JPS59231309A - Pulse combustion device - Google Patents

Pulse combustion device

Info

Publication number
JPS59231309A
JPS59231309A JP10476283A JP10476283A JPS59231309A JP S59231309 A JPS59231309 A JP S59231309A JP 10476283 A JP10476283 A JP 10476283A JP 10476283 A JP10476283 A JP 10476283A JP S59231309 A JPS59231309 A JP S59231309A
Authority
JP
Japan
Prior art keywords
heat
heat storage
latent heat
combustion chamber
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10476283A
Other languages
Japanese (ja)
Inventor
Yoshio Moriwaki
良夫 森脇
Isao Inui
勲 乾
Koji Gamo
孝治 蒲生
Tadayasu Mitsumata
光亦 忠泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10476283A priority Critical patent/JPS59231309A/en
Publication of JPS59231309A publication Critical patent/JPS59231309A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass

Abstract

PURPOSE:To sharply decrease the generation of noise, to increase heat accumulating density through compacting of a device, and to make a heat output constant and enable fetching thereof, by a method wherein a combustion chamber, an exhaust pipe and the outer peripheral wall surface of a cushion chamber are surrounded with a heat storing container, and a latent heat accumulating device, containing a latent heat material and being formed integrally with a pulse burner, is formed in the heat storing container. CONSTITUTION:A pulse burner is constituted such that an air feed pipe 6 and a fuel feed pipe 7 are integrally disposed through the medium of a valve device 4 on the inlet side (suction side) of a combustion chamber 1. Further, the combustion chamber 1, serving as the heat exchanger part of the pulse burner, an exhaust pipe 2, and the heat exchanging outer peripheral wall surface of a cushion chamber 3 are surrounded with a heat storing container 9, the central parts of both side wall plates of the heat storing container 9 are securely mounted to the outer peripheral surface of a connection part between the valve device 4 and the combustion chamber 1 and to the outer peripheral surface of a tail pipe to bring the interior of the heat storing container 9 into an enclosed state, and latent heat accumulating materials 10 and heat exchanging pipes 11 are disposed inwardly of the heat storing container 9 to constitute a latent heat accumlating device formed integrally with the pulse burner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯や暖房用或いは産業用などの熱を利用する
分野全般に広く利用し得るノ(ルス燃焼器と潜熱蓄熱装
置とを一体化した)々ルス燃焼装首に関するものである
[Detailed Description of the Invention] Industrial Fields of Use The present invention can be widely used in all fields that utilize heat, such as hot water supply, space heating, and industrial use (integrating a Luss combustor and a latent heat storage device). This is related to the burning neck.

従来例の構成とその問題別 パルス燃焼器は高負荷で燃焼でき、且つ熱伝達特性がよ
く、起動時を除けば燃焼用空気の自動吸引や自己着火が
行えるなどのflJ点を有し、さらに。
The conventional configuration and its problem-based pulse combustor can burn under high load, has good heat transfer characteristics, and has an flJ point that allows automatic suction of combustion air and self-ignition except during startup. .

燃焼器としての構造が簡単で比較的低コストで製造でき
ることから、+後の使用分野の展開が期待さn、ている
Since the structure of the combustor is simple and it can be manufactured at relatively low cost, it is expected that it will be used in many other fields.

しかしながら、パルス燃焼器は、燃焼時に発生する過大
な騒音のために1種々の低騒音対策を施さない限り、実
用に劇える騒音にはなり難いという問題を有し、低騒音
を実現するためには装飯乍体が大型化になるという欠点
があった。
However, pulse combustors have the problem that the excessive noise generated during combustion makes it difficult to achieve practical noise unless various noise reduction measures are taken. The disadvantage was that the food packaging was large.

発明の目的 本発明はこのようなパルス燃焼器において、騒音と著し
く低減すると共にコンパクトで蓄熱密度が高く、且つ熱
出力を一定にして取出し可能とし。
OBJECTS OF THE INVENTION The present invention provides such a pulse combustor that significantly reduces noise, is compact, has a high heat storage density, and has a constant heat output that can be taken out.

さらに、使用方法によっては水では達成することのでき
ない100℃以上の温度での熱利用を可能にしんパルス
燃焼装置を提供するものである・発明の構成 前記目的を連取するために1本発明のパルス燃焼器Wけ
1点火装置を有する燃焼室の出口側に排気パイプを介し
てクッションチャンバおよび尾管を順次連設すると共r
(前記燃焼室の入口側に燃料パイプおよび燃焼用空気供
給パイプをパルプ装置を介して連設して構成さiT、た
パルス燃焼器において、その燃焼室、排気パイプおよび
クッションチャンバの熱交換外周壁面を貯熱容器で包囲
し、その貯熱容器内に潜熱蓄熱材を収納して前記パルス
燃焼器と一体化し′IF−潜熱蓄熱装置を構敬してなる
ことを特徴とするものである。そして、好ましくは、そ
の潜熱蓄熱装置の熱交換方式をシェル書アンド・チュー
ブ型とし、この潜熱蓄熱装置に潜熱蓄熱材と共に金属の
熱伝導体を収容したことを特徴とするものである。
Furthermore, the present invention provides a pulse combustion device that enables heat utilization at temperatures of 100° C. or higher, which cannot be achieved with water depending on the method of use. A cushion chamber and a tail pipe are sequentially connected via an exhaust pipe to the exit side of a combustion chamber having an ignition device in a pulse combustor.
(In a pulse combustor configured by connecting a fuel pipe and a combustion air supply pipe to the inlet side of the combustion chamber via a pulp device, the heat exchange outer peripheral wall surface of the combustion chamber, exhaust pipe, and cushion chamber) is surrounded by a heat storage container, a latent heat storage material is stored in the heat storage container, and is integrated with the pulse combustor to form an IF-latent heat storage device. Preferably, the heat exchange method of the latent heat storage device is a shell book-and-tube type, and the latent heat storage device is characterized in that a metal thermal conductor is housed together with the latent heat storage material.

こ71.まで使用されているパルス燃焼装置においては
1本発明のようにパルス燃焼器と潜熱蓄熱装置を一体化
したものは知らn、ていない。
71. Among the pulse combustion devices currently in use, there is no known one that integrates a pulse combustor and a latent heat storage device as in the present invention.

本発明者等は、パルス燃焼器の騒音対策、および効果的
なパルス燃焼器の利用方法を種々検討した結果、パルス
燃焼器と潜熱蓄熱装置とを一体化することにより、aめ
て効果的なパルス燃焼装置が実現することを確認した。
As a result of various studies on noise countermeasures for pulse combustors and effective methods of using pulse combustors, the present inventors have found that by integrating the pulse combustor and a latent heat storage device, an effective method can be achieved. It was confirmed that a pulse combustion device could be realized.

PIJち、過大な騒音を防止するためには、パルス燃焼
器内のガスのコントロールと共にパルス燃焼器と構成、
する装置全体からの騒音をいかに低減するかが重要であ
る。
PIJ, in order to prevent excessive noise, it is necessary to control the gas in the pulse combustor and the configuration of the pulse combustor.
It is important to consider how to reduce noise from the entire equipment.

この騒音を防止する一つの方法として、パルス燃焼器の
周囲を厚く被覆することが有効であるが。
One effective way to prevent this noise is to provide a thick coating around the pulse combustor.

この場合、単に燃焼器壁面の板厚を増大したシ或いは各
論の騒音緩衝材で被覆したりするのでは騒音の低減に効
果が生じても形状が大型化した9コスト高となるだけで
、*能上、さほど有効ではないO このような点に鑑みて1本来のパルス燃焼器が有する優
f1.た機能を生かす一方、騒音を低減下すると共に新
たな機能を付加することを検討した結果、パルス燃焼器
と潜熱蓄熱装置とを一体化することが極めて有効である
ことを見出したものである。
In this case, simply increasing the thickness of the combustor wall or covering it with a noise-absorbing material may be effective in reducing noise, but will only result in a larger size and higher costs.* In view of these points, the excellent f1.1 original pulse combustor has. As a result of considering how to make use of the existing functions while reducing noise and adding new functions, we found that it is extremely effective to integrate the pulse combustor and the latent heat storage device.

実施例の説明 本発明の実施例を1面について説明すると、従来のパル
ス燃焼器と同様に1点火プラグ0を設けた燃焼室(1)
の出口側(排気1flll )に小径の排気パイプ12
)を介してクッションナヤンバ(3)と尾管8)を順次
連設すゐと共に、燃焼室(1)の入口側(吸気側)に給
気パイプし)および燃料供m パイプのをパルプ装置(
4)を介して一体に連設することによりパルス燃焼器を
構成し、さらに、このパルス燃焼器ノ熱交換部分である
燃焼室(1)と排気バイブ■およびクッションチャンバ
■の熱交換外周壁面を貯熱容器(2)で包囲し、この貯
熱容器(9)の両ii板の中央部をパルプ装置(4)と
燃焼室(1)との連設部外周面および尾管外周面とに夫
々固着して貯熱容器(9内を密閉状態とし、貯熱容器9
)に潜熱蓄熱材αOおよび熱交換パイプ頃)を内装、配
設して前記パルス燃焼器と一体化した潜熱蓄熱装置tを
構成してなるものである。
DESCRIPTION OF THE EMBODIMENTS One aspect of the embodiment of the present invention will be described. Like a conventional pulse combustor, a combustion chamber (1) is provided with 1 spark plug and 0 spark plugs.
A small diameter exhaust pipe 12 is installed on the outlet side (exhaust 1flll) of
), the cushion nayamba (3) and the tail pipe 8) are successively connected to the combustion chamber (1), and the air supply pipe (3) and the fuel supply pipe (m) to the inlet side (intake side) of the combustion chamber (1) are connected to the pulp equipment. (
4) to form a pulse combustor, and furthermore, the heat exchange outer peripheral wall surface of the combustion chamber (1), which is the heat exchange part of this pulse combustor, the exhaust vibrator ■, and the cushion chamber ■. It is surrounded by a heat storage container (2), and the central part of both II plates of this heat storage container (9) is connected to the outer peripheral surface of the connection part between the pulp device (4) and the combustion chamber (1) and the outer peripheral surface of the tail pipe. The inside of the heat storage container (9 is sealed) and the heat storage container 9 is fixed to each other.
), a latent heat storage material αO and a heat exchange pipe) are installed inside and arranged to constitute a latent heat storage device t integrated with the pulse combustor.

このように構成したパルス燃焼装置は、始動時に点火プ
ラグ(5)を作動させ、燃焼用空気および燃料を供給バ
イブロ)(7)からバルブ装hlr(4)を介して燃焼
室(1)K供給させることにより強制的に燃焼を行わせ
る。
The pulse combustion device configured in this way operates the spark plug (5) at the time of startup, and supplies combustion air and fuel from the vibro) (7) to the combustion chamber (1) via the valve HLR (4). By doing so, combustion is forced.

系が安定し1一旦燃焼サイクルが形成さノ1.ると。Once the system is stabilized and a combustion cycle is formed, 1. And.

その後は点火プラグ(5)を停止しても、燃料および燃
焼用空気をパルプ装置に)ヲ介して自動吸引し。
After that, even if the ignition plug (5) is stopped, fuel and combustion air are automatically sucked into the pulp device (through the pulp device).

さらに自己着火により一定周波数のパルス燃焼を継続す
る〇 この時、パルス燃焼器から発生する熱は、主に燃焼室(
1)、排気パイプ■、クッションチャンバ■の壁面で熱
交換され、この燃焼熱を熱交換外壁面に配設しfC潜熱
蓄熱材行頭よって吸収、保持さn。
Furthermore, self-ignition continues pulse combustion at a constant frequency. At this time, the heat generated from the pulse combustor is mainly transferred to the combustion chamber (
1) Heat is exchanged on the walls of the exhaust pipe (2) and the cushion chamber (2), and this combustion heat is absorbed and retained by the fC latent heat storage material arranged on the heat exchange outer wall surface (n).

る。Ru.

潜熱1゛熱材<11)に保有官nまた熱は、貯熱容器θ
)内に配設しfc#交換交換74刀 とによって略々一定の温度レベルで取り出して利用する
ことが可能である。
The latent heat 1゛ thermal material < 11) also has heat in the heat storage container θ
), it can be taken out and used at a substantially constant temperature level by fc# exchange exchange 74.

本発明において使用さする潜熱蓄熱行頭としては,利用
時における温度レベル、蓄熱密度.繰返し使用の安定性
,熱伝導・安全性,コストなどの面から最適な媒体を選
択する必要があるが.基本的には一般的に良く知らn,
ている材料,即ち,n−パラフィンおよびその誘導体,
塩水化物,包接水化物などのようK 150℃以下で使
用さn,る携料系や,簡温度域に使用さj,る溶融塩系
などを用いることが可能である。
The latent heat storage line used in the present invention includes the temperature level and heat storage density at the time of use. It is necessary to select the optimal medium in terms of stability with repeated use, heat conduction/safety, cost, etc. Basically, it is generally not well known,
materials, i.e., n-paraffin and its derivatives,
It is possible to use portable systems such as salt hydrates and clathrate hydrates, which are used at temperatures below 150°C, and molten salt systems, which are used in low temperature ranges.

但し、こt7、までに知ら1,ている潜熱蓄熱材を本発
明に適応する場合において特に重要な問題は。
However, there are particularly important problems when applying the latent heat storage material known up to now to the present invention.

熱伝導率および熱交換器に対する配慮である。本発明に
おいて,パルス燃焼器が本来有する高負荷燃焼や熱伝達
特性などの長所を最大限に生がすために,潜熱蓄熱行頭
および熱交換パイプQ(Iなどの蓄熱装置において.熱
伝導度,熱交換性能を高める必要があり,又,同時に簡
易にして使い易い構造にする必要がある。
Consideration is given to thermal conductivity and heat exchangers. In the present invention, in order to maximize the advantages of the pulse combustor, such as high-load combustion and heat transfer characteristics, in the heat storage device such as the latent heat storage head and the heat exchange pipe Q (I), the thermal conductivity, It is necessary to improve heat exchange performance, and at the same time, it is necessary to make the structure simple and easy to use.

このような点から,熱交換の手段としては,シェル・ア
ンド・チューブ型熱交換器を採用することが好−ましく
、そして、用いるチューブの外側にフィン明を+J設し
て熱交換性能を向上させることが好ましい。なお、カプ
セル型の熱交換器Fi.騒音を低減する上ではかなり効
果的な方法ではあるが,地扱い上の問題が多くて適当で
ない。
From this point of view, it is preferable to use a shell-and-tube type heat exchanger as a means of heat exchange, and fins are provided on the outside of the tubes used to improve heat exchange performance. It is preferable to improve it. Note that the capsule type heat exchanger Fi. Although this is a fairly effective method for reducing noise, it is not suitable as there are many problems with land handling.

シェル・アンド・チューブ型熱交換器に使用サノ7,る
熱媒としては,温度レベルから選択さj,るものである
が、水,シリコーン油,グリコール類などが好ましい。
The heat medium used in the shell-and-tube heat exchanger is selected depending on the temperature level, but water, silicone oil, glycols, etc. are preferable.

而し′″c,a熱蓄熱材σGは,一般的に熱伝導度がか
なシ低いので,その熱伝導度を向上させるために、潜熱
蓄熱材C1(Jに比較的安定で且つ共存性の良好な金属
の熱伝導体を配合し,沿熱蓄熱羽QGと共に゛貯熱容器
(2)内に収容すると有効である0これは,従来のパル
ス燃焼器においては燃焼熱の熱交換性能は燃焼ガスとそ
の熱交換壁との界面の熱伝導率が支配的であったが1本
発明においては,潜熱蓄熱材の低い熱伝導率による影響
もかな9大きいことが判明しfCためである。
However, since the heat storage material σG generally has a very low thermal conductivity, in order to improve its thermal conductivity, a latent heat storage material C1 (J that is relatively stable and compatible) is used. It is effective to mix a good metal heat conductor and house it in the heat storage container (2) together with the heat-trapping heat storage blade QG. This means that in the conventional pulse combustor, the heat exchange performance of combustion heat is Although the thermal conductivity of the interface between the gas and its heat exchange wall was dominant, in the present invention, it was found that the influence of the low thermal conductivity of the latent heat storage material was also significant because of fC.

この金机の熱伝導体は,線状,板片状2粒状。The heat conductor of this metal desk has two granular shapes, one linear and one plate.

多孔質状などの穐々の形状で使用でき,貯熱容器e)内
への収容方法は,潜熱蓄熱材(11中に分散,混入させ
たり,フィン状に配列して潜熱蓄熱材αOと積層構造に
するなどの方法が良く,このように構成することによっ
てパルス燃焼器の本来有する長所を生かすことができる
It can be used in a porous or other shape, and can be stored in the heat storage container e) by dispersing or mixing it into the latent heat storage material (11) or by arranging it in a fin shape and stacking it with the latent heat storage material αO. A good method is to change the structure, and by configuring it in this way, the inherent advantages of the pulse combustor can be utilized.

次に1本発明の実施例における前記パルス燃焼装置と従
来から広く知られている貯湯式のパルス燃焼器との性能
を比較する。
Next, the performance of the pulse combustor according to an embodiment of the present invention and a conventionally widely known hot water storage type pulse combustor will be compared.

こ\において1両者のパルス燃焼器の部分は。In this case, both pulse combustor parts are.

その構造を同一とし.異なる点は1本発明実施例では貯
熱容器■と潜熱蓄熱行頭および熱交換パイプCLIIか
らなる潜熱蓄熱製首部分かあり,従来例では水を用いた
貯湯槽としている点である。なお。
Assume that their structures are the same. The difference is that the embodiment of the present invention has a latent heat storage neck section consisting of the heat storage container (1), the head of the latent heat storage line, and the heat exchange pipe CLII, whereas the conventional example has a hot water storage tank using water. In addition.

両者のパルス燃焼器はその構成の大部分をステンレス鋼
製とし,又、発熱量を30 、000”Mhrに統一し
た。さらに2本発明実施例の貯熱容器■及び従来例の貯
湯槽の内容積を共に30/とした。
Most of the construction of both pulse combustors is made of stainless steel, and the calorific value is unified to 30,000"Mhr. Furthermore, the contents of the heat storage container (■) of the embodiment of the present invention and the hot water storage tank of the conventional example Both products were set to 30/.

本発明の前記貯熱容器υ)および熱交換パイプ(口)又 はステンレス鋼製であり,A潜熱蓄熱材00としては。The heat storage container υ) of the present invention and the heat exchange pipe (mouth) or is made of stainless steel, and is A latent heat storage material 00.

酢酸ナトリウム3水塩を主成分とし,これに過冷却防止
のためにピロリン酸ナトリウム10水塩を11蛍%,相
分離防止の几めにポリビニルアルコールを主とした増粘
剤を2重負矛の割付で混会したものを用いた。
The main component is sodium acetate trihydrate, with a double layer of sodium pyrophosphate decahydrate at 11% to prevent supercooling, and a thickener mainly composed of polyvinyl alcohol to prevent phase separation. A mixture of allocation was used.

この潜熱蓄熱材αOを約33即,貯熱容器[F])内に
入j,ると共に,この容器内において潜熱蓄熱材CIG
をステンレス銅製のメツシュ状の金網で1−間隔程度毎
に仕切って熱伝導を向上させた。
This latent heat storage material αO is immediately put into the heat storage container [F]), and the latent heat storage material CIG is placed in this container.
The heat conduction was improved by partitioning the cells at about 1-interval intervals using mesh-like wire meshes made of stainless steel.

さらに、熱交換パイプ中1は、貯熱容器■)内でパルス
燃焼器の中心から等円周上に配設して、潜熱蓄熱材aO
およびステンレス鋼製金網とにソノパイプ外周が接触す
るようにし,このパイプの内部に一方から水を流通させ
ることによって熱出力を利用するようにした。
Furthermore, the heat exchange pipe middle 1 is arranged on the same circumference from the center of the pulse combustor in the heat storage container (■), and the latent heat storage material aO
The outer periphery of the sono pipe was brought into contact with the pipe and the stainless steel wire mesh, and the heat output was utilized by flowing water into the pipe from one side.

このように構成した本発明実施例のパルス燃焼装置と前
述した従来例の貯湯式パルス燃焼器とを動作させて比較
検討した結果1本発明実施例の装置は次のような利点を
有するものであった。
As a result of operating and comparing the pulse combustor of the embodiment of the present invention configured as described above and the conventional hot water storage type pulse combustor described above, it was found that the device of the embodiment of the present invention has the following advantages. there were.

1)騒音が低減した。1) Noise has been reduced.

吸気側および排気側は両者共に同一のマフラーで構成し
S騒音を比較したところ、従来装置の場合、 58dB
(A)であったのに対し1本発明実施例の装Wは43(
IB(A)に低減さカてぃた。この騒音低下の理由とし
ては、貯熱容器■内に設けfc漕熟熱蓄熱材質量効果お
よび相互の運動摩擦効果が関与して蓄熱装置からの透過
音が減衰したものと考えらn、る。
Both the intake and exhaust sides were configured with the same muffler, and when comparing the S noise, in the case of the conventional device, it was 58 dB.
(A), whereas the mounting W of the embodiment of the present invention was 43 (
Category reduced to IB(A). The reason for this reduction in noise is thought to be that the transmitted sound from the heat storage device is attenuated due to the mass effect of the FC aging heat storage material provided in the heat storage container (2) and the mutual kinetic friction effect.

2)略々一定した温度で連続的に熱が得らnる。2) Heat is obtained continuously at a substantially constant temperature.

従来の貯湯式装置の場合、W4熱で蓄熱しているので、
使用条件によっては、得らj、る温度の変化は比較的大
きいが1本発明実施例の装置は。
In the case of conventional hot water storage type devices, heat is stored using W4 heat, so
Depending on the conditions of use, the change in temperature obtained by the apparatus according to the embodiment of the present invention may be relatively large.

燃焼状態や負荷状態に変化があっても、潜熱蓄熱方式で
あるため、その蓄熱材の融点付近の一定温度1例えば、
酢酸ナトIJウム3水塩系では58℃の融点温度が連続
して得らj、る。
Even if the combustion state or load state changes, the latent heat storage method maintains a constant temperature around the melting point of the heat storage material.For example,
In the sodium acetate trihydrate system, a melting point temperature of 58° C. is continuously obtained.

3)蓄熱密度が高く、小型化が可能である。3) High heat storage density and downsizing is possible.

従来の貯湯式装置では40〜80℃で熱利用が可能とし
ても1本発明実施例の装置rCおいて、潜熱蓄熱材とし
て酢酸ナトリウム3水塩系(蓄熱密度55Caky )
を用いた場合には、潜熱相当分だけでもその蓄熱量は従
来装置に比べて1.5倍以上の1直となった。従って、
この蓄熱密度が高いことによって小型化が可能になる。
Although it is possible to use heat at 40 to 80°C in conventional hot water storage type equipment, in the equipment rC of the embodiment of the present invention, sodium acetate trihydrate system (thermal storage density 55 Caky) is used as the latent heat storage material.
When using this system, the amount of heat stored even just by the amount equivalent to latent heat was more than 1.5 times that of the conventional system per shift. Therefore,
This high heat storage density enables miniaturization.

このように1本発明の前記実施例で示したパルス燃焼装
置は、単に騒音を低減できるという効果にとどまらず、
多くの利片面からの特長を有するものである。
In this way, the pulse combustion apparatus shown in the above embodiment of the present invention not only has the effect of reducing noise, but also
It has many advantages from both sides.

なお、前記実施例r(おいては、 ?Ii熱蓄熱材とし
て58℃の融点を有する酢酸ナトリウム3水塩を用いた
が、この他にも、利用温度レベルによっては多くの潜熱
蓄熱材料が適用でき1例えば、溶融塩系などの高温用材
料を使用すわば、従来の水を用いた貯湯式装置では達成
不可能な100℃以上の温度が比較的高い蓄熱密度で東
男できることが明らかとなり、従来のパルス燃焼器の主
用途である給湯、暖房用以外にも高温が必要な用途に、
効率的で且つ安全に利用することができる。
In the above Example R (?II), sodium acetate trihydrate having a melting point of 58°C was used as the heat storage material, but in addition to this, many latent heat storage materials can be applied depending on the usage temperature level. For example, it has become clear that by using high-temperature materials such as molten salts, it is possible to achieve temperatures of 100°C or higher with relatively high heat storage density, which is impossible to achieve with conventional hot water storage devices. In addition to hot water supply and space heating, which are the main uses of conventional pulse combustors, it can also be used for applications that require high temperatures.
It can be used efficiently and safely.

発明の効果 以上のように本発明は、パルス燃焼器と潜熱蓄2)一定
温度の熱が利用できる。
Effects of the Invention As described above, the present invention can utilize a pulse combustor and latent heat storage 2) Heat at a constant temperature.

3)蓄熱密度が高く、小型化が可能となる。3) High heat storage density, allowing for miniaturization.

4)利用目的に応じて潜熱蓄熱材を選択することにより
、100℃以上の高温が得らn、る。
4) By selecting a latent heat storage material according to the purpose of use, a high temperature of 100°C or higher can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のパルス燃焼装置の一実施例を示す縦断面
図である。 (1)は燃焼室、■は排気パイプ、c3)はクッション
チャンバ、(4はパルプ装置、(5は点火プラグ、6)
は給気パイプ、c7)は燃料供給パイプ、■は尾管。 ■)は貯熱容器、αOは潜熱蓄熱材5Qllは熱交換パ
イプ。
The drawing is a longitudinal sectional view showing an embodiment of the pulse combustion device of the present invention. (1) is the combustion chamber, ■ is the exhaust pipe, c3) is the cushion chamber, (4 is the pulp device, (5 is the spark plug, 6)
is the air supply pipe, c7) is the fuel supply pipe, ■ is the tail pipe. ■) is a heat storage container, αO is a latent heat storage material, and 5Qll is a heat exchange pipe.

Claims (1)

【特許請求の範囲】 (1)点火装置を有する燃焼室の出口側に排気パイプを
介してクッションチャンバおよび尾管を順次連設すると
共に前記燃焼室の入口側に燃料および燃焼甲空気を供給
するパイプをパルプ装置を介して連設してパルス燃焼器
を構成し、このパルス燃焼器の前記燃焼室、排気パイプ
およびクッションチャンバの熱交換外周壁面を貯熱容器
で包囲し、との貯熱容器内に潜熱蓄熱材を収容して潜熱
蓄熱装背を構成したことを特徴とするパルス燃焼装置。 ■ 貯熱容器と熱移動媒体との熱交換を、シェル−アン
ド・チューブ型ですることを特徴とする特許請求の範囲
第1項記載のパルス燃焼装置。 (3)  潜熱蓄熱装置内に潜熱蓄熱材と共に霊属の熱
伝導体を収容することを特徴とする特許請求の範囲第1
項又は第2項記載のノクルス燃焼装置。
[Claims] (1) A cushion chamber and a tail pipe are sequentially connected to the outlet side of a combustion chamber having an ignition device via an exhaust pipe, and fuel and combustion air are supplied to the inlet side of the combustion chamber. A pulse combustor is constructed by connecting pipes via a pulp device, and a heat storage container surrounds the heat exchange outer peripheral wall surface of the combustion chamber, exhaust pipe, and cushion chamber of the pulse combustor, and a heat storage container is provided. A pulse combustion device characterized in that a latent heat storage material is housed inside to form a latent heat storage device. (2) The pulse combustion device according to claim 1, wherein heat exchange between the heat storage container and the heat transfer medium is performed in a shell-and-tube type. (3) Claim 1, characterized in that a latent heat storage material and a genus heat conductor are housed in the latent heat storage device.
Noculus combustion device according to item 1 or 2.
JP10476283A 1983-06-11 1983-06-11 Pulse combustion device Pending JPS59231309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10476283A JPS59231309A (en) 1983-06-11 1983-06-11 Pulse combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10476283A JPS59231309A (en) 1983-06-11 1983-06-11 Pulse combustion device

Publications (1)

Publication Number Publication Date
JPS59231309A true JPS59231309A (en) 1984-12-26

Family

ID=14389490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10476283A Pending JPS59231309A (en) 1983-06-11 1983-06-11 Pulse combustion device

Country Status (1)

Country Link
JP (1) JPS59231309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264070A1 (en) * 2009-12-10 2012-10-18 Michael Zettner Burner system and a method for increasing the efficiency of a heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264070A1 (en) * 2009-12-10 2012-10-18 Michael Zettner Burner system and a method for increasing the efficiency of a heat exchanger
AU2010329441B2 (en) * 2009-12-10 2016-05-12 Michael Zettner A burner system and a method for increasing the efficiency of a heat exchanger
US9512997B2 (en) 2009-12-10 2016-12-06 Triple E Power Ltd. Burner system and a method for increasing the efficiency of a heat exchanger
EP2510282A4 (en) * 2009-12-10 2017-12-20 Michael Zettner A burner system and a method for increasing the efficiency of a heat exchanger

Similar Documents

Publication Publication Date Title
TW528849B (en) Hydrogen cooled hydrogen storage unit having a high packing density of storage alloy and encapsulation
JPS59231309A (en) Pulse combustion device
CN1774604B (en) Multi-functional boiler
CN207648854U (en) A kind of soft homogeneous catalysis burner
JPS5892729A (en) Gas turbine combustor
CN212511188U (en) Incinerator with waste heat recovery function
CN211316164U (en) New forms of energy combustor
JPS5690892A (en) Reformer
JPS59231310A (en) Pulse combustion device
WO2019033690A1 (en) Water decomposition combustion air heat-conduction and -supply furnace
CN109237474A (en) The gradual-enlargement type porous media combustor back and forth flowed
JPS5949494A (en) Heat exchanger
CN220039129U (en) Energy recovery device and graphitization furnace
CN2343535Y (en) Jacket liner boiler
JP2005030243A (en) Fuel reforming device
JPS5554619A (en) Oil filter capable of warming lubricating oil promptly
JPS6334487A (en) Hydrogenated metal heat exchanger
CN210796374U (en) Water gas production system
WO2012034530A1 (en) Metallic fuel combustion transduction system
JPS62502771A (en) Heating device with burner and heat exchanger
RU195265U1 (en) CATALYTIC HEAT GENERATOR
CN200995133Y (en) Graphite ignitor synthetic furnace under protection of furnace internall-wall liquefied film
SU1184326A1 (en) Gas generator
KR100277484B1 (en) Heat Exchange Boiler by Heating Gas Bubble
JPS5919906Y2 (en) Heat exchange device using hydrogen storage metal