on the substrate surface when forming a U-shaped separation groove, but a nitride Norikono (Si3NJ) film was used as the Ek protection film.
IIC,! may also be used.
これは素子間分離領域上の5i021.I!Jを特に厚
く形成し7、該分離領域上を辿る配バー1と分ト、I
li(、i内の81工ピタキシヤル層との絶2.〆、性
を高めたり、配線の浮遊6Mを減少せしめたり、又前記
バイポーラICに於けるように(沖合分離構造に寿る場
合分餘容量を減少ぜ(〜めるのにイ)利である。上記表
面1・;↓護膜に5iaN4膜を用いる場合の素子間分
内11領域形成方法を第4図を徊照して説明する。This is 5i021. on the element isolation region. I! J is formed particularly thick 7, and the distribution bar 1 tracing over the separation region is separated, I
li (, 81 in the i), improves the resistance, reduces the stray 6M of the wiring, and as in the bipolar IC (as in the case of offshore isolation structure). This is useful for reducing capacitance.The method for forming 11 regions between elements when using a 5iaN4 film for the above surface 1.↓ protective film will be explained with reference to FIG. .
第4図(イ)参照
例えばp−型S1基敬l上に通常の熱酸化法により50
0〜10(10LA’3程度の初hvh版化膜18を形
成し、該初期峻化隙18上に通常の化学気相成長法で厚
さ1000 CA′]程度のSi 3N4膜19を形成
し、該Si3N、膜19上に通常のフォトプロセスを用
い素子間分離領域(Iso)の幅に対応する幅の開孔3
を有するレジスト膜4を形成[7、リアクティブイオン
エツチング法により5isN4膜19及び初期酸化膜1
8を猶き基板面にU字形鋳5を形成する。Refer to FIG. 4(a). For example, on p-type S1 group, 50%
0 to 10 (an initial HVH plated film 18 with a thickness of about 10 LA'3 is formed, and a Si 3N4 film 19 with a thickness of about 1000 CA') is formed on the initial thickened gap 18 by a normal chemical vapor deposition method. , an opening 3 having a width corresponding to the width of the inter-element isolation region (Iso) is formed on the Si3N film 19 using a normal photo process.
Form a resist film 4 having a 5isN4 film 19 and an initial oxide film 1 by reactive ion etching
8 and form a U-shaped casting 5 on the substrate surface.
第4図(ロ)参照
次いで前記レジスト)摸4の残膜及びS i3N4膜1
9初期酸化膜18をマスクにしイオン注入を行ってU字
形溝5の内面(特に底面ンに運仏的に高濃度にB+をイ
オン注入する。6はB+注入領域を7Jeす0
第4図01参照
レジスト膜4を除去した後、前記U字形r’l’? 5
内に選択的にSiエビタ1゛シャル庖を成長させ、該0
字形溝5内にp+型Stエビクキンヤル層8を・形成す
る。(前述したようにB+注入領域6からのオートドー
プによシル+型になる)
2144図に)参照
次いで前記Si3N、膜19をマスクにし、適格の選択
酸化法によりp+型Sjエビタキンヤル着8の上面に選
択的に例えば3000(A)IH度の〃さの第3のS
102i1@ 9を形成し、本発明の素子間分離領域(
I s o )が冗成する0なお該選択酸化に際して第
3のSiO2膜9からバーズビークが延出するが、第3
の5i02i1休9の厚さが従来の酸化膜分所り構造(
第1図参照)に比べて薄いので該バーズビークの延出幅
は微小である。Refer to FIG. 4(b) Next, the remaining film of the resist sample 4 and the Si3N4 film 1
9 Perform ion implantation using the initial oxide film 18 as a mask, and implant B+ ions at a high concentration into the inner surface (especially the bottom surface) of the U-shaped groove 5. After removing the reference resist film 4, the U-shaped r'l'?5
By selectively growing a Si vitreous layer within the 0
A p+ type St-type hard layer 8 is formed in the shaped groove 5. (As described above, autodoping from the B+ implanted region 6 results in a SIL+ type.) Refer to Figure 2144) Then, using the Si3N film 19 as a mask, a suitable selective oxidation method is applied to the upper surface of the p+ type SJ layer deposit 8. For example, the third S of 3000 (A) IH degree
102i1@9 is formed to form the inter-element isolation region (
Furthermore, during the selective oxidation, a bird's beak extends from the third SiO2 film 9;
The thickness of 5i02i1-9 is the conventional oxide film structure (
(see FIG. 1), the extension width of the bird's beak is minute.
以後素子形成虻域(L”ev)上のsi、N、膜19.
初期酸化115j i sを除去した後、通常の方法で
該領域に半渚体素子が形成される。Thereafter, Si, N, and films 19.
After removing the initial oxidation 115j i s, semi-solid elements are formed in the region in a conventional manner.
(f) 発明の効果
上記実施例から1男らかなように、本発明の方法により
はU字形分t4ir尚を形成する際のフォ) IJソグ
ラフイ技術によって素子間分離領域の幅が決定される。(f) Effects of the Invention As is clear from the above embodiments, the width of the element isolation region is determined by the method of the present invention when forming the U-shaped portion t4ir.
銀ってフォトリングラフィ技術に於いてバター二/グし
得る限界のIt@(現在1〔μm〕程度)を有する微卸
1幅の素子間分離領域が、フォ) l)ソグラフイ技術
のパターンニング精度にのっとってばらつきなく形成す
ることができ、それに伴って素子形成領域内植の1・ま
らつきも極めて少くなる。It is possible to create an inter-element isolation region with a width of one inch, which is the limit of silver (currently about 1 [μm]) that can be patterned using photolithographic technology. It can be formed with high precision without variation, and as a result, the unevenness of the ingrowth in the element formation region is also extremely reduced.
従って本発明によねば、半導体重Cを更に高密度高集積
化することが可能になり、且つその品質向上が図れる。Therefore, according to the present invention, it becomes possible to further integrate the semiconductor heavy-duty C at a higher density and to improve its quality.
第1図は従来の選択酸化法による素子量分P″1を技術
の説明図、第2図(イ)乃至(へ)及び第3図(イ)乃
主(ホ)は本発明の素子間分離領域形成方法に於ける異
なる実施例の工程断面図で、第4図(イ)乃至に)はそ
の変形例の工θ断面図である。
図に於て、1はp−型ノリコン基板、2,9は二酸化ノ
リコン膜、3け開孔、4−レジスト膜、5i:U字形a
4.6 li 面素注入S54域、8 li I) ”
型/l)コン・エビタキンヤル層、18は初期酸化Jl
iJ、19ハ窒化シリコン膜、I S O’l’2ン:
”子間分離領域、 Dcvは素子フに成領域を示す。
代理人 弁理士 松 岡 宏西部1 “峯f例
峯2記
¥−2旧
を ご 閉
JIP4鳳FIG. 1 is an explanatory diagram of the technique for determining the element amount P″1 by the conventional selective oxidation method, and FIG. 2 (A) to (F) and FIG. 4(a) to 4) are process sectional views of different embodiments of the isolation region forming method, and FIGS. 2 and 9 are silicon dioxide membranes, 3-holes, 4-resist membranes, 5i: U-shaped a
4.6 li surface element implantation S54 area, 8 li I)”
Type/l) Con-Evita Kinyal layer, 18 is initial oxidation Jl
iJ, 19c silicon nitride film, ISO'l'2n:
``The separation area between children, Dcv indicates the area where the elements are formed. Agent Patent Attorney Hiroshi Matsuoka Seibu 1 ``Mine f Example Mine 2 Note ¥-2 Old Close JIP 4 Otori
Claims (1)
半導体基板上に絶縁膜を形成し、該絶縁虹を貫いて該半
導体基板面U字形溝を形成し、該(1字形溝の内面にス
゛ト択的に不純物をイオン注入し、該U字形溝の内面上
嵯大択的に半導体層をエピタキシャル成長すると同時に
該半導体エピタキシャル層内に前記注入不純物を拡散ゼ
しd)、該半導体エビタキ7ヤル1mの表向を酪化する
工、Vtを有することを特徴と甘る半勇体装+4:の製
造方法。When forming an isolation region between elements on the semiconductor substrate surface, an insulating film is formed on the semiconductor substrate, a U-shaped groove is formed in the semiconductor substrate surface passing through the insulating rainbow, and a U-shaped groove is formed on the inner surface of the (1-shaped groove). selectively implanting impurity ions, selectively epitaxially growing a semiconductor layer on the inner surface of the U-shaped groove, and simultaneously diffusing the implanted impurity into the semiconductor epitaxial layer; A manufacturing method for a semi-heroic outfit +4, which is characterized by a technique that turns the front into a milky one, and has Vt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10715083A JPS59232439A (en) | 1983-06-15 | 1983-06-15 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10715083A JPS59232439A (en) | 1983-06-15 | 1983-06-15 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59232439A true JPS59232439A (en) | 1984-12-27 |
JPH0464182B2 JPH0464182B2 (en) | 1992-10-14 |
Family
ID=14451771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10715083A Granted JPS59232439A (en) | 1983-06-15 | 1983-06-15 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59232439A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406982B2 (en) * | 2000-06-05 | 2002-06-18 | Denso Corporation | Method of improving epitaxially-filled trench by smoothing trench prior to filling |
US7968970B2 (en) | 2008-05-14 | 2011-06-28 | Renesas Electronics Corporation | Semiconductor device, method for manufacturing semiconductor device, and power amplifier element |
-
1983
- 1983-06-15 JP JP10715083A patent/JPS59232439A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406982B2 (en) * | 2000-06-05 | 2002-06-18 | Denso Corporation | Method of improving epitaxially-filled trench by smoothing trench prior to filling |
US7063751B2 (en) | 2000-06-05 | 2006-06-20 | Denso Corporation | Semiconductor substrate formed by epitaxially filling a trench in a semiconductor substrate with a semiconductor material after smoothing the surface and rounding the corners |
US7968970B2 (en) | 2008-05-14 | 2011-06-28 | Renesas Electronics Corporation | Semiconductor device, method for manufacturing semiconductor device, and power amplifier element |
Also Published As
Publication number | Publication date |
---|---|
JPH0464182B2 (en) | 1992-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4530149A (en) | Method for fabricating a self-aligned vertical IGFET | |
US4749441A (en) | Semiconductor mushroom structure fabrication | |
US5196367A (en) | Modified field isolation process with no channel-stop implant encroachment | |
EP0051488A2 (en) | Method for manufacturing a semiconductor device | |
EP0227085A2 (en) | A method of manufacturing IGFETs having minimal junction depth using epitaxial recrystallization | |
US5895252A (en) | Field oxidation by implanted oxygen (FIMOX) | |
JPH05198543A (en) | Manufacture of semiconductor device and semiconductor substrate | |
JPS62203380A (en) | Semiconductor device and manufacture of the same | |
JPS59119848A (en) | Manufacture of semiconductor device | |
US5374584A (en) | Method for isolating elements in a semiconductor chip | |
US5972777A (en) | Method of forming isolation by nitrogen implant to reduce bird's beak | |
US6445043B1 (en) | Isolated regions in an integrated circuit | |
EP0023528A1 (en) | Double diffused transistor structure and method of making same | |
JPH0628282B2 (en) | Method for manufacturing semiconductor device | |
US4696095A (en) | Process for isolation using self-aligned diffusion process | |
JPH0582441A (en) | Silicon carbide bipolar semiconductor device and its manufacture | |
GB2148593A (en) | Process for manufacturing the isolating regions of a semiconductor integrated circuit device | |
JPS59232439A (en) | Manufacture of semiconductor device | |
JPS5984435A (en) | Semiconductor integrated circuit and manufacture thereof | |
JPS58200554A (en) | Manufacture of semiconductor device | |
KR960000373B1 (en) | Step forming of semiconductor substratum surface | |
KR950003900B1 (en) | Semiconductor device manufacturing method for soi structure | |
JPS58131748A (en) | Formation of interelement isolation region | |
KR930010402B1 (en) | Manufacturing method of semiconductor device | |
EP0111097A1 (en) | Method for making semiconductor devices having a thick field dielectric and a self-aligned channel stopper |