JPS592323A - X-ray exposure mask - Google Patents

X-ray exposure mask

Info

Publication number
JPS592323A
JPS592323A JP57111104A JP11110482A JPS592323A JP S592323 A JPS592323 A JP S592323A JP 57111104 A JP57111104 A JP 57111104A JP 11110482 A JP11110482 A JP 11110482A JP S592323 A JPS592323 A JP S592323A
Authority
JP
Japan
Prior art keywords
film
ray
mask
organic
protection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111104A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57111104A priority Critical patent/JPS592323A/en
Publication of JPS592323A publication Critical patent/JPS592323A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perform the fine pattern copy in X-ray lithography with good accuracy by avoiding adverse influences due to photo electrons-Auger electrons generated from an X-ray mask by a method wherein a multilayer protection film is provided on the surface of the side wherein X-ray absorber patterns exist. CONSTITUTION:The X-ray mask 1 consists of a mask substrate 2, the X-ray absorber patterns 3, and substrate supporting bodies 4. A protection film 5 composed of an organic film is formed on the absorber patterns 3, and further a protection film 6 of an inorganic inculation film is formed on the organic protection film 5. It is composed of a polyimide film of the thickness approx. 1mum as the organic protection film 5, and an Si nitride film of the thickness several thousand Angstrom formed by a plasma CYD as the inorganic insulation film 6. The organic protection film includes a Parylene film, a Mylar film, a polypropylene film, various kind of resist materials such as AZ resists, a thinly conductive organic film, etc. The inorganic insulation film includes an SiO2 film, an Si9N4, an Al2O3 film, an SiC film, a BN film, etc.

Description

【発明の詳細な説明】 本発明は1μm以下の微細パターンの複写に威力を発揮
するXdlJソグラフィの分野におけるXi露光被照射
体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an object to be exposed to Xi in the field of XdlJ lithography, which is effective in copying fine patterns of 1 μm or less.

軟X線を用いたX線リソグラフィによれば、高解像度パ
ターンの複写が可能であることがエレクトロニクス・レ
ターズ(Electronics Letters)第
8巻第4号第102−104頁(1972年)に発表さ
れて以来、X1lJソグラフイに関する研究開発が精力
的に進められてきた。X線源、X線マスク、アライメン
ト方式、X線レジスト、そしてX線露光装置とその各々
において技術の蓄積がなされ、実される光′電子・オー
ジェ電子の効果に関する。
It was announced in Electronics Letters, Vol. 8, No. 4, pp. 102-104 (1972) that high-resolution patterns can be copied using X-ray lithography using soft X-rays. Since then, research and development regarding X1lJ thography has been vigorously pursued. This book relates to X-ray sources, X-ray masks, alignment methods, X-ray resists, and X-ray exposure equipment, and the effects of photoelectrons and Auger electrons that have been realized through the accumulation of technology in each of them.

もつとも、光電子・オージェ電子放出に関する指摘は1
975年に発行された刊行物ジャーナル・オブ・バキュ
ウム・サイエンス・アンド・テクノロジー(Journ
al of Vacuum 5cience and 
Tec−hnology)第12巻第6号第132ト1
331頁になされている。すなわち、)Lh La線(
波長4.6A)PdLaij波長4.37 A )等(
2)ヨり短v−% 性X線を使用する場合に、AJKα
m(波長8.34A)使用の場合に比べて、より多く放
出される高エネルギー成分である連続X線による影響が
指摘されている。この連続X線によってマスクコントラ
ストが低下し、さらにはマスク上のAu吸収体パターン
及びレジスト基板から光電子・オージェ′電子が放出さ
れ、レジストのバターニングに影響を与えることが報告
されている。
However, the points regarding photoelectron/Auger electron emission are 1.
Journal of Vacuum Science and Technology, a publication published in 1975.
al of Vacuum 5science and
Tec-hnology) Volume 12 No. 6 No. 132 To1
It is written on page 331. That is, )Lh La line (
Wavelength 4.6A) PdLaij Wavelength 4.37A) etc.
2) When using short v-% sexual X-rays, AJKα
It has been pointed out that the influence of continuous X-rays, which are high-energy components that are emitted in larger amounts, than when using m (wavelength: 8.34 A). It has been reported that the continuous X-rays reduce the mask contrast, and that photoelectrons and Auger' electrons are emitted from the Au absorber pattern on the mask and the resist substrate, thereby affecting the patterning of the resist.

ところが、本発明者はAlターゲットを用いたX線露光
において、次の新しい実験事実を見出した。第1図にそ
の特性が示されている。
However, the present inventor discovered the following new experimental fact in X-ray exposure using an Al target. Its characteristics are shown in FIG.

本図は、ネガレジス)PGMAの残存膜厚の露光雰囲気
真空度依存性を示している。露光雰囲気とは、マスクと
ウェハーとの間の空間の雰囲気を意味する。第1図から
露光雰囲気真空度が悪化すると、X線マスク無しの場合
(○印のデータ)は、PGMA残存膜厚は次第に減少し
、一方17nmAu膜を有するマスクを開いた場合(q
h印のデータ)は、PGMA残存膜厚は次第に増加する
ことが分ふる。このとき、PGMAに対するAI  K
a縁のドース量は30 rrJ/crlt 、マスクと
ウェハーとのギャップは20μmに固定された。X線マ
スク無しの場合の傾向は、空気中の酸素による架橋反応
阻止効果であることが、はぼ纏められている。問題は厚
さ17nmのAu膜を有するマスクを用いた場合である
。露光雰囲気真空度の悪化によるPGMA残存膜厚の顕
著な増加傾向は、新たに見出された実験事実であり、か
つレジストのパターニングの精度向上に対l−で、一つ
の大きな問題点である。つまり残存膜厚が増加するとマ
スク上のパターンを精度良く転寥できなくなる。特にサ
ブミクロン幅パターンの正確な複ずを実現するという観
点においてこのようなPGMA残存膜厚の増加は重大な
問題点である。前2者の実験(−印と0印)条件の大き
な違いは、薄いAu膜の存在の有無である。薄いAu膜
が有るということは、Alターゲットから放射されるX
m(主としてにα線)が、Au膜に吸収されて、Au膜
から光電子・オージェ電子が放出されることを意味する
。このいわゆる光電効果による光電子・オージェ電子の
放装置は、全ての一印のデータ点において同一である。
This figure shows the dependence of the residual film thickness of negative resist (PGMA) on the vacuum degree of the exposure atmosphere. The exposure atmosphere refers to the atmosphere in the space between the mask and the wafer. As shown in Figure 1, as the vacuum level of the exposure atmosphere worsens, the remaining PGMA film thickness gradually decreases when there is no X-ray mask (data marked with ○), while when the mask with a 17 nm Au film is opened (q
It can be seen from the data marked h) that the remaining PGMA film thickness gradually increases. At this time, AI K for PGMA
The a-edge dose was fixed at 30 rrJ/crlt, and the gap between the mask and the wafer was fixed at 20 μm. It has been summarized that the tendency in the case without an X-ray mask is that the crosslinking reaction is inhibited by oxygen in the air. The problem occurs when a mask having a 17 nm thick Au film is used. The tendency for the residual PGMA film thickness to increase markedly due to deterioration of the vacuum degree of the exposure atmosphere is a newly discovered experimental fact, and is a major problem in improving the accuracy of resist patterning. In other words, as the remaining film thickness increases, it becomes impossible to accurately transfer the pattern on the mask. This increase in the remaining PGMA film thickness is a serious problem, especially from the viewpoint of realizing accurate duplication of submicron width patterns. The major difference between the conditions of the former two experiments (-mark and 0 mark) is the presence or absence of a thin Au film. The existence of a thin Au film means that the X emitted from the Al target
This means that m (mainly α rays) is absorbed by the Au film, and photoelectrons and Auger electrons are emitted from the Au film. The emission of photoelectrons and Auger electrons due to the so-called photoelectric effect is the same for every single data point.

にもかかわらず、露光雰囲気真空度の悪化によってPG
MA残存膜厚が増加するということは、光電子・オージ
ェ電子による露光雰囲気内の空気の電離が、真空度の悪
化に従って増加するだめと考えられる。
However, due to deterioration of the vacuum level of the exposure atmosphere, PG
The increase in the MA residual film thickness is considered to be due to the fact that ionization of the air in the exposure atmosphere due to photoelectrons and Auger electrons increases as the degree of vacuum deteriorates.

真空度の悪化は空気の密度の増加を意味するt・らこρ
考えは、極めて妥当である。
Deterioration of the degree of vacuum means an increase in air density t・rakoρ
The idea is quite reasonable.

すなわち、A、u膜から放出される光電子・オージェ電
子が露光雰囲気中の空気を電離し、その結果発生した全
二次電子がPGMAの架橋を促進するという効果が、前
記の空気中の酸素による架橋阻止の効果を上まわるため
であると解釈される。
In other words, photoelectrons and Auger electrons emitted from the A and U films ionize the air in the exposure atmosphere, and all secondary electrons generated as a result promote crosslinking of PGMA. It is interpreted that this is because it exceeds the effect of inhibiting crosslinking.

本発明の目的は、このような従来の問題点を、除去せし
めてX線マスクから発生する光電子・オージェ電子によ
る悪影響を回避し、X線リソグラフィにおける微細パタ
ーン複写を、より精度良く行うとどのできるX線露光マ
スクを提供することにある0 本発明によれば、Xi吸収体パターン、マスク基板、及
び基板支持体から成るX線露光マスクにおいて、前記X
練成il1体パターンが存在する側の表面に多層の保護
膜を有することを特徴としたX線露光マスクが得られる
The purpose of the present invention is to eliminate these conventional problems, avoid the adverse effects of photoelectrons and Auger electrons generated from the X-ray mask, and improve the accuracy of fine pattern copying in X-ray lithography. According to the present invention, an X-ray exposure mask comprising an Xi absorber pattern, a mask substrate, and a substrate support, in which the
An X-ray exposure mask is obtained which is characterized by having a multilayer protective film on the surface on the side where the trained IL1 body pattern is present.

以下本発明について、実施例を示す図面等を参照して詳
しく説明する。X機マスクの吸収体パターンから放出さ
れる光電子・オージェ電子による露光雰囲気の空気の電
離を防ぐ有力な一手法として吸収体パターンを保護膜で
覆うことが考えられる。本発明者もこの点に気付き、櫨
々の保護膜についての実験検討を行った。
The present invention will be described in detail below with reference to drawings showing embodiments. One effective method for preventing the ionization of the air in the exposure atmosphere due to photoelectrons and Auger electrons emitted from the absorber pattern of the X machine mask is to cover the absorber pattern with a protective film. The inventor of the present invention also noticed this point and conducted an experimental study on the protective film of Hashira.

ただし、保護膜を形成する際のポイントとして次の事が
重要である。
However, the following points are important when forming a protective film.

(1)  吸収体パターンふら放出される光電子・オー
ジェ電子を十分に吸収できること、+2)X線吸収体パ
ターン上に容易に形成がuf能であること、(3)Xm
マスクの強度、補強の役割も兼ね備える保護膜であるこ
と、等である。これ等の要請を満たす保護膜として最も
有力な候補としてポリイミド膜がある。第2図はポリイ
ミド膜についての本発明者の実験結果である。第1図と
同じ< 、PGMA残存膜厚の露光雰囲気真空度依存性
が示されている。ポリイミド膜を保護膜として使った場
合の重大な問題点が第2図から分かる。すなわち、マス
ク無しの場合(○印のデータ)に比べて、厚さ20nI
nのAu膜を1.4μm厚ポリイミド膜で覆った場合(
△印のデータ)は、PGMAの残存膜厚が顕著に減少し
ていることである。このようなPGMAの残存膜厚のよ
り大きな減少は、やはりレジストパターン形成、微細パ
ターンの形成におtρては大きな問題である。第2図の
1,4μm厚のポリイミド膜のみを使用した場合(×印
のデータ)も、X椀マスク無しの場合(O印のデータ)
に比べて、PGMAの残存膜厚はより少ない。この事は
ポリイミド膜を単独で保護膜として使用することは、あ
まり好1しく無いことを意味している。しかし、ポリイ
ミド膜は、前述の要RAl(2)、 (3)を十分溝た
す材料であるから捨て鑓い。そこで、本発明においては
、保護膜を多層構造にすることを提案する。
(1) The absorber pattern must be able to sufficiently absorb photoelectrons and Auger electrons emitted, +2) It must be easy to form on the X-ray absorber pattern, and (3) Xm
It is a protective film that also serves as a strength and reinforcement for the mask. A polyimide film is the most promising candidate for a protective film that meets these requirements. FIG. 2 shows the inventor's experimental results regarding a polyimide film. As in FIG. 1, the dependence of the remaining PGMA film thickness on the vacuum degree of the exposure atmosphere is shown. A serious problem when using a polyimide film as a protective film can be seen from FIG. In other words, compared to the case without a mask (data marked with ○), the thickness is 20 nI.
When an Au film of n is covered with a 1.4 μm thick polyimide film (
Data marked with △) indicates that the remaining film thickness of PGMA is significantly reduced. Such a larger reduction in the residual film thickness of PGMA is still a big problem in resist pattern formation and fine pattern formation. In Figure 2, when only a 1.4 μm thick polyimide film is used (data marked with an "X"), and without an X-bowl mask (data marked with an "O")
The remaining film thickness of PGMA is smaller than that of . This means that it is not very preferable to use the polyimide film alone as a protective film. However, the polyimide film is a material that satisfies the above-mentioned requirements for RAl (2) and (3), so it should be discarded. Therefore, in the present invention, it is proposed that the protective film has a multilayer structure.

以下説明においては、便宜りに層構造を取上げるが、そ
のまま三層以上の多層+#造に適用できる事は、言うま
でも無い。第3図は一実施例を示すX線露光マスクの概
略図である。X−マスクlは、マスク基板2.Xs吸暇
体パターン3.及び基板支持体4力\ら成る。有機膜力
為ら成る保護膜5を、吸収体パターン上に形成し、さら
に無機絶縁膜の保護膜6を、・1機保護膜上に形成する
In the following explanation, a layered structure will be discussed for convenience, but it goes without saying that the structure can be applied to a multilayered structure with three or more layers. FIG. 3 is a schematic diagram of an X-ray exposure mask showing one embodiment. The X-mask l is attached to the mask substrate 2. Xs absorption body pattern 3. and the substrate support 4 force\. A protective film 5 made of an organic film is formed on the absorber pattern, and a protective film 6 of an inorganic insulating film is formed on the protective film.

−例として有機保護膜としてポリイミド膜1μm厚位、
無機絶縁膜として、ブラズYCVD法で形成されたシリ
コン窒化膜数千A厚の構成がある。
- For example, a polyimide film with a thickness of about 1 μm as an organic protective film,
As the inorganic insulating film, there is a structure of a silicon nitride film several thousand angstroms thick formed by Blaz YCVD method.

シリコン窒化膜についての検討結果が第4図に示されて
いる◎シリコン窒化膜のみを使用した場合(×印のデー
タ)、及びAul1gをシリコン窒化膜で覆った場合(
Δ印のデータ)は、XIMマスク無しの場合(○印のデ
ータ)と、はぼ一致している。
The study results for silicon nitride film are shown in Figure 4. ◎ When only silicon nitride film is used (data marked with an x), and when Aul 1g is covered with silicon nitride film (
The data marked with Δ) almost match the data without the XIM mask (data marked with ○).

す、うわち、シリコン窒化膜は、Au吸収体からの光電
子オージェシ子全十分VC吸収できると1える。
It is believed that the silicon nitride film can sufficiently absorb all the photoelectron oscillators from the Au absorber.

し力・し、シリコン窒化膜のみでは、前記の要請(3)
を満たさない。従って、ポリイミド膜の上にシリコン窒
化膜を形成した保蝕膜は、前述の3つの要請を満たし、
乃・つ、本発明の目的を達成することができる。
However, with just a silicon nitride film, the above request (3) cannot be met.
does not satisfy. Therefore, a protective film in which a silicon nitride film is formed on a polyimide film satisfies the three requirements mentioned above.
In this way, the object of the present invention can be achieved.

まだ、この実施列においては、シリコン窒化膜を上層に
、ポリイミド膜を下層に形成しているが、この逆でもよ
い。即ち、一般に無機絶縁膜上にXmVmタスク械的強
度をも/こせるに十分な厚さの有機膜を形成するという
順序でもよい。
In this embodiment, the silicon nitride film is formed as an upper layer and the polyimide film is formed as a lower layer, but the reverse may be used. That is, in general, an organic film having a thickness sufficient to have a mechanical strength of XmVm may be formed on an inorganic insulating film.

有機保護膜として、ポリイミド膜の他に、パリレン膜、
マイラー膜、ポリプロピレン膜、AZ系レジスト等の種
々のレジスト材料(BB−Xfiレジストも含む)、導
電性有機膜等も含まれる。
In addition to polyimide film, parylene film,
Various resist materials such as Mylar film, polypropylene film, and AZ resist (including BB-Xfi resist), conductive organic films, and the like are also included.

無機絶縁膜として、シリコン窒化膜の他に、8i0゜膜
、Si3N、膜、AA、0.膜、8iC膜、BN膜等も
含まれる。
As the inorganic insulating film, in addition to the silicon nitride film, 8i0° film, Si3N film, AA film, 0.0° film, etc. Also included are films, 8iC films, BN films, and the like.

以上説明したように本発明を適用するならば、第一にX
線リングラフィにおけるサブミクロン幅パターンの複写
を、より確実にでき、第二に実用的なX線マスクを得る
ことができ、第三に露光雰囲気に対して大きな自由度を
与えることができる。
If the present invention is applied as explained above, firstly,
It is possible to more reliably copy submicron width patterns in line phosphorography, secondly, it is possible to obtain a practical X-ray mask, and thirdly, it is possible to provide a greater degree of freedom regarding the exposure atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の問題点である)’GMA残存膜厚の
露光雰囲気真空度依存性を示した図、第2図はポリイミ
ド膜の特性を示した図、第3図は不発明にかかる実施例
であるX線露光マスクの概略図第4図はシリコン窒化膜
の特性を示した図である。 図中の番号は以下のものを示している。 1・・・・・・・・・X #M−rスク、2・・・・・
・・・・マスク基板、3・・・・・・・・・吸収体パタ
ーン、4・・・・・・・・基板支持体、5.6・・・・
・・・・保護膜。 代理人91理士内原 音
Figure 1 is a diagram showing the dependence of the remaining GMA film thickness on the vacuum degree of the exposure atmosphere (Fig. 1 is a problem with the prior art), Figure 2 is a diagram showing the characteristics of polyimide film, and Figure 3 is related to the non-invention. FIG. 4, a schematic diagram of an X-ray exposure mask according to an embodiment, is a diagram showing the characteristics of a silicon nitride film. The numbers in the figure indicate the following. 1......X #M-rsk, 2...
...Mask substrate, 3...Absorber pattern, 4...Substrate support, 5.6...
····Protective film. Agent 91 Physician Oto Uchihara

Claims (1)

【特許請求の範囲】[Claims] X線吸収体パターン、マスク基板、及び基板支持体から
成るX線露光マスクにおいて、前記X!吸収体パターン
が存在する側の表面に、少なくとも一層の無機絶縁膜と
、少なくとも一層の有機膜を含む保護膜を設けたことを
特徴とするX線露光マスク。
In an X-ray exposure mask comprising an X-ray absorber pattern, a mask substrate, and a substrate support, the X! An X-ray exposure mask characterized in that a protective film including at least one inorganic insulating film and at least one organic film is provided on the surface on the side where an absorber pattern is present.
JP57111104A 1982-06-28 1982-06-28 X-ray exposure mask Pending JPS592323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111104A JPS592323A (en) 1982-06-28 1982-06-28 X-ray exposure mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111104A JPS592323A (en) 1982-06-28 1982-06-28 X-ray exposure mask

Publications (1)

Publication Number Publication Date
JPS592323A true JPS592323A (en) 1984-01-07

Family

ID=14552495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111104A Pending JPS592323A (en) 1982-06-28 1982-06-28 X-ray exposure mask

Country Status (1)

Country Link
JP (1) JPS592323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201513A (en) * 1987-02-18 1988-08-19 Hitachi Ltd In-tube running device
EP0837365A1 (en) * 1996-10-16 1998-04-22 International Business Machines Corporation Membrane mask structure, fabrication and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201513A (en) * 1987-02-18 1988-08-19 Hitachi Ltd In-tube running device
EP0837365A1 (en) * 1996-10-16 1998-04-22 International Business Machines Corporation Membrane mask structure, fabrication and use

Similar Documents

Publication Publication Date Title
US5521031A (en) Pattern delineating apparatus for use in the EUV spectrum
EP0605964B1 (en) Electron lithography using a photocathode
JP3697426B2 (en) Pattern forming method and semiconductor device manufacturing method
US20100167494A1 (en) Selective Etching Method and Method for Forming an Isolation Structure of a Memory Device
JP3470963B2 (en) Projection electron beam lithography mask
McCord et al. Low voltage, high resolution studies of electron beam resist exposure and proximity effect
JPS592323A (en) X-ray exposure mask
JP2532589B2 (en) Fine pattern formation method
KR19990072848A (en) Photoresist film and method for forming pattern therefor
TWI232495B (en) Manufacturing method of transfer mask substrate and transfer mask
JP2762104B2 (en) Method of manufacturing mask for X-ray exposure
Tan et al. In search of high‐performance resists for 50 kV shaped‐beam exposure
JPS6054435A (en) Exposing method for x-ray
JPS60222849A (en) X-ray exposure method
JPS6055337A (en) Method of exposure to x-rays
JPH0812839B2 (en) X-ray exposure mask
JPH0312452B2 (en)
Rhee et al. Proximity effect reduction using thin insulating layers
JP2012054283A (en) Method for manufacturing semiconductor device
JP3278710B2 (en) X-ray exposure mask and exposure method
KR950002181B1 (en) Metal thin layer forming method for gate or wiring using fluorid
JPS58105140A (en) Multilayered resist
JPS6054436A (en) Exposing method for x-ray
JPH02252231A (en) Fine pattern forming method
JPS592046A (en) Object to be irradiated with x rays