JPS59232241A - Refining method of crude copper by caustic soda - Google Patents

Refining method of crude copper by caustic soda

Info

Publication number
JPS59232241A
JPS59232241A JP10420883A JP10420883A JPS59232241A JP S59232241 A JPS59232241 A JP S59232241A JP 10420883 A JP10420883 A JP 10420883A JP 10420883 A JP10420883 A JP 10420883A JP S59232241 A JPS59232241 A JP S59232241A
Authority
JP
Japan
Prior art keywords
bath
copper
blister copper
crude copper
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10420883A
Other languages
Japanese (ja)
Other versions
JPS6147213B2 (en
Inventor
Shuichi Oto
修一 大戸
Yuji Nishikawa
西川 裕次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP10420883A priority Critical patent/JPS59232241A/en
Publication of JPS59232241A publication Critical patent/JPS59232241A/en
Publication of JPS6147213B2 publication Critical patent/JPS6147213B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To refine product electric copper having high quality by a large volume treatment of copper concentrate having a high impurity content with an extremely simple method and device by passing molten crude copper by a stream droplet method through the inside of a molten NaOH layer and recovering said copper. CONSTITUTION:A channel type induction furnace 11 is provided with a recovering chamber 14 which holds an NaOH bath 13 in a molten state and rises after extending horizontally from the bottom end of the bath in the upright part 12 thereof. An induction coil 15 is provided in the horizontal part between the perpendicular parts at both ends. The coil 15 generates the quantity of heat required for maintaining refined crude copper 19 in an adequate fluid state. The crude copper produced from a converter or refining furnace is dropped from a dropping device 18 such as a ladle, tray or the like onto the bath 13 and is accumulated through the bath in the chamber 14. A dischrging port 16 is provided to the chamber 14 so that the refined crude copper is discharged through said port at a suitable interval and is sent for an anode casting stage. Impurities such as As, Sb, Bi, Pb or the like in the crude copper are efficiently removed during the passage through the bath 13 according to the above-mentioned method.

Description

【発明の詳細な説明】 本発明は、転炉或いは精製炉出粗銅の精製法に関するも
のであり、特には溶融苛性ソーダ層中に溶融粗銅を滴下
することにより粗銅中のAm 、Sb等の不純物を除去
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining blister copper discharged from a converter or refining furnace, and in particular, by dropping molten blister copper into a layer of molten caustic soda, impurities such as Am and Sb are removed from the blister copper. It relates to a method of removal.

銅製錬においては、銅精鉱は基本的に、自溶炉における
溶錬及び転炉における錬銅の工程を経た後、精製炉にお
いて精製されそして電解用陽極として鋳造される。製錬
工程の最終的役割を担う精製炉は粗銅中の硫黄と酸素、
妹に酸素の減少のために設けられた炉であり、粗銅中に
存在するAs。
In copper smelting, copper concentrate basically goes through the steps of smelting in a flash furnace and wrought copper in a converter, then refined in a refining furnace and cast as an anode for electrolysis. The refining furnace, which plays the final role in the smelting process, processes the sulfur and oxygen in blister copper,
This is a furnace installed in the younger sister to reduce oxygen, and As exists in blister copper.

Sb、 Bj SPb等の不純物の除去には向いていな
い。これら不純物の除去率向上の為に、転炉或いは精製
炉において消石灰、生石灰或いはソーダ灰を添加して不
純物を石灰スラグやソーダスラグとして除去する方法も
提唱されている。しかし、この方法は添加物と溶鋼の接
触をいかに緊密に行なうかが問題である。例えば粉状添
加物を気体に載せて浴中に噴入したり、不活性ガスの吹
込みにより攪拌効果を創生ずる等の様々の方式により接
触効果の改善が計られているが、まだ尚添加物と溶鋼の
接触が不十分であり、高い除去率を望むことはできず、
加えて生成スラグと溶鋼との分離性が悪く、メタル損失
も無視しえない。この他、fi?製処理として転炉出粗
銅を真空処理することにより不純物を除去する技術も報
告されているが、設備面、反応効率その他の点で検討の
余地を残している。
It is not suitable for removing impurities such as Sb, Bj SPb, etc. In order to improve the removal rate of these impurities, a method has been proposed in which slaked lime, quicklime or soda ash is added in a converter or refining furnace to remove impurities as lime slag or soda slag. However, the problem with this method is how closely the additives and molten steel can be brought into contact. For example, attempts have been made to improve the contact effect by various methods such as injecting powdered additives into the bath on a gas or creating a stirring effect by blowing inert gas, but there are still many ways to improve the contact effect. Contact between the material and the molten steel is insufficient, and a high removal rate cannot be expected.
In addition, the separation between the generated slag and molten steel is poor, and metal loss cannot be ignored. Besides this, fi? A technology has also been reported in which impurities are removed by vacuum treating blister copper from a converter, but there is still room for further investigation in terms of equipment, reaction efficiency, and other aspects.

いずれにせよ、従来工程による不純物、特に重金属の除
去は必ずしも十分に達成されていない。
In any case, the removal of impurities, especially heavy metals, by conventional processes has not always been achieved satisfactorily.

特に原料中に不純物が多い場合には精製後も残留不純物
が許容しえない程に多くなる。As18bsBiSPb
等の不純物は爾後の電解工程に重大な悪影Uを及ぼすの
で極力これを低減することが必要のみならず、近時良質
の銅精鉱が減少しつつある状況に鑑み製錬所の不純物許
容能力を上げることにより不純物の多い鉱石でも大量に
使用できる態勢の確立が望まれている。
Particularly when there are many impurities in the raw material, the amount of impurities remaining after purification becomes unacceptably high. As18bsBiSPb
Impurities such as these have a serious negative impact on the subsequent electrolytic process, so it is necessary not only to reduce them as much as possible, but also to reduce the tolerance of impurities at smelters in view of the recent decline in high-quality copper concentrate. It is hoped that by increasing the capacity, it will be possible to use large amounts of ore with many impurities.

こうした要望に谷えて、本発明者は従来法に代る新たな
粗銀精製法について多くの検討を加えた結果、溶融苛性
ソーダ層中に溶融粗銀を滴下する所謂流滴法によって粗
銅中の不純物が効率良く除去できることを見出した。粗
銅中の不純物除去のための7ラツクスとして苛性ソーダ
を使用することそして接触方法として溶鋼を7ラツクス
層中に滴下する方式を採用することにより、粗銅中で特
に問題となるA8、Sb等を始め、硫黄及び酸素もきわ
めて効率良く除去することができる。処理対象とする粗
銅は、転炉出或いは精製炉出粗銅であるが、不純物除去
効果が非常に高いので、転炉用粗銅を本発明により処理
してそのままアノードに鋳造することも可能であり、こ
れにより精製炉工程を省略することができる。
In response to these demands, the present inventor conducted extensive research on a new crude silver refining method to replace the conventional method, and as a result, impurities in blister copper were removed by a so-called droplet method in which molten crude silver was dropped into a molten caustic soda layer. was found to be able to be removed efficiently. By using caustic soda as the 7 lux layer to remove impurities in blister copper and by dropping molten steel into the 7 lux layer as a contact method, we can remove impurities such as A8 and Sb, which are particularly problematic in blister copper. Sulfur and oxygen can also be removed very efficiently. The blister copper to be treated is blister copper from a converter or a refining furnace, but since the effect of removing impurities is very high, it is also possible to treat blister copper for converters according to the present invention and cast it as an anode as it is. This allows the refining furnace step to be omitted.

斯くして、本発明は、溶融粗銀を溶融苛性ソーダ層中に
滴下し、該苛性ソーダ層を通過した精製粗銅を回収する
ことを特徴とする粗銅の精製方法を提供する。
Thus, the present invention provides a method for refining blister copper, which comprises dropping molten crude silver into a molten caustic soda layer and recovering purified blister copper that has passed through the caustic soda layer.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

転炉において産出される転炉用粗銅は為既述した通り、
いまだかなりの量の不純物と硫黄及び酸素を含有してい
る。不純物としては、操業条件及び原料状況によって変
動するが、0.03〜008%Bi、0.03〜0.0
4%Sb、0.2〜0.3%As。
As mentioned above, the converter blister copper produced in the converter is
It still contains significant amounts of impurities and sulfur and oxygen. Impurities vary depending on operating conditions and raw material conditions, but include 0.03 to 008% Bi, 0.03 to 0.0
4% Sb, 0.2-0.3% As.

0、015〜0.030%pb、o、001〜0.00
2%Znが代表例である。硫黄は0.01〜0.02%
そして酸素は0.50〜0.60%程度含まれている。
0,015~0.030%pb,o,001~0.00
2% Zn is a typical example. Sulfur is 0.01-0.02%
Oxygen is contained in an amount of about 0.50 to 0.60%.

不純物の多い鉱石の割合が多いと、不純物量は更に増加
しうる。
If the proportion of ore with many impurities is high, the amount of impurities can further increase.

従来法に従えば、転炉用粗銅は、傾転型の精製炉におい
て必要なら羽目からの空気吠込や協力[11投入により
硫黄並びに不純物を除0た後、表面に浮いた酸化物を炉
外に取除く跋かき作業力5行われ、その後アンモニア等
の還元剤を使用して還元処理即ち脱酸されていた。しか
しながらこの方法で番ま不純物が充分に除去しえなかっ
たことは既述の通りである。
According to the conventional method, blister copper for converters is processed in a tilting type refining furnace, where sulfur and impurities are removed by adding air or cooperating if necessary [11], and then the oxides floating on the surface are removed from the furnace. A scraping operation 5 was performed to remove the material from the outside, and then a reduction treatment, that is, deoxidation, was performed using a reducing agent such as ammonia. However, as mentioned above, impurities could not be sufficiently removed by this method.

そこで、本発明に従えば、転炉出粗銅或(・は精製炉出
粗銅が溶融苛性ソーダ層を使用しての流滴法により精製
される。従来ソーダ系フラックス或いはソーダスラグと
呼ばれるフラックスやスラグを使用しての粗銅の精製に
ついて研究は行われてきたが、その主流はソーダ灰(N
a2CO3)である。
Therefore, according to the present invention, blister copper from a converter or blister copper from a refining furnace is purified by a droplet method using a layer of molten caustic soda. Conventionally, flux or slag called soda-based flux or soda slag is used. Research has been conducted on the refining of blister copper, but the mainstream is soda ash (N
a2CO3).

苛性ソーダ(NaOH)を使用しての粗銅精製の実操業
化の試みはいまだない。苛性ソーダ!まソータ。
There has been no attempt to commercialize blister copper refining using caustic soda (NaOH). caustic soda! Masota.

塩としては高温下で比較的安定であり、後に実施例にお
いて示す通りソーダ灰より一層効果的に不純物を除去す
ることができる。例えば、AI及びsbについては次の
反応によるものと推測されている。
As a salt, it is relatively stable at high temperatures, and as shown in Examples later, it can remove impurities more effectively than soda ash. For example, it is assumed that AI and sb are caused by the following reaction.

2 As −1−6NaOH→ 2Na3AsOs +
 3H22Sb + 6 NaOR−+  2Nas 
Sb Oa + 5Hz第1図は、本発明方法の基本原
理を示す試験装置を示す。アルミナ製ルツボ1内に番ま
苛性ソーダ層3が加熱コイル5にて溶出状態に糸1寺さ
IL″C(・る。苛性ソーダ浴上方から溶融粗銅7カ(
滴下される。溶出粗銅滴が苛性ソーダ浴を通過する[川
にそこに含まれている不純物が除去される。液滴状態で
浴を通過することと、苛性ソーダと不純11勿との高い
反応性によって、粗銅中の不純物力;効果的に除去され
る。精製粗鉛9は浴下に溜まる。J七爪差によって、浴
は精製粗錦上に浮遊し、ン谷−メタルの分離性は良好に
保たれる。
2 As -1-6NaOH→ 2Na3AsOs +
3H22Sb + 6 NaOR- + 2Nas
Sb Oa + 5Hz FIG. 1 shows a test setup illustrating the basic principle of the method of the invention. A layer of caustic soda 3 is placed in an alumina crucible 1, and a layer of molten blister copper (7 layers) is heated from above the caustic soda bath.
dripped. The eluted blister copper drops pass through a caustic soda bath [the impurities contained in it in the river are removed]. The impurities in the blister copper are effectively removed by passing through the bath in droplet form and by the high reactivity of the caustic soda and impurities. Refined crude lead 9 accumulates under the bath. The bath floats on the refined coarse brocade due to the J-seven claw difference, and good separation of the metal is maintained.

第2図は、工業化精製装置の一例を示す。資ζ型誘導炉
11は、その直立部12にお(嘱て苛性ミソーダ浴13
を溶融状態に保持して−する。炉11&ま浴の下端から
水平に伸延しそして後立上る回収室14を具備し、両側
垂直部間の水平部分に番ま誘導コイル15が装備されて
いる。誘導コイル15をま苛性ソーダ浴を溶融状態に維
持しまた精製粗釧19を適度の流動状態に維持するに必
要な熱量を発生する。転炉出粗銅或いは精製炉出11鍋
17は取鍋、トレイ等の滴下装[18から苛性ソーダ浴
上に滴下され、浴を通過して回収室14に溜まる。
FIG. 2 shows an example of an industrialized refining device. The ζ-type induction furnace 11 has a caustic miso soda bath 13 in its upright part 12.
is maintained in a molten state. It is equipped with a recovery chamber 14 that extends horizontally from the lower end of the furnace 11 and the bath and rises later, and a circular induction coil 15 is installed in the horizontal portion between the vertical portions on both sides. The induction coil 15 generates the amount of heat necessary to maintain the caustic soda bath in a molten state and to maintain the refined crude slag 19 in a moderately fluid state. The blister copper from the converter or from the refining furnace 11 is dripped onto the caustic soda bath from a dripping device 18 such as a ladle or tray, passes through the bath, and collects in the recovery chamber 14.

回収室14には注出口16が設けられており、精製粗銅
は適宜の開国で抜出されてアノード紡速工程に供せられ
る。苛性ソーダ浴を収納保持する直立部12の内壁は例
えば電融マグネシアれんかにより保膜される。苛性ソー
ダ浴は抜出口20から周期的に抜出され、スラグ湿式処
理工程において浄化され、繰返し使用される。
A spout 16 is provided in the recovery chamber 14, and refined blister copper is extracted at an appropriate opening and subjected to an anode spinning process. The inner wall of the upright portion 12 that accommodates and holds the caustic soda bath is coated with, for example, fused magnesia brick. The caustic soda bath is periodically withdrawn from the outlet 20, purified in the slag wet treatment process, and used repeatedly.

苛性ソーダ浴使用且は、粗銅温度、滴下状態、粗銅滴の
浴通過時間、浴温等に依存して決定されるが、粗iJA
:苛性ソーダ2Rffl比において30o:1程度まで
なら充分のM!効果を上げることができる。転炉用粗銅
の産出時温度は1100〜1200℃であり、必要なら
1350℃までの温度に予備加熱してもよい。精製処理
中溶鍋温度が低下するので転炉量温度を高目にコントロ
ールするのが好ましい。苛性ソーダ浴は1100℃前後
に維持するのが好都合である。
The use of a caustic soda bath is determined depending on the blister copper temperature, the dropping state, the bath passing time of the blister copper droplets, the bath temperature, etc.
: Sufficient M for caustic soda 2Rffl ratio up to about 30o:1! You can increase the effect. The production temperature of blister copper for converters is 1100 to 1200°C, and if necessary, it may be preheated to a temperature of up to 1350°C. Since the temperature of the melt pot decreases during the refining process, it is preferable to control the converter temperature at a high level. Conveniently, the caustic soda bath is maintained at around 1100°C.

実施例1及び比較例1 供試粗銅として、銅製線断現場産出の粗銅を黒鉛ルツボ
で溶解して得た下表に示す品位のものを用いた: この供試粗銅1kgを黒鉛るつぼで1200℃に溶解し
たものを第1図に示すような装置において流滴処理した
。苛性ソーダ浴及びソーダ灰浴5002をアルミナルツ
ボで溶解し、1100℃にhh持した。浴の高さは12
0闘であった。粗銅流滴後、放冷して処理精製粗銅をサ
ンプリングして不純物品位を分析した。結果を下表に示
す。
Example 1 and Comparative Example 1 As test blister copper, the grade shown in the table below was obtained by melting blister copper produced at a copper wire cutting site in a graphite crucible. 1 kg of this test blister copper was heated at 1200°C in a graphite crucible. The solution was subjected to droplet treatment in an apparatus as shown in FIG. A caustic soda bath and a soda ash bath 5002 were dissolved in an alumina crucible and maintained at 1100°C hh. The height of the bath is 12
It was 0 fights. After the blister copper was poured, it was allowed to cool, and the treated refined blister copper was sampled and the quality of impurities was analyzed. The results are shown in the table below.

実施例2及び比較例2 苛性ソーダ及びソーダ灰浴500vに対して粗@10に
9を処理した点を除いて例1と同一の処理を行った。結
果を下表に示す。
Example 2 and Comparative Example 2 The same treatment as Example 1 was carried out, except that a 500v caustic soda and soda ash bath was treated with coarse @10 to 9. The results are shown in the table below.

上記例かられかるように、苛性ソーダ浴の場合ソーダ灰
浴に比較してきわめて不純物除去成積が優れている。こ
の原因については、ソーダ灰による不純物除去CI4 
M’tは、AIを例にとると、AAs +502 + 
6Na20−+ 4Na3As03のような反応による
ものと考えられ、反応を律速するもつとも大きな要因は
02の供給であり、この条件を満足させることが離しい
ものと思われる。いずれにせよ、本発明は粗銅中で特に
問題となるAs 、Sb % Bi等を始め、硫黄及び
酸累もきわめて効率良く除去する。
As can be seen from the above examples, a caustic soda bath is much better at removing impurities than a soda ash bath. Regarding the cause of this, impurity removal by soda ash CI4
Taking AI as an example, M't is AAs +502 +
It is thought that this is due to a reaction such as 6Na20-+4Na3As03, and the most important factor that determines the rate of the reaction is the supply of 02, and it seems that it is difficult to satisfy this condition. In any case, the present invention very efficiently removes As, Sb% Bi, etc., which are particularly problematic in blister copper, as well as sulfur and acid accumulations.

本発明は、きわめて簡易な方法によってまた気体吹込み
や真空処理等の手段を用いず簡単な装置によ2て、不純
物含有率の高い銅iI′i!7鉱でも大量処理して高品
質の製品電気鋼の製造を可能ならしめる点で、銅製錬分
野に有意義な貢献を与えるものである。また、場合によ
っては精製炉工程を省略することができ、新たな銅製錬
フローシートをも確立するものである。
The present invention enables the production of copper iI'i with a high impurity content by an extremely simple method and by a simple device without using means such as gas blowing or vacuum treatment. This will make a significant contribution to the field of copper smelting and refining in that it will be possible to manufacture high-quality electrical steel products through mass processing of seven ores. In addition, the refining furnace process can be omitted in some cases, and a new copper smelting flow sheet can be established.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理を示す試駆装置を示し為そし
て第2図は本発明を実施する装置の具体例を示す断面図
である。 1:/L/ツボ 2:苛性ソーダ浴 5:フィル 7:粗銅 9:精製粗銅 11:溝形誘導炉 12:直立部 13:苛性ソーダ浴 14:回収室 15:誘導コイル 16:注出口 17 二 粗m 18二滴下装置 19:精製粗銅 20;浴接出口 ゛・2.−
FIG. 1 shows a test device illustrating the principle of the method of the present invention, and FIG. 2 is a sectional view showing a specific example of the device for carrying out the present invention. 1: / L / pot 2: caustic soda bath 5: fill 7: blister copper 9: purified blister copper 11: groove induction furnace 12: upright part 13: caustic soda bath 14: recovery chamber 15: induction coil 16: spout 17 2 coarse m 18 Two dropping device 19: Refined blister copper 20; Bath outlet ゛・2. −

Claims (1)

【特許請求の範囲】 1)溶融粗銅を溶融苛性ソーダ層中に滴下し、該苛性ソ
ーダ層を通過した精製粗銅を回収することを特徴とする
粗銅の精製方法。 2)溶融粗銅が転炉出粗銅である特許請求の範囲第1項
記載の方法。
[Scope of Claims] 1) A method for refining blister copper, which comprises dropping molten blister copper into a molten caustic soda layer and recovering the refined blister copper that has passed through the caustic soda layer. 2) The method according to claim 1, wherein the molten blister copper is blister copper extracted from a converter.
JP10420883A 1983-06-13 1983-06-13 Refining method of crude copper by caustic soda Granted JPS59232241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10420883A JPS59232241A (en) 1983-06-13 1983-06-13 Refining method of crude copper by caustic soda

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10420883A JPS59232241A (en) 1983-06-13 1983-06-13 Refining method of crude copper by caustic soda

Publications (2)

Publication Number Publication Date
JPS59232241A true JPS59232241A (en) 1984-12-27
JPS6147213B2 JPS6147213B2 (en) 1986-10-17

Family

ID=14374548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10420883A Granted JPS59232241A (en) 1983-06-13 1983-06-13 Refining method of crude copper by caustic soda

Country Status (1)

Country Link
JP (1) JPS59232241A (en)

Also Published As

Publication number Publication date
JPS6147213B2 (en) 1986-10-17

Similar Documents

Publication Publication Date Title
US5128116A (en) Silicon powder and method for production of silicon powder
EP3794166B1 (en) Improvement in copper electrorefining
JP2001247922A (en) Method for operating copper smelting furnace
KR850001291B1 (en) Continuous melting and refining of secondary and/or blister copper
JPS60208491A (en) Purification of scrap aluminum
JPH0770666A (en) Method and apparatus for continuously refining aluminum scrap
CN106591583B (en) A kind of useless miscellaneous aluminum melt regeneration is except the method for iron
KR20220102147A (en) Improved copper smelting process
US3980470A (en) Method of spray smelting copper
JPS59232241A (en) Refining method of crude copper by caustic soda
KR102566654B1 (en) Methods for recovering metals from cobalt containing materials
CN108220640A (en) A kind of method that hot dip kirsite is manufactured with cadmia
JPS602635A (en) Refining device of crude copper
SU1735408A1 (en) Process for treating slags for production of heavy nonferrous metals
JP2587814B2 (en) Method for treating concentrate from copper converter
JP2016191120A (en) Non-ferrous smelting slag treatment method
JP3969522B2 (en) Operation method of copper smelting furnace
RU2346064C1 (en) Processing method of golden-antimonial-arsenical sulphide concentrates
JPS59197532A (en) Dry refining of blister copper
JPS62174338A (en) Refining method for copper
KR100324707B1 (en) Reclaimed Zinc Recovery by Dross Remelting Gravity Separation
GB2030597A (en) Filtering Aluminium
SU1723166A1 (en) Process for refining copper and copper base alloys
JP5749546B2 (en) Method for removing bottom deposits of iron and tin-containing copper processing furnaces
JPS5928540A (en) Concentration of bismuth