JPS6055337A - Method of exposure to x-rays - Google Patents

Method of exposure to x-rays

Info

Publication number
JPS6055337A
JPS6055337A JP58163455A JP16345583A JPS6055337A JP S6055337 A JPS6055337 A JP S6055337A JP 58163455 A JP58163455 A JP 58163455A JP 16345583 A JP16345583 A JP 16345583A JP S6055337 A JPS6055337 A JP S6055337A
Authority
JP
Japan
Prior art keywords
layer
resist layer
ray
resist
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163455A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58163455A priority Critical patent/JPS6055337A/en
Publication of JPS6055337A publication Critical patent/JPS6055337A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Abstract

PURPOSE:To copy micropatterns more precisely in X-ray lithography by coating the material to be treated, such as wafer, first with a low-sensitive negative type resist as a lower layer, and second, a high sensitive positive type resist in a specified thickness as an upper layer to form two coating layers. CONSTITUTION:The material to be treated, such as wafer 5, is coated with a low sensitive negative type resist layer 9 as a lower layer, and a high sensitive positive type resist layer 8 as an upper layer to form two coating layers. The film thickness of this resist layer 8 is set to a value little thicker than the transit distance of photoelectrons and Auger electrons (secondary electrons) of several hundred nm to use the layer 8 as a buffer layer against the secondary electrons. The coated wafer 5 is irradiated with a proper exact amt. of X-rays based on the film thickness of the lower resist layer 9, the X-rays are transmitted through the upper resist layer 8, and form an X-ray mask pattern in the lower resist layer 9. A large number of photoelectrons and Auger electrons 10 emitted from an Au pattern 7 are absorbed with the layer 8. As a result, all the layer 8 is dissolved in a development step to leave only the 100% cross-linked parts of the layer 9, and a copy having submicron wide high resolution can be ensured in this X-ray lithography.

Description

【発明の詳細な説明】 本発明は1μm以下の微細パターンの複写に威力を発揮
するX線リソグラフィの分野におけるX線露光方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray exposure method in the field of X-ray lithography that is effective for copying fine patterns of 1 μm or less.

軟X線を用いたX線リングラフィが高解像度パターンの
複写技術として有望であることが、エレクトロニクス・
レターズ(Electronics Letters)
第8巻第4号第102〜104頁(1972年)に発表
されて以来、X線リングラフィに関する研究、開発が精
力的に進められ、近年実用段階にかなり近付いている。
The promise of X-ray phosphorography using soft X-rays as a technology for copying high-resolution patterns has been demonstrated in electronics and
Letters (Electronics Letters)
Since its publication in Vol. 8, No. 4, pp. 102-104 (1972), research and development regarding X-ray phosphorography has been vigorously pursued, and in recent years has come quite close to the practical stage.

本発明者は、長年X線リングラフィの研究、開発の過程
で一つの重要な[ら4題点に気がf=3いた。それは、
X線マスク、特にマスク上のX線吸収体であるんパター
ンから放出される光電子・オージェ電子の効果に関する
。もつとも、光電子・オージェ電子放出に関する指摘は
1975年に発行された刊行物ジャーナル・オプ・バキ
ュウム・サイエンス・アンド−テクノロジー(Jour
nal of Vacuum 5ci−ence an
d Technology )第ν巻第6号第1329
〜1331頁になされている。しかし、この論文では、
Bhfi−ゲット(LIC1線の波長は4.6^)、P
dターゲット(−線の波長は4.37大)等を使用する
場合において、よシ多く放射される高エネルギー成分で
ある連続X線による効果の観点において前記光電子・オ
ージェ電子の効果が指摘されている。
The inventor of the present invention has been concerned with one important problem in the course of research and development of X-ray phosphorography for many years. it is,
This field relates to the effects of photoelectrons and Auger electrons emitted from an X-ray mask, particularly an X-ray absorber pattern on the mask. However, the point regarding photoelectron/Auger electron emission was first published in 1975 in the journal Op Vacuum Science and Technology (Jour).
nal of Vacuum 5ci-ence an
d Technology) Volume ν No. 6 No. 1329
It is published on pages 1331 to 1331. However, in this paper,
Bhfi-get (the wavelength of LIC1 line is 4.6^), P
When using a d target (wavelength of - line is 4.37), etc., the effect of photoelectrons and Auger electrons has been pointed out from the viewpoint of the effect of continuous X-rays, which are high-energy components that are emitted in large quantities. There is.

本発明者は、Mターゲット(動線の波長は8.34人)
、Siターゲット(動線の波長は7.13人) 、 M
The inventor has set M target (the wavelength of the flow line is 8.34 people).
, Si target (wavelength of flow line is 7.13 people), M
.

ターゲット(臣線の波長は5.41大)、及びPdター
ゲット等を用いて、巾広くより詳細にX線マスクから放
出される光電子・オージェ電子の効果を研究する過程に
おいて、新たな問題点と思われる実験事実を見出した。
In the process of researching the effects of photoelectrons and Auger electrons emitted from an X-ray mask over a wide range of areas and in more detail using a target (the wavelength of the Omi line is 5.41) and a Pd target, we discovered new problems. I found some experimental facts.

第1図に、問題点の内容を説明するためのネガ形レジス
トの感度特性が示されている。第1図では、X線マスク
を用いた転写にオイて、X線吸収体であるんパターンの
直下のレジストへのX線ドース量はDi (残膜率0)
に、またAnハターンがない部分の直下のレジストへの
X線ドース量はDl (残膜率100チ)になるよりに
露光条件を設定した場合を考えている。ネガ形レジスト
の残膜率を出来るだけ上げることは、現像の際における
膨潤を抑える効果があシ、結果として高解像性につなが
る。本発明者は、この観点から微細パターンの形成を試
みた。Siターゲットを用い、使用されたX線マスクの
Mパターンのに4に対するマスクコントラストは第1図
のDl対り、を得るのに十分な場合における転写実験を
行っているうちに、計算から得られる前記コントラスト
比が実際の転写においてはほとんど実現されないことを
発見した・すなわち、第1図で設定した露光条件に従が
い、AIパターンがない部分の直下に位置するレジスト
へのX線ドース量をり、に設定すると、んパターンの真
下では計算上X線ドース量J’j: DIであるべきで
ある。ところが残膜から逆算すると、んパターンの真下
のレジストへのX線ドース量はDlよりはるかに多いD
3となり、このX線ドース量D3がレジストに与えられ
ていたのである。このことはX線吸収体パターンである
んバター/から光電子・オージェ電子が放出され、余剰
露光が勤パターン直下のレジストに与えられることに基
因している。
FIG. 1 shows the sensitivity characteristics of a negative resist to explain the problem. In Figure 1, during transfer using an X-ray mask, the X-ray dose to the resist directly under the pattern, which is an X-ray absorber, is Di (remaining film rate 0).
In addition, we are considering the case where the exposure conditions are set so that the X-ray dose to the resist directly under the part where there is no An pattern is Dl (remaining film rate 100 cm). Increasing the residual film rate of the negative resist as much as possible has the effect of suppressing swelling during development, resulting in high resolution. The present inventor attempted to form a fine pattern from this point of view. Using a Si target, the mask contrast for the M pattern of the X-ray mask used is obtained from calculations while conducting transfer experiments in the case where it is sufficient to obtain Dl vs. It was discovered that the above contrast ratio is hardly achieved in actual transfer. In other words, according to the exposure conditions set in Figure 1, the X-ray dose to the resist located directly under the part where there is no AI pattern is adjusted. , the calculated X-ray dose should be J'j: DI just below the pattern. However, when calculating backwards from the remaining film, the X-ray dose to the resist directly below the pattern is much higher than Dl.
3, and this X-ray dose D3 was applied to the resist. This is due to the fact that photoelectrons and Auger electrons are emitted from the X-ray absorber pattern, and excess exposure is given to the resist directly under the photosensitive pattern.

本発明者は、真空中(<4X10−Torr )で転写
実験を行ったが、ある種のネガ形レジストについては、
上記効果のため、100%の残膜にするような露光が実
現できず(計算上は可能)、〜50%の残膜が限度であ
るという結果を得た。真空中では、細パターンから放出
される光電子・オージェ電子の飛程が大きく、レジスト
への影響がより顕著であると考えられる。
The present inventor conducted transfer experiments in vacuum (<4X10-Torr), but for certain types of negative resists,
Due to the above effect, exposure with 100% film remaining could not be realized (although it was possible based on calculations), and the result was that ~50% film remaining was the limit. In a vacuum, the range of photoelectrons and Auger electrons emitted from a thin pattern is large, and it is thought that their influence on the resist is more significant.

Auハターンから発生する光電子・オージェ電子(二次
電子)の量を正確に評価することは難しいが、本発明者
は実験結果から82図に示すようなPd線源を用いた場
合における、ネガレジストPGMAの残膜厚特性図を得
た。全てのデータ点におけるPdLa線のPGMAに対
するドース量は130mJ/crlに設定した。X線マ
スクがない場合(目印で示すデータ)、すなわち、X線
が直接PGMAに照射される場合、P GMAの残存膜
厚は露光雰囲気の圧力増加に伴って次第に減少する。一
方、全面に薄い油膜(17nm厚)を有するX線マスク
を通してP鑞しジストにX線が照射された場合(H印で
示すデータ)、PGMAの残存膜厚は圧力によらずほぼ
一定の値を示し、しかも極めて高い残&′、X率(90
チ以上)を有する。これは、前述のように、油表面から
多量の光電子・オージェが放出され、η4Aレジストへ
の余剰露光が生じるためと考えられる。
Although it is difficult to accurately evaluate the amount of photoelectrons and Auger electrons (secondary electrons) generated from the Au pattern, the inventors have determined from experimental results that the negative resist A characteristic diagram of residual film thickness of PGMA was obtained. The dose of PdLa line to PGMA at all data points was set to 130 mJ/crl. When there is no X-ray mask (data indicated by marks), that is, when X-rays are directly irradiated to PGMA, the remaining film thickness of PGMA gradually decreases as the pressure of the exposure atmosphere increases. On the other hand, when the P soldering resist is irradiated with X-rays through an X-ray mask with a thin oil film (17 nm thick) on the entire surface (data indicated by H), the residual film thickness of PGMA remains almost constant regardless of the pressure. Moreover, extremely high residual &', X ratio (90
or more). This is considered to be because, as described above, a large amount of photoelectrons and Auger are emitted from the oil surface, resulting in excessive exposure of the η4A resist.

以上述べたような勤パターンから放出される光電子・オ
ージェ電子によるレジストへの余剰露光は、微細パター
ンの正確な複写を実現するという観点においては、重大
な問題点である。すなわち、実際のX線露光転写におい
て、高残腹を得るよりなX線ドースを設定できないこと
、及び残存膜膜厚の大巾な増加等は、微細レジストパタ
ーン(lt′iにサブミクロ幅パターン)の形成におい
て大キナ障害である。
The overexposure of the resist by photoelectrons and Auger electrons emitted from the pattern as described above is a serious problem from the viewpoint of realizing accurate copying of fine patterns. In other words, in actual X-ray exposure transfer, it is not possible to set a higher X-ray dose to obtain a high residual thickness, and the large increase in residual film thickness is caused by a fine resist pattern (a submicro width pattern in lt'i). It is a major cina disorder in the formation of.

本発明の目的は、従来の問題点を解消するもので、X線
マスクから発生する光電子・オージェ電子による悪影響
を回避し、X線リングラフィにおける微細パターン複写
をよりn1度よく行うことのできるX線露光方法を提供
することにある。
The purpose of the present invention is to solve the conventional problems, and to avoid the adverse effects of photoelectrons and Auger electrons generated from an X-ray mask, and to make it possible to copy fine patterns in X-ray phosphorography with n1 degree of accuracy. An object of the present invention is to provide a line exposure method.

すなわち、本発明はX線吸収体パターンを備えたX線マ
スクに透過させて、被加工物に塗布したレジストにX線
源よシのX線束を照射させ、X線マスクのパターンをレ
ジストに転写するX線露光方法において、低感度のネガ
形レジスト層を下層に、高感度のポジ形レジスト層を上
層として被加工物にレジスト層を上下二段に塗布し、か
つ上部ポジ形レジスト層の膜厚を、前記X線吸収体パタ
ーンよシ放出される二次電子の該レジスト層内での飛程
より少し厚くして、該上部ポジ形レジスト層を二次電子
に対するバッファ層として用い、下部ネガ形レジスト層
の膜厚を基準とした適正な露光量でX線を照射し、上部
レジスト層を透過して下部ネガ形レジスト層にX線マス
クのパターンを形成するとともに、二次電子を上部レジ
スト層に吸収させることを特徴とするXa露光方法であ
る。
That is, the present invention transmits an X-ray beam from an X-ray source to a resist coated on a workpiece by transmitting it through an X-ray mask equipped with an X-ray absorber pattern, and transfers the pattern of the X-ray mask onto the resist. In the X-ray exposure method, resist layers are applied to the workpiece in two layers, with a low-sensitivity negative resist layer as the lower layer and a high-sensitivity positive resist layer as the upper layer, and a film of the upper positive resist layer. The thickness is made slightly thicker than the range within the resist layer of secondary electrons emitted by the X-ray absorber pattern, the upper positive resist layer is used as a buffer layer for secondary electrons, and the lower negative resist layer is used as a buffer layer for secondary electrons. X-rays are irradiated with an appropriate exposure amount based on the film thickness of the shape resist layer, and pass through the upper resist layer to form an X-ray mask pattern on the lower negative resist layer, and the secondary electrons are transferred to the upper resist layer. This is an Xa exposure method characterized by absorbing Xa into a layer.

以下本発明の実施例について図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は、本発明に係るX線露光方法の一実施例を示す
概略図である。本発明に係るX線露光方法において、X
線源1のX線取出し窓2からX線束3を放射させ、該X
線束3をX線マスク4を通過させて、レジストを塗布さ
れた被加工物(ウェハー)5に照射する。X線マスク4
は、X線束に対して透過度の高いマスク基板6と、前記
マスク基板上に形成されたX線吸収体パターン7とから
構成される。以上の点は従来と同じである。本発明は被
加工物(ウェハー)5には低感度のネガ形レジスト層9
を下に、高感度のポジ形レジスト層8を上にそれぞれ配
置して上下二段に塗布する。
FIG. 3 is a schematic diagram showing an embodiment of the X-ray exposure method according to the present invention. In the X-ray exposure method according to the present invention,
An X-ray flux 3 is emitted from the X-ray extraction window 2 of the radiation source 1, and the
The beam 3 passes through an X-ray mask 4 and is irradiated onto a workpiece (wafer) 5 coated with resist. X-ray mask 4
consists of a mask substrate 6 having high transmittance to X-ray flux, and an X-ray absorber pattern 7 formed on the mask substrate. The above points are the same as before. In the present invention, the workpiece (wafer) 5 has a low-sensitivity negative resist layer 9.
The high-sensitivity positive resist layer 8 is placed on the bottom and the high-sensitivity positive resist layer 8 is placed on the top, respectively, and coated in two layers, upper and lower.

ここで、上部の高感度のポジ形レジスト層8の膜厚につ
いて考察する。X線吸収体パターン7がら放出される光
電子・オージェ電子の飛程は)JKa線(1,49Ke
y )からPdLa線(2,84Kev)のエネルギー
範囲において、レジスト層8内でおよそ数千Aであると
考えられる。なお、電子の飛程に関する実験式等が例え
ば1974年に発刊されたフィジカ、スティタス、ンリ
ディ(Phys。5tat、 5ol(a))第26巻
第525−5≦5頁に示されている。したがって、上部
ポジ形レジスト層8の膜厚は光電子・オージェ電子(二
次電子)の飛程数千^よシ少し厚い程度に設定し、該上
部ポジ形レジスト層8を二次電子に対するバッファ層と
して用いる。また、上部ポジ形レジスト層8と下部ネガ
形レジスト層9と度を100ミリジユールオーダとし、
1桁のオーダとすることが望ましいが、使用するレジス
トの立上り感度によっては上述した上、下部レジス)1
5の感度差が少なくなったとしても支障はない。また高
感度の上部ポジ形レジスト層8には商品名FBM(ダイ
キン工業■製)などのレジストを使用でき、−1低感度
の下部ネガ形レジスト層9には商品名CMS (東洋曹
達工業■製)、商品名JSRMIVIES−E (日本
合成ゴム■製)などのレジストを使用できる。
Here, the film thickness of the upper highly sensitive positive resist layer 8 will be considered. The range of photoelectrons and Auger electrons emitted from the X-ray absorber pattern 7 is JKa line (1,49Ke
In the energy range from y ) to the PdLa line (2,84 Kev), it is considered to be approximately several thousand A in the resist layer 8. In addition, the experimental formula etc. regarding the range of an electron are shown, for example in Phys.5tat, 5ol(a), Vol. 26, page 525-5≦5 published in 1974. Therefore, the thickness of the upper positive resist layer 8 is set to be a little thicker than the range of photoelectrons and Auger electrons (secondary electrons), which is several thousand^, and the upper positive resist layer 8 is used as a buffer layer for secondary electrons. used as Further, the upper positive resist layer 8 and the lower negative resist layer 9 are on the order of 100 millijoules,
It is desirable to set it to the order of one digit, but depending on the rise sensitivity of the resist used, the above-mentioned upper and lower resist) 1
There is no problem even if the difference in sensitivity of 5 is reduced. Further, a resist such as FBM (product name) (manufactured by Daikin Industries, Ltd.) can be used for the high-sensitivity upper positive resist layer 8, and a resist such as product name CMS (manufactured by Toyo Soda Industries, Ltd.) can be used for the lower negative-tone resist layer 9, which has -1 low sensitivity. ), product name JSRMIVIES-E (manufactured by Japan Synthetic Rubber), etc. can be used.

さらに、本発明においては下部レジスト層の膜厚を基準
とした適正な露光量でX線を照射し、上部レジスト層を
透過して下部レジスト層9にX線マスクのパターンを形
成するとともに、二次電子を上部レジスト層8に吸収さ
せる。X線マスクによるX線露光転写によって、勤パタ
ーン7が転写されるわけであ4が、このとき前述のよう
にMパターン7から多数の光電子・オージェ電子1oが
放出される・これら光電子・オージェ電子は、上部レジ
スト層8を露光するが、この上部レジスト層8が高感度
であるため、十分にレジストの分解反応が起り、現像の
際に上部レジスト層は全て溶解される。この点が本発明
の特徴であり、この点をさらに詳しく説明する。第4図
はX線マスク及び二層レジスト層の詳細図である。上部
ポジ形レジスト層8を馬、下部ネガ形レジスト層9をR
8、んハp −77の直下部を領域II、Auパターン
がないところの直下部を領域Iとする。第5図に、領域
1、I[における、レジスト層Rs −Rtの露光状態
を示す感度特性が示されている□第5図(1)に示すよ
うに、領域■の下部レジスト層R1においてはX線ドー
ス量はDlで残膜率は1.0であり、上部レジスト層R
3においては、X線ドース量はD2で、残膜率は0であ
る。上部レジスト層のX綜ドース量迅はMパターンから
放出される光電子・オージェ電子のため、下部レジスト
層のX線ドース量り、よりはるかに増加している。第5
図(If)に示すように領域■の下部レジスト層R□に
おいては、X線ドース量はり、で残膜率は0であシ、上
部レジスト層島においてはX線ドース量はD2でrAs
率はOである。従って、このような設定における一回の
X線転写が行われると、上部ポジ形レジスト層R2が二
次電子に対すバッファ層として作用し、下部ネガ形レジ
スト層R1については残膜率100チのパターンが得ら
れる。このとき上部レジスト層島は残膜率θ%であり残
らない。すなわち、現像工程において、上部レジスト層
&は全て溶解し、下部レジスト層R1の100%架橋部
のみが残る。
Furthermore, in the present invention, X-rays are irradiated with an appropriate exposure amount based on the film thickness of the lower resist layer, and are transmitted through the upper resist layer to form an X-ray mask pattern on the lower resist layer 9. The next electron is absorbed into the upper resist layer 8. The M pattern 7 is transferred by X-ray exposure transfer using an X-ray mask, and at this time, as mentioned above, a large number of photoelectrons/Auger electrons 1o are emitted from the M pattern 7. The upper resist layer 8 is exposed to light, but since this upper resist layer 8 is highly sensitive, a sufficient decomposition reaction of the resist occurs, and the entire upper resist layer is dissolved during development. This point is a feature of the present invention, and will be explained in more detail. FIG. 4 is a detailed view of the X-ray mask and two resist layers. The upper positive resist layer 8 is R, and the lower negative resist layer 9 is R.
8. The region directly below the p-77 is defined as region II, and the region directly below where there is no Au pattern is defined as region I. FIG. 5 shows the sensitivity characteristics indicating the exposure state of the resist layer Rs - Rt in region 1, I[. □ As shown in FIG. The X-ray dose is Dl, the residual film rate is 1.0, and the upper resist layer R
In No. 3, the X-ray dose is D2 and the residual film rate is 0. The X-ray dose of the upper resist layer is much greater than that of the lower resist layer due to photoelectrons and Auger electrons emitted from the M pattern. Fifth
As shown in the figure (If), in the lower resist layer R□ of region (■), the remaining film rate is 0 at an X-ray dose of D2, and in the upper resist layer island, the X-ray dose is rAs at D2.
The rate is O. Therefore, when one X-ray transfer is performed under such settings, the upper positive resist layer R2 acts as a buffer layer for secondary electrons, and the lower negative resist layer R1 has a residual film rate of 100 cm. A pattern is obtained. At this time, the upper resist layer island does not remain because the remaining film rate is θ%. That is, in the development step, the upper resist layer & is completely dissolved, leaving only the 100% crosslinked portion of the lower resist layer R1.

なお、本発明の2層厚膜しジス) tJIJ成は、X線
リソグラフィにおいて可能なものであり、例えば電子ビ
ーム露光法では近接効果等のため不可能となる。
Note that the two-layer thick film (JIJ) formation of the present invention is possible in X-ray lithography, but is impossible in, for example, electron beam exposure due to the proximity effect.

以上説明したように本発明によれば、第1にX線リング
ラフィにおけるサブミクロン幅の高M像度複写をより確
実にできる。第2にX線マスクより二次電子が放出され
るままにし、二次電子の影響をレジスト側で除去するた
め、X線マスクの設計に制約を与えることがなく、その
設言1に自由度を与えることができ、第3にX線露光の
露光雰囲気等のシステム設計に自由度を与えることがで
きる効果を有するものでちる。
As explained above, according to the present invention, firstly, high M image resolution copying of submicron width in X-ray phosphorography can be more reliably performed. Second, since secondary electrons are allowed to be emitted from the X-ray mask and the influence of the secondary electrons is removed on the resist side, there is no restriction on the design of the X-ray mask, and Proposition 1 has a high degree of freedom. Thirdly, it has the effect of providing flexibility in system design such as the exposure atmosphere for X-ray exposure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術の問題点でるるネガ形レジストでの
二次電子による余剰露光効果を示した感度特性図、第2
図は同じ< PGMAの残膜特性を示した図、第3図は
本発明にかかる一実施例であるX線露光方法の概略図、
第4図はX線マスク及びレジスN成の詳細図、第5図(
1) 、 (II)は本発明の詳細な説明したネガ形ポ
ジ形2層構造における感度特性図である。 1・・・X線源、2・・・X線取出し窓、3・・・X線
束、4・・・X線マスク、5・・・被加工物、6・・・
マスク基板、7・・・X線吸収体パターン、8・・・ポ
ジ形レジスト、9・・・ネガ形レジスト層、10・・・
光電子・オージェ電子 −仁 第5図 X線に一ス量 X課g−入量 −22(
Figure 1 is a sensitivity characteristic diagram showing the excess exposure effect due to secondary electrons in the negative resist, which is a problem with the conventional technology.
The figures are the same < A figure showing the residual film characteristics of PGMA, Figure 3 is a schematic diagram of an X-ray exposure method that is an embodiment of the present invention,
Figure 4 is a detailed diagram of the X-ray mask and resist N formation, Figure 5 (
1) and (II) are sensitivity characteristic diagrams in a negative-type positive-type two-layer structure in which the present invention is explained in detail. DESCRIPTION OF SYMBOLS 1... X-ray source, 2... X-ray extraction window, 3... X-ray flux, 4... X-ray mask, 5... Workpiece, 6...
Mask substrate, 7... X-ray absorber pattern, 8... Positive resist, 9... Negative resist layer, 10...
Photoelectrons/Auger electrons - Figure 5 X-ray dose x section g - input amount - 22 (

Claims (1)

【特許請求の範囲】[Claims] (1)X線吸収体パターンを備えたX線マスクに透過さ
せて、被加工物に塗布したレジストにX線源よりのX線
束を照射させ、X線マスクのパターンをレジストに転写
するX線径−先方法において、低感度のネガ形レジスト
層を下層に、高感度のポジ形レジスト層を上層として被
加工物にレジスト層を上下二段に塗布し、かつ上部ポジ
形レジスト層の膜厚を、前記X線吸収体パターンよシ放
出される二次電子の該レジスト層内での飛程より少し厚
くして、該上部ポジ形レジスト層を二次電子に対するバ
ッファ層として用い、下部ネガ形レジスト層の膜厚を基
準とした適正な露光量でX線を照射し、上部レジスト層
を透過して下部ネガ形レジスト層にX線マスクのパター
ンを形成するとともに、二次電子を上部レジスト層に吸
収させることを特徴とするX線露光方法。
(1) X-rays are transmitted through an X-ray mask equipped with an X-ray absorber pattern, and the X-ray flux from the X-ray source is irradiated onto the resist coated on the workpiece, thereby transferring the pattern of the X-ray mask onto the resist. In the diameter-to-edge method, resist layers are applied to the workpiece in two layers, with a low-sensitivity negative resist layer as the lower layer and a high-sensitivity positive resist layer as the upper layer, and the film thickness of the upper positive resist layer is is made slightly thicker than the range within the resist layer of secondary electrons emitted by the X-ray absorber pattern, the upper positive resist layer is used as a buffer layer for the secondary electrons, and the lower negative resist layer is used as a buffer layer for the secondary electrons. X-rays are irradiated with an appropriate exposure amount based on the film thickness of the resist layer, transmitting through the upper resist layer to form an X-ray mask pattern on the lower negative resist layer, and transmitting secondary electrons to the upper resist layer. An X-ray exposure method characterized by absorbing
JP58163455A 1983-09-06 1983-09-06 Method of exposure to x-rays Pending JPS6055337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163455A JPS6055337A (en) 1983-09-06 1983-09-06 Method of exposure to x-rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163455A JPS6055337A (en) 1983-09-06 1983-09-06 Method of exposure to x-rays

Publications (1)

Publication Number Publication Date
JPS6055337A true JPS6055337A (en) 1985-03-30

Family

ID=15774207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163455A Pending JPS6055337A (en) 1983-09-06 1983-09-06 Method of exposure to x-rays

Country Status (1)

Country Link
JP (1) JPS6055337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399525A (en) * 1986-10-16 1988-04-30 Matsushita Electric Ind Co Ltd Pattern forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399525A (en) * 1986-10-16 1988-04-30 Matsushita Electric Ind Co Ltd Pattern forming method
JPH06105677B2 (en) * 1986-10-16 1994-12-21 松下電器産業株式会社 Pattern formation method

Similar Documents

Publication Publication Date Title
US3743842A (en) Soft x-ray lithographic apparatus and process
JPS59153A (en) Formation of resist mask having resistance to plasma etching
JPS6246523A (en) Manufacture of mask for x-rays deep lithography
JP2532589B2 (en) Fine pattern formation method
US4088896A (en) Actinic radiation emissive pattern defining masks for fine line lithography and lithography utilizing such masks
US7781150B2 (en) Method of photolithographic exposure
JPS6055337A (en) Method of exposure to x-rays
EP0021719A2 (en) Method for producing negative resist images, and resist images
US6641979B2 (en) Technique of exposing a resist using electron beams having different accelerating voltages
JPS6055338A (en) Method of exposure to x-rays
US4401738A (en) X-Ray lithography mask
JPH0551169B2 (en)
US5178975A (en) High resolution X-ray mask having high aspect ratio absorber patterns
JPH0653106A (en) Formation of fine resist pattern
JPS6054435A (en) Exposing method for x-ray
JPS6054436A (en) Exposing method for x-ray
JP3042728B2 (en) X-ray mask and X-ray exposure method
JPH0312452B2 (en)
JPH0778756A (en) Formation of fine pattern
JPS61212844A (en) Mask for exposing x ray
US5387497A (en) High resolution lithography method using hydrogen developing reagent
JP3114286B2 (en) X-ray exposure mask and method of manufacturing the same
JPS6062120A (en) Method of x-ray exposure
JPH05136026A (en) Pattern forming method
JP3027633B2 (en) Method of forming resist pattern