JPS59229803A - Method of producing ptc thermistor - Google Patents

Method of producing ptc thermistor

Info

Publication number
JPS59229803A
JPS59229803A JP58104483A JP10448383A JPS59229803A JP S59229803 A JPS59229803 A JP S59229803A JP 58104483 A JP58104483 A JP 58104483A JP 10448383 A JP10448383 A JP 10448383A JP S59229803 A JPS59229803 A JP S59229803A
Authority
JP
Japan
Prior art keywords
glass
pto
thermistor
welding
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104483A
Other languages
Japanese (ja)
Other versions
JPH0145962B2 (en
Inventor
峯岸 敬一
秋葉 徳二
忠男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP58104483A priority Critical patent/JPS59229803A/en
Priority to KR1019840002770A priority patent/KR900005267B1/en
Priority to EP84303796A priority patent/EP0129997B1/en
Priority to DE8484303796T priority patent/DE3473801D1/en
Publication of JPS59229803A publication Critical patent/JPS59229803A/en
Publication of JPH0145962B2 publication Critical patent/JPH0145962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/02Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistors with envelope or housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/024Housing; Enclosing; Embedding; Filling the housing or enclosure the housing or enclosure being hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)
  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はガラス封入m p ’r oサーミスタの製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a glass-encapsulated m p'r o thermistor.

周知のようにサーミスタは温度だけを検知するという目
的のため、樹脂やガラスでサーミスタ素子を封入し、ガ
ス、湿度等の温度以外の影響をま −ったく、うけない
ように封入加工がなされている。
As is well known, the purpose of a thermistor is to detect only temperature, so the thermistor element is encapsulated in resin or glass, and the encapsulation process is performed to prevent it from being affected by anything other than temperature, such as gas or humidity. There is.

特にNTOサーミスタでは樹脂封入型のディスク型サー
ミスタの他に安価で量産性に富み、特性の安定したガラ
ス封入型サーミスタが実用化されている。
In particular, among NTO thermistors, in addition to resin-filled disk-type thermistors, glass-filled thermistors that are inexpensive, mass-producible, and have stable characteristics have been put into practical use.

しかし、PTOサーミスタではガラス封入型サーミスタ
は実用化されておらず、樹脂封入型のディスク麗サーミ
スタやヒータ用として電極に金属この理由はPTOサー
ミスタ素子のガラス溶着封入時における温度、雰囲気が
PTOサーミスタの特性に大きく影響を及ぼし、目的の
特性が得られないことに起因している。
However, glass-encapsulated PTO thermistors have not been put to practical use, and are used in resin-encapsulated disk-type thermistors and heaters with metal electrodes. This is due to the fact that the characteristics are greatly affected and the desired characteristics cannot be obtained.

そこで本発明者等はガラス封入型PTOサーミスタに関
して種々実験研究の結果、従来のガラス溶着封入方法で
はPTOサーミスタ素子がメラス溶着封入時に還元雰囲
気にさらされ、また、ガラス溶着耐大作業温度が610
℃を越える温度になることを確認し、このことがPTO
サーミスタの特性に悪影譬を及はしているという知見を
得た。
As a result of various experimental studies regarding glass-encapsulated PTO thermistors, the present inventors have found that in the conventional glass welding and encapsulation method, the PTO thermistor element is exposed to a reducing atmosphere during meras welding and encapsulation.
Check that the temperature exceeds ℃, and this indicates that the PTO
It was discovered that the characteristics of the thermistor were affected negatively.

本発明はこの知見に基づきなされたもので、ガラス溶着
封入しfcPTOサーミスタにおいて抵抗変化が十分に
大きく、スイッチング温度において、著しい抵抗変化を
し、特性の安定したガラス封入fiPToサーミスタを
安価に提供しようとするものである。
The present invention has been made based on this knowledge, and aims to provide at a low cost a glass-filled fiPTO thermistor that has a sufficiently large resistance change, a significant change in resistance at the switching temperature, and stable characteristics. It is something to do.

即ち、第1の発明は正の抵抗温度特性を有する半導体磁
器を軟化点560℃以下の低融点ガラスを用いてガラス
溶着封入することを特徴とするPTOサーミスタの製造
法であり、第2の発明は、正の抵抗温度特性を有する半
導体磁器を空気、02ガスの一種又はその混合雰囲気下
(ただし、空気は容量百分率で0%以上100%以下)
において軟化点560℃以下の低融点ガラスを用いてガ
ラス溶着封入することを特徴とするPTOサーミスタの
製造法である。
That is, the first invention is a method for manufacturing a PTO thermistor, characterized in that semiconductor porcelain having positive resistance-temperature characteristics is glass-welded and sealed using low-melting glass having a softening point of 560° C. or less, and the second invention is a method for manufacturing a PTO thermistor. Semiconductor porcelain with positive resistance-temperature characteristics is exposed to air, one type of 02 gas, or a mixture thereof (however, air is 0% or more and 100% or less in terms of volume percentage).
This is a method for manufacturing a PTO thermistor characterized by glass welding and encapsulation using a low melting point glass having a softening point of 560° C. or lower.

以下、本発明の具体的な実施例について説明する。Hereinafter, specific examples of the present invention will be described.

N1図拡実施例の各工程を示すもので、先ず、牛導体化
チタン酸バリウム磁器1をガラス管の長さに対応した任
意の厚さにスライスし、銀電極2゜2を素子両面に塗布
し、これを600℃20分間焼付ける。第1図(、)は
銀電極焼付は後の素子の断面図である。
Figure N1 shows each step of the enlarged example. First, the conductorized barium titanate porcelain 1 is sliced into an arbitrary thickness corresponding to the length of the glass tube, and silver electrodes 2°2 are applied to both sides of the element. Then, bake this at 600°C for 20 minutes. FIG. 1 (,) is a cross-sectional view of the device after the silver electrode has been baked.

次に第1図(b)に示すように、ガラス管の径に対応し
た任意の長さに素子を切断する。縦横の線は切断線であ
る。
Next, as shown in FIG. 1(b), the element is cut into an arbitrary length corresponding to the diameter of the glass tube. The vertical and horizontal lines are cutting lines.

この素子を軟化点5jO℃以下のガラス管14にう。 
                      (この
溶着封止の作業温度杖ガラスの軟化点によって決定され
、一般にガラス軟化点の50℃以上高い温度で行なわれ
る。
This element is placed in a glass tube 14 having a softening point of 5jO<0>C or less.
(The working temperature for this welding and sealing is determined by the softening point of the glass, and is generally performed at a temperature 50° C. or more higher than the glass softening point.)

従来のガラス溶着封入は軟化点560℃を越える組成の
ガラスを使い、その溶着耐大作業温度は610℃を越え
る温夏で行なわれておシ、この条件でガラス溶着封入を
行なり九PTOサーミスタは封着前の特性にくらべ大き
く劣化する。しかし、本発明のように軟化点560℃以
下の低融点ガラスを用いて溶着封入を行なうと劣化は少
なく、安定したPTOサーミスタが得られる。
Conventional glass welding and encapsulation uses glass with a composition that has a softening point of over 560°C, and its maximum welding working temperature exceeds 610°C, which is carried out in warm summers. The characteristics deteriorate significantly compared to the characteristics before sealing. However, if welding and encapsulation is performed using a low melting point glass with a softening point of 560° C. or less as in the present invention, there is little deterioration and a stable PTO thermistor can be obtained.

第2図にキューリ一点120℃のPTOサーミスタ素子
を空気中でガラス溶着封入行なった結果を示す。
FIG. 2 shows the results of a PTO thermistor element heated to a temperature of 120° C. in air by glass welding.

溶着封入前の特性にくらべ、わずかに特性は劣化するが
、軟化点536℃のガラスおよび軟化点560℃のガラ
スで封着を行なったPTOサーミスタ素子の特性が優れ
ていることがわかる。
It can be seen that the characteristics of the PTO thermistor elements sealed with glass with a softening point of 536° C. and glass with a softening point of 560° C. are excellent, although the characteristics are slightly deteriorated compared to the characteristics before welding and sealing.

また、ここではキューリ一点120℃のPTOサーミス
タ素子について行なったがキューリ一点の異なるPTO
サーミスタ素子においても同様の結果が得られた。
In addition, although the PTO thermistor element with a single Curie point of 120°C was tested here, the PTO with a different Curie point
Similar results were obtained for thermistor elements.

従来からジュメット線の酸化やヒータの酸化を防ぐため
、N2ガスや人rガスあるいは真空中でガラスの溶着封
入が行なわれてきた。この方法はNTOサーミスタのガ
ラス溶着封入に行なわれることが多いがPTOサーミス
タの場合、還元雰囲気中損なわれる。
Conventionally, in order to prevent oxidation of Dumet wires and heaters, welding and sealing of glass has been carried out in N2 gas, hydrogen gas, or vacuum. This method is often used for glass welded encapsulation of NTO thermistors, but is compromised in reducing atmospheres for PTO thermistors.

そζで本発明者等は種に実験研究の結果空気、0雪ガス
の一種又Mその混合雰囲気下(ただし空気は容量百分率
で0チ以上100%以下)においてガラス溶着封入を行
なうとPTO特性の優れたサーミスタが得られることを
見い出した。
Therefore, the present inventors conducted experimental research and found that when glass welding is performed in an atmosphere of air, 0 snow gas, or a mixed atmosphere of M (however, the volume percentage of air is 0 gas or more and 100% or less), the PTO characteristics change. It was discovered that an excellent thermistor can be obtained.

第3図は各種ガスを流入してガラス溶着封入を行なった
PTOサーミスタの特性図を示すもので、ここでは軟化
点560℃のガラスtl−便い、610℃においてキュ
ーリ一点120℃のPTOサーiスタ素子のガラス溶着
封入を行なった。
Figure 3 shows the characteristics of a PTO thermistor that is sealed by glass welding with various gases flowing into it. The star element was encapsulated by glass welding.

図かられかるように、02ガス中あるいは空気中におい
てガラス溶着封入を行なうと、真空中、不活性ガス中、
あるいは還元雰囲気中にくらべPTO特性の優れたPT
Oサーミスタが得られる。
As can be seen from the figure, when glass welding and encapsulation is performed in 02 gas or air, in vacuum or inert gas,
Or, PT with superior PTO characteristics compared to in a reducing atmosphere.
An O thermistor is obtained.

第3図には03ガス中、および空気中のみを図示したが
、空気と02ガスの混合雰囲気下においても#lぼ同様
の特性が得られる。また、ここではキューリ一点120
℃のPTOサーミスタ素子について行なったがキューリ
一点の異なるPTOサーミスタ素子においても同様の結
果が得られる。
Although only 03 gas and air are shown in FIG. 3, the same characteristics as #1 can be obtained even in a mixed atmosphere of air and 02 gas. Also, here one cucumber costs 120
Although the experiment was carried out for a PTO thermistor element having a temperature of 0.degree. C., similar results can be obtained for a PTO thermistor element having a different Curie point.

第4図は軟化点536℃のガラスを用い、02ガス中、
および空気中においてキューリ一点120℃のPTOサ
ーミスタ素子のガラス溶着封入を行なったPTOサーミ
スタの抵抗・温度特性図である。
Figure 4 shows glass with a softening point of 536°C in 02 gas.
FIG. 3 is a resistance/temperature characteristic diagram of a PTO thermistor in which the PTO thermistor element is sealed with glass welding at a single curie point of 120° C. in air.

図かられかるように封着前の′#性とほぼ同様の抵抗変
化の大きい特性をもつPTOサーミスタが得られること
がわかる。
As can be seen from the figure, a PTO thermistor can be obtained which has a large resistance change characteristic that is almost the same as the characteristic before sealing.

第4図には02ガス中、および空気中での製造の場合の
みを図示したが、空気と02ガスの混合雰囲下において
もほぼ同様の特性が得られる。また。
Although FIG. 4 shows only the case of production in 02 gas and air, almost the same characteristics can be obtained in a mixed atmosphere of air and 02 gas. Also.

ここではキューリ一点120℃のPTOサーミスタ素子
について行なったが、キューリ一点の異なるPTOサー
ミスタ素子においても同様の結果が得られる。
Here, the results were carried out for a PTO thermistor element with a Curie point of 120° C., but similar results can be obtained with a PTO thermistor element having a different Curie point.

なお、ここでは溶着封止用ヒータとしてカーゼンヒータ
治具を用いたが、他のヒータ治具%例えばメタルヒータ
治具を用いても同様の結果が得られる。
Note that, although a Cursen heater jig was used here as the heater for welding and sealing, similar results can be obtained by using other heater jig, such as a metal heater jig.

以上、述べたように正の抵抗!L度時特性有する半導体
磁器を使ってガラス封入型PTOサーミスタを製造する
場合、軟化点560℃以下の低融点ガラスを用いること
によって、また、そのガラス溶着を空気中又は02ガス
中若くは空気と02ガスの混合雰囲気下で行うことによ
って優れた特性を有するPTOサーミスタを安価に製造
することができるもので1本発明は工学的価値が高いも
のである。
As mentioned above, positive resistance! When manufacturing a glass-filled PTO thermistor using semiconductor porcelain that has L degree characteristics, it is necessary to use a low melting point glass with a softening point of 560°C or less, and to melt the glass in air or in 02 gas or with air. The present invention has high engineering value because it allows a PTO thermistor with excellent characteristics to be manufactured at low cost by carrying out the process in a mixed atmosphere of 02 gas.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1図は本発明実施例の製造工程を示す図、第2図〜第
4図は夫々製造条件の異なる各製品の温度−比抵抗特性
図でるる。 1・・・PTOサーミスタ素子、2・・・銀電極、3・
・・ジュメット線、4・・・ガラス管
Figure 1 is a diagram showing the manufacturing process of an embodiment of the present invention, and Figures 2 to 4 are temperature-resistivity characteristic diagrams of each product under different manufacturing conditions. 1... PTO thermistor element, 2... silver electrode, 3...
...Dumet wire, 4...Glass tube

Claims (1)

【特許請求の範囲】[Claims] (1)  正の抵抗温度特性を有する半導体磁器を軟化
点560℃以下の低融点ガラスを用いてガラス溶着封入
することを特徴とするPTOサーミスタの製造法。 偉)正の抵抗温度特性を有する半導体磁器を空気、02
ガスの一種又はその混合雰囲気下(ただし、空気は容量
百分率でOチ以上100%以下)において軟化点560
℃以下の低融点ガラスを用いてガラス溶着封入すること
を特徴とするPTOサーミスタの製造法。
(1) A method for manufacturing a PTO thermistor, characterized in that semiconductor porcelain having positive resistance-temperature characteristics is glass-welded and sealed using low-melting glass having a softening point of 560° C. or less. 02) Semiconductor porcelain with positive resistance-temperature characteristics is
Softening point: 560 in an atmosphere of one type of gas or a mixture thereof (however, air has a volume percentage of 0 to 100%)
1. A method for manufacturing a PTO thermistor, characterized by glass welding and encapsulation using low melting point glass below ℃.
JP58104483A 1983-06-11 1983-06-11 Method of producing ptc thermistor Granted JPS59229803A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58104483A JPS59229803A (en) 1983-06-11 1983-06-11 Method of producing ptc thermistor
KR1019840002770A KR900005267B1 (en) 1983-06-11 1984-05-21 Process for the production of ptc thermistors
EP84303796A EP0129997B1 (en) 1983-06-11 1984-06-05 Process for the production of ptc thermistors
DE8484303796T DE3473801D1 (en) 1983-06-11 1984-06-05 Process for the production of ptc thermistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104483A JPS59229803A (en) 1983-06-11 1983-06-11 Method of producing ptc thermistor

Publications (2)

Publication Number Publication Date
JPS59229803A true JPS59229803A (en) 1984-12-24
JPH0145962B2 JPH0145962B2 (en) 1989-10-05

Family

ID=14381803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104483A Granted JPS59229803A (en) 1983-06-11 1983-06-11 Method of producing ptc thermistor

Country Status (4)

Country Link
EP (1) EP0129997B1 (en)
JP (1) JPS59229803A (en)
KR (1) KR900005267B1 (en)
DE (1) DE3473801D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190302U (en) * 1986-05-23 1987-12-03
US5210516A (en) * 1990-02-22 1993-05-11 Murata Manufacturing Co., Ltd. Ptc thermistor and ptc thermistor producing method, and resistor with a ptc thermistor
JPH1055903A (en) * 1996-08-09 1998-02-24 Mitsubishi Materials Corp Structure of electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL287531A (en) * 1962-08-11
US3377561A (en) * 1965-07-13 1968-04-09 Bell Telephone Labor Inc Positive temperature coefficient titanate thermistor
LU69220A1 (en) * 1973-06-18 1974-04-08
US4276536A (en) * 1979-09-04 1981-06-30 Scully Electronic Systems, Inc. Self-heating thermistor probe for low temperature applications

Also Published As

Publication number Publication date
DE3473801D1 (en) 1988-10-06
EP0129997A1 (en) 1985-01-02
KR850000811A (en) 1985-03-09
KR900005267B1 (en) 1990-07-21
JPH0145962B2 (en) 1989-10-05
EP0129997B1 (en) 1988-08-31

Similar Documents

Publication Publication Date Title
JPS6143402A (en) Method of producing thermistor
JPS59229803A (en) Method of producing ptc thermistor
US3820239A (en) Method of manufacturing thermistor
US3936790A (en) Temperature sensitive resistor having a critical transition temperature of about 140°C
JPS59229804A (en) Method of producing ptc thermistor
US3442014A (en) Method of stabilizing resistance in semiconductor manufacture
JPH02248002A (en) Glass seal type positive temperature coefficient thermistor
JPH01235307A (en) Manufacture of glass-sealed thermistor
JPH01239812A (en) Manufacture of glass sealed type thermistor
JP2679110B2 (en) Method for manufacturing semiconductor device
JPS5884405A (en) Method of producing thin film thermistor
JPS5954188A (en) Sheathed heater and method of producing same
JPH01310506A (en) Thermistor
JPS6378502A (en) Manufacture of thermistor
JPH0955302A (en) High temperature glass sealed thermistor
JPS60206101A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH0315321B2 (en)
JPH0115125Y2 (en)
JP3841238B2 (en) Method for manufacturing positive thermistor material
JPS6252924B2 (en)
JPS6146002A (en) Glass sealed thermistor
JP3166784B2 (en) Positive thermistor element
JPS62248202A (en) Temperature sensor
JPS6027161B2 (en) voltage nonlinear resistor
JPH01268101A (en) Manufacture of glass-sealed thermistor